Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1564 lines
52 KiB

/*++
Copyright (c) 1989-1999 Microsoft Corporation
Module Name:
receive.c
Abstract:
This module contains the code for passing on receive IRPs to
TDI providers.
Author:
David Treadwell (davidtr) 13-Mar-1992
Revision History:
Vadim Eydelman (vadime)
1998-1999 Minimal NT5.0 changes (keep in sync with rest)
--*/
#include "afdp.h"
NTSTATUS
AfdRestartReceive (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
);
#ifdef ALLOC_PRAGMA
#pragma alloc_text( PAGEAFD, AfdReceive )
#pragma alloc_text( PAGEAFD, AfdRestartReceive )
#pragma alloc_text( PAGEAFD, AfdReceiveEventHandler )
#pragma alloc_text( PAGEAFD, AfdReceiveExpeditedEventHandler )
#pragma alloc_text( PAGEAFD, AfdQueryReceiveInformation )
#endif
NTSTATUS
FASTCALL
AfdReceive (
IN PIRP Irp,
IN PIO_STACK_LOCATION IrpSp
)
{
NTSTATUS status;
AFD_LOCK_QUEUE_HANDLE lockHandle;
PAFD_ENDPOINT endpoint;
PAFD_CONNECTION connection;
PTDI_REQUEST_RECEIVE receiveRequest;
BOOLEAN allocatedReceiveRequest = FALSE;
BOOLEAN peek;
LARGE_INTEGER bytesExpected;
BOOLEAN isDataOnConnection;
BOOLEAN isExpeditedDataOnConnection;
ULONG recvFlags;
ULONG afdFlags;
ULONG recvLength;
ULONG bufferCount;
//
// Make sure that the endpoint is in the correct state.
//
endpoint = IrpSp->FileObject->FsContext;
ASSERT( IS_AFD_ENDPOINT_TYPE( endpoint ) );
//
// Datagram endpoints can be received on event if they are just bound
// Connection oriented endpoints must be connected.
//
if ( (endpoint->State != AfdEndpointStateConnected ) &&
(!IS_DGRAM_ENDPOINT(endpoint) || (endpoint->State!= AfdEndpointStateBound))) {
if (IS_DGRAM_ENDPOINT(endpoint))
status = STATUS_INVALID_PARAMETER;
else
status = STATUS_INVALID_CONNECTION;
goto complete;
}
//
// If receive has been shut down or the endpoint aborted, fail.
//
if ( (endpoint->DisconnectMode & AFD_ABORTIVE_DISCONNECT) ) {
status = STATUS_LOCAL_DISCONNECT;
goto complete;
}
if ( (endpoint->DisconnectMode & AFD_PARTIAL_DISCONNECT_RECEIVE) ) {
status = STATUS_PIPE_DISCONNECTED;
goto complete;
}
//
// If this is an IOCTL_AFD_RECEIVE, then grab the parameters from the
// supplied AFD_RECV_INFO structure, build an MDL chain describing
// the WSABUF array, and attach the MDL chain to the IRP.
//
// If this is an IRP_MJ_READ IRP, just grab the length from the IRP
// and set the flags to zero.
//
if ( IrpSp->MajorFunction == IRP_MJ_DEVICE_CONTROL ) {
#ifdef _WIN64
if (IoIs32bitProcess (Irp)) {
PAFD_RECV_INFO32 recvInfo32;
LPWSABUF32 bufferArray32;
if ( IrpSp->Parameters.DeviceIoControl.InputBufferLength >=
sizeof(*recvInfo32) ) {
try {
//
// Validate the input structure if it comes from the user mode
// application
//
recvInfo32 = IrpSp->Parameters.DeviceIoControl.Type3InputBuffer;
if( Irp->RequestorMode != KernelMode ) {
ProbeForRead(
recvInfo32,
sizeof(*recvInfo32),
PROBE_ALIGNMENT32(AFD_RECV_INFO32)
);
}
//
// Make local copies of the embeded pointer and parameters
// that we will be using more than once in case malicios
// application attempts to change them while we are
// validating
//
recvFlags = recvInfo32->TdiFlags;
afdFlags = recvInfo32->AfdFlags;
bufferArray32 = recvInfo32->BufferArray;
bufferCount = recvInfo32->BufferCount;
//
// Validate the receive flags & WSABUF parameters.
// Note that either TDI_RECEIVE_NORMAL or
// TDI_RECEIVE_EXPEDITED (but not both) must be set
// in the receive flags. And expedited can only
// be set if transport supports expedited data and
// endpoint is not set to inline mode.
//
if ( ( recvFlags & TDI_RECEIVE_EITHER ) == 0 ||
( recvFlags & TDI_RECEIVE_EITHER ) == TDI_RECEIVE_EITHER
) {
//
// Invalid receive flags
//
status = STATUS_INVALID_PARAMETER;
}
else if (( recvFlags & TDI_RECEIVE_EXPEDITED) != 0 &&
(!IS_TDI_EXPEDITED( endpoint )
|| endpoint->InLine )) {
if (endpoint->InLine) {
//
// Endpoint set inline, OOB data is reported as
// normal.
//
status = STATUS_INVALID_PARAMETER;
}
else {
//
// Transport does not support expedited data
//
status = STATUS_NOT_SUPPORTED;
}
}
else {
//
// Create the MDL chain describing the WSABUF array.
// This will also validate the buffer array and individual
// buffers
//
status = AfdAllocateMdlChain32(
Irp, // Requestor mode passed along
bufferArray32,
bufferCount,
IoWriteAccess,
&recvLength
);
}
} except ( AFD_EXCEPTION_FILTER(&status) ) {
//
// Exception accessing input structure.
//
}
} else {
//
// Invalid input buffer length.
//
status = STATUS_INVALID_PARAMETER;
}
}
else
#endif // _WIN64
{
PAFD_RECV_INFO recvInfo;
LPWSABUF bufferArray;
//
// Sanity check.
//
ASSERT( IrpSp->Parameters.DeviceIoControl.IoControlCode==IOCTL_AFD_RECEIVE );
if ( IrpSp->Parameters.DeviceIoControl.InputBufferLength >=
sizeof(*recvInfo) ) {
try {
//
// Validate the input structure if it comes from the user mode
// application
//
recvInfo = IrpSp->Parameters.DeviceIoControl.Type3InputBuffer;
if( Irp->RequestorMode != KernelMode ) {
ProbeForRead(
recvInfo,
sizeof(*recvInfo),
PROBE_ALIGNMENT(AFD_RECV_INFO)
);
}
//
// Make local copies of the embeded pointer and parameters
// that we will be using more than once in case malicios
// application attempts to change them while we are
// validating
//
recvFlags = recvInfo->TdiFlags;
afdFlags = recvInfo->AfdFlags;
bufferArray = recvInfo->BufferArray;
bufferCount = recvInfo->BufferCount;
//
// Validate the receive flags & WSABUF parameters.
// Note that either TDI_RECEIVE_NORMAL or
// TDI_RECEIVE_EXPEDITED (but not both) must be set
// in the receive flags. And expedited can only
// be set if transport supports expedited data and
// endpoint is not set to inline mode.
//
if ( ( recvFlags & TDI_RECEIVE_EITHER ) == 0 ||
( recvFlags & TDI_RECEIVE_EITHER ) == TDI_RECEIVE_EITHER
) {
//
// Invalid receive flags
//
status = STATUS_INVALID_PARAMETER;
}
else if (( recvFlags & TDI_RECEIVE_EXPEDITED) != 0 &&
(!IS_TDI_EXPEDITED( endpoint )
|| endpoint->InLine )) {
if (endpoint->InLine) {
//
// Endpoint set inline, OOB data is reported as
// normal.
//
status = STATUS_INVALID_PARAMETER;
}
else {
//
// Transport does not support expedited data
//
status = STATUS_NOT_SUPPORTED;
}
}
else {
//
// Create the MDL chain describing the WSABUF array.
// This will also validate the buffer array and individual
// buffers
//
status = AfdAllocateMdlChain(
Irp, // Requestor mode passed along
bufferArray,
bufferCount,
IoWriteAccess,
&recvLength
);
}
} except ( AFD_EXCEPTION_FILTER(&status) ) {
//
// Exception accessing input structure.
//
}
} else {
//
// Invalid input buffer length.
//
status = STATUS_INVALID_PARAMETER;
}
}
if( !NT_SUCCESS(status) ) {
goto complete;
}
if (IS_SAN_ENDPOINT(endpoint)) {
IrpSp->MajorFunction = IRP_MJ_READ;
IrpSp->Parameters.Read.Length = recvLength;
return AfdSanRedirectRequest (Irp, IrpSp);
}
} else {
ASSERT( IrpSp->MajorFunction == IRP_MJ_READ );
recvFlags = TDI_RECEIVE_NORMAL;
afdFlags = AFD_OVERLAPPED;
recvLength = IrpSp->Parameters.Read.Length;
ASSERT( FIELD_OFFSET( IO_STACK_LOCATION, Parameters.Read.Length ) ==
FIELD_OFFSET( IO_STACK_LOCATION, Parameters.DeviceIoControl.OutputBufferLength ) );
}
//
// If this is a datagram endpoint, format up a receive datagram request
// and pass it on to the TDI provider.
//
if ( IS_DGRAM_ENDPOINT(endpoint) ) {
AFD_RECV_INFO recvInfo;
recvInfo.TdiFlags = recvFlags;
recvInfo.AfdFlags = afdFlags;
IrpSp->Parameters.DeviceIoControl.InputBufferLength = recvLength;
IrpSp->Parameters.DeviceIoControl.Type3InputBuffer = &recvInfo;
return AfdReceiveDatagram( Irp, IrpSp);
}
//
// If this is an endpoint on a nonbufferring transport, use another
// routine to handle the request.
//
if ( !IS_TDI_BUFFERRING(endpoint) ) {
return AfdBReceive( Irp, IrpSp, recvFlags, afdFlags, recvLength );
}
//
// Allocate a buffer for the receive request structure.
//
try {
receiveRequest = AFD_ALLOCATE_POOL_WITH_QUOTA (
NonPagedPool,
sizeof(TDI_REQUEST_RECEIVE),
AFD_TDI_POOL_TAG
);
// AFD_ALLOCATE_POOL_WITH_QUOTA macro sets POOL_RAISE_IF_ALLOCATION_FAILURE
}
except (EXCEPTION_EXECUTE_HANDLER) {
status = GetExceptionCode ();
receiveRequest = NULL;
goto complete;
}
allocatedReceiveRequest = TRUE;
//
// Set up the receive request structure.
//
RtlZeroMemory(
receiveRequest,
sizeof(*receiveRequest)
);
receiveRequest->ReceiveFlags = (USHORT)recvFlags;
//
// If this endpoint is set up for inline reception of expedited data,
// change the receive flags to use either normal or expedited data.
//
if ( endpoint->InLine ) {
receiveRequest->ReceiveFlags |= TDI_RECEIVE_EITHER;
}
//
// Determine whether this is a request to just peek at the data.
//
peek = (BOOLEAN)( (receiveRequest->ReceiveFlags & TDI_RECEIVE_PEEK) != 0 );
AfdAcquireSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Check if endpoint was cleaned-up and cancel the request.
//
if (endpoint->EndpointCleanedUp) {
AfdReleaseSpinLock (&endpoint->SpinLock, &lockHandle);
status = STATUS_CANCELLED;
goto complete;
}
connection = endpoint->Common.VcConnecting.Connection;
if (connection==NULL) {
//
// connection might have been cleaned up by transmit file.
//
AfdReleaseSpinLock (&endpoint->SpinLock, &lockHandle);
status = STATUS_INVALID_CONNECTION;
goto complete;
}
ASSERT( connection->Type == AfdBlockTypeConnection );
if ( endpoint->NonBlocking ) {
isDataOnConnection = IS_DATA_ON_CONNECTION( connection );
isExpeditedDataOnConnection = IS_EXPEDITED_DATA_ON_CONNECTION( connection );
}
if ( endpoint->InLine ) {
//
// If the endpoint is nonblocking, check whether the receive can
// be performed immediately. Note that if the endpoint is set
// up for inline reception of expedited data we don't fail just
// yet--there may be expedited data available to be read.
//
if ( endpoint->NonBlocking && !( afdFlags & AFD_OVERLAPPED ) ) {
if ( !isDataOnConnection &&
!isExpeditedDataOnConnection &&
!connection->AbortIndicated &&
!connection->DisconnectIndicated ) {
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: failing nonblocking IL receive, ind %ld, "
"taken %ld, out %ld\n",
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart ));
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
" EXP ind %ld, taken %ld, out %ld\n",
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart ));
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
status = STATUS_DEVICE_NOT_READY;
goto complete;
}
}
//
// If this is a nonblocking endpoint for a message-oriented
// transport, limit the number of bytes that can be received to the
// amount that has been indicated. This prevents the receive
// from blocking in the case where only part of a message has been
// received.
//
if ( IS_MESSAGE_ENDPOINT(endpoint) && endpoint->NonBlocking ) {
LARGE_INTEGER expBytesExpected;
bytesExpected.QuadPart =
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart);
ASSERT( bytesExpected.HighPart == 0 );
expBytesExpected.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart);
ASSERT( expBytesExpected.HighPart == 0 );
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: %lx normal bytes expected, %ld exp bytes expected",
bytesExpected.LowPart, expBytesExpected.LowPart ));
}
//
// If expedited data exists on the connection, use the lower
// count between the available expedited and normal receive
// data.
//
if ( (isExpeditedDataOnConnection &&
bytesExpected.LowPart > expBytesExpected.LowPart) ||
!isDataOnConnection ) {
bytesExpected = expBytesExpected;
}
//
// If the request is for more bytes than are available, cut back
// the number of bytes requested to what we know is actually
// available.
//
if ( recvLength > bytesExpected.LowPart ) {
recvLength = bytesExpected.LowPart;
}
}
//
// Increment the count of posted receive bytes outstanding.
// This count is used for polling and nonblocking receives.
// Note that we do not increment this count if this is only
// a PEEK receive, since peeks do not actually take any data
// they should not affect whether data is available to be read
// on the endpoint.
//
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: conn %p for %ld bytes, ind %ld, "
"taken %ld, out %ld %s\n",
connection,
recvLength,
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart,
peek ? "PEEK" : "" ));
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
" EXP ind %ld, taken %ld, out %ld\n",
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart ));
}
if ( !peek ) {
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart +
recvLength;
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart +
recvLength;
}
}
if ( !endpoint->InLine &&
(receiveRequest->ReceiveFlags & TDI_RECEIVE_NORMAL) != 0 ) {
//
// If the endpoint is nonblocking, check whether the receive can
// be performed immediately.
//
if ( endpoint->NonBlocking && !( afdFlags & AFD_OVERLAPPED ) ) {
if ( !isDataOnConnection &&
!connection->AbortIndicated &&
!connection->DisconnectIndicated ) {
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: failing nonblocking receive, ind %ld, "
"taken %ld, out %ld\n",
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart ));
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
status = STATUS_DEVICE_NOT_READY;
goto complete;
}
}
//
// If this is a nonblocking endpoint for a message-oriented
// transport, limit the number of bytes that can be received to the
// amount that has been indicated. This prevents the receive
// from blocking in the case where only part of a message has been
// received.
//
if ( IS_MESSAGE_ENDPOINT(endpoint) && endpoint->NonBlocking ) {
bytesExpected.QuadPart =
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart);
ASSERT( bytesExpected.HighPart == 0 );
//
// If the request is for more bytes than are available, cut back
// the number of bytes requested to what we know is actually
// available.
//
if ( recvLength > bytesExpected.LowPart ) {
recvLength = bytesExpected.LowPart;
}
}
//
// Increment the count of posted receive bytes outstanding.
// This count is used for polling and nonblocking receives.
// Note that we do not increment this count if this is only
// a PEEK receive, since peeks do not actually take any data
// they should not affect whether data is available to be read
// on the endpoint.
//
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: conn %p for %ld bytes, ind %ld, "
"taken %ld, out %ld %s\n",
connection,
recvLength,
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart,
peek ? "PEEK" : "" ));
}
if ( !peek ) {
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart +
recvLength;
}
}
if ( !endpoint->InLine &&
(receiveRequest->ReceiveFlags & TDI_RECEIVE_EXPEDITED) != 0 ) {
if ( endpoint->NonBlocking && !( afdFlags & AFD_OVERLAPPED ) &&
!isExpeditedDataOnConnection &&
!connection->AbortIndicated &&
!connection->DisconnectIndicated ) {
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: failing nonblocking EXP receive, ind %ld, "
"taken %ld, out %ld\n",
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart ));
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
status = STATUS_DEVICE_NOT_READY;
goto complete;
}
//
// If this is a nonblocking endpoint for a message-oriented
// transport, limit the number of bytes that can be received to the
// amount that has been indicated. This prevents the receive
// from blocking in the case where only part of a message has been
// received.
//
if ( IS_MESSAGE_ENDPOINT(endpoint) &&
endpoint->NonBlocking &&
IS_EXPEDITED_DATA_ON_CONNECTION( connection ) ) {
bytesExpected.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart);
ASSERT( bytesExpected.HighPart == 0 );
ASSERT( bytesExpected.LowPart != 0 );
//
// If the request is for more bytes than are available, cut back
// the number of bytes requested to what we know is actually
// available.
//
if ( recvLength > bytesExpected.LowPart ) {
recvLength = bytesExpected.LowPart;
}
}
//
// Increment the count of posted expedited receive bytes
// outstanding. This count is used for polling and nonblocking
// receives. Note that we do not increment this count if this
// is only a PEEK receive.
//
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: conn %p for %ld bytes, ind %ld, "
"taken %ld, out %ld EXP %s\n",
connection,
recvLength,
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart,
peek ? "PEEK" : "" ));
}
if ( !peek ) {
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart +
recvLength;
}
}
//
// Reference the connection so it can't go away
// even if transmit file tries to clean it up
//
REFERENCE_CONNECTION (connection);
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Build the TDI receive request.
//
TdiBuildReceive(
Irp,
connection->DeviceObject,
connection->FileObject,
AfdRestartReceive,
connection,
Irp->MdlAddress,
receiveRequest->ReceiveFlags,
recvLength
);
//
// Save a pointer to the receive request structure so that we
// can free it in our restart routine.
//
IrpSp->Parameters.DeviceIoControl.Type3InputBuffer = receiveRequest;
IrpSp->Parameters.DeviceIoControl.OutputBufferLength = recvLength;
//
// Call the transport to actually perform the connect operation.
//
return AfdIoCallDriver( endpoint, connection->DeviceObject, Irp );
complete:
if ( allocatedReceiveRequest ) {
AFD_FREE_POOL(
receiveRequest,
AFD_TDI_POOL_TAG
);
}
Irp->IoStatus.Information = 0;
Irp->IoStatus.Status = status;
IoCompleteRequest( Irp, AfdPriorityBoost );
return status;
} // AfdReceive
NTSTATUS
AfdRestartReceive (
IN PDEVICE_OBJECT DeviceObject,
IN PIRP Irp,
IN PVOID Context
)
{
PAFD_ENDPOINT endpoint;
PAFD_CONNECTION connection;
PIO_STACK_LOCATION irpSp;
LARGE_INTEGER actualBytes;
LARGE_INTEGER requestedBytes;
AFD_LOCK_QUEUE_HANDLE lockHandle;
ULONG receiveFlags;
ULONG eventMask;
BOOLEAN expedited;
PTDI_REQUEST_RECEIVE receiveRequest;
connection = Context;
ASSERT( connection->Type == AfdBlockTypeConnection );
endpoint = connection->Endpoint;
ASSERT( endpoint->Type == AfdBlockTypeVcConnecting ||
endpoint->Type == AfdBlockTypeVcBoth );
ASSERT( IS_TDI_BUFFERRING(endpoint) );
irpSp = IoGetCurrentIrpStackLocation( Irp );
AfdCompleteOutstandingIrp( endpoint, Irp );
actualBytes.QuadPart = Irp->IoStatus.Information;
requestedBytes.QuadPart = irpSp->Parameters.DeviceIoControl.OutputBufferLength;
//
// Determine whether we received normal or expedited data.
//
receiveRequest = irpSp->Parameters.DeviceIoControl.Type3InputBuffer;
receiveFlags = receiveRequest->ReceiveFlags;
if ( Irp->IoStatus.Status == STATUS_RECEIVE_EXPEDITED ||
Irp->IoStatus.Status == STATUS_RECEIVE_PARTIAL_EXPEDITED ) {
expedited = TRUE;
} else {
expedited = FALSE;
}
//
// Free the receive request structure.
//
AFD_FREE_POOL(
receiveRequest,
AFD_TDI_POOL_TAG
);
//
// If this was a PEEK receive, don't update the counts of received
// data, just return.
//
if ( (receiveFlags & TDI_RECEIVE_PEEK) != 0 ) {
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdRestartReceive: IRP %p, endpoint %p, conn %p, "
"status %X\n",
Irp, endpoint, endpoint->Common.VcConnecting.Connection,
Irp->IoStatus.Status ));
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
" %s data, PEEKed only.\n",
expedited ? "expedited" : "normal" ));
}
DEREFERENCE_CONNECTION (connection);
return STATUS_SUCCESS;
}
//
// Update the count of bytes actually received on the connection.
//
AfdAcquireSpinLock( &endpoint->SpinLock, &lockHandle );
if( expedited ) {
eventMask = endpoint->InLine
? (ULONG)~AFD_POLL_RECEIVE
: (ULONG)~AFD_POLL_RECEIVE_EXPEDITED;
} else {
eventMask = (ULONG)~AFD_POLL_RECEIVE;
}
endpoint->EventsActive &= eventMask;
IF_DEBUG(EVENT_SELECT) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceive: Endp %p, Active %lx\n",
endpoint,
endpoint->EventsActive
));
}
if ( !expedited ) {
if ( actualBytes.LowPart == 0 ) {
ASSERT( actualBytes.HighPart == 0 );
connection->VcZeroByteReceiveIndicated = FALSE;
} else {
connection->Common.Bufferring.ReceiveBytesTaken.QuadPart =
actualBytes.QuadPart +
connection->Common.Bufferring.ReceiveBytesTaken.QuadPart;
}
//
// If the number taken exceeds the number indicated, then this
// receive got some unindicated bytes because the receive was
// posted when the indication arrived. If this is the case, set
// the amount indicated equal to the amount received.
//
if ( connection->Common.Bufferring.ReceiveBytesTaken.QuadPart >
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart ) {
connection->Common.Bufferring.ReceiveBytesIndicated =
connection->Common.Bufferring.ReceiveBytesTaken;
}
//
// Decrement the count of outstanding receive bytes on this connection
// by the receive size that was requested.
//
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart -
requestedBytes.QuadPart;
//
// If the endpoint is inline, decrement the count of outstanding
// expedited bytes.
//
if ( endpoint->InLine ) {
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart -
requestedBytes.QuadPart;
}
if( connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart > 0 ||
( endpoint->InLine &&
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart > 0 ) ) {
AfdIndicateEventSelectEvent(
endpoint,
AFD_POLL_RECEIVE,
STATUS_SUCCESS
);
}
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdRestartReceive: IRP %p, endpoint %p, conn %p, "
"status %lx\n",
Irp, endpoint, connection,
Irp->IoStatus.Status ));
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
" req. bytes %ld, actual %ld, ind %ld, "
" taken %ld, out %ld\n",
requestedBytes.LowPart, actualBytes.LowPart,
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart
));
}
} else {
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart =
actualBytes.QuadPart +
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart;
//
// If the number taken exceeds the number indicated, then this
// receive got some unindicated bytes because the receive was
// posted when the indication arrived. If this is the case, set
// the amount indicated equal to the amount received.
//
if ( connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart >
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart ) {
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated =
connection->Common.Bufferring.ReceiveExpeditedBytesTaken;
}
//
// Decrement the count of outstanding receive bytes on this connection
// by the receive size that was requested.
//
ASSERT( connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart > 0 ||
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.HighPart > 0 ||
requestedBytes.LowPart == 0 );
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart -
requestedBytes.QuadPart;
//
// If the endpoint is inline, decrement the count of outstanding
// normal bytes.
//
if ( endpoint->InLine ) {
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart =
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart -
requestedBytes.QuadPart;
if( connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart > 0 ||
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart > 0 ) {
AfdIndicateEventSelectEvent(
endpoint,
AFD_POLL_RECEIVE,
STATUS_SUCCESS
);
}
} else {
if( connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart > 0 ) {
AfdIndicateEventSelectEvent(
endpoint,
AFD_POLL_RECEIVE_EXPEDITED,
STATUS_SUCCESS
);
}
}
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdRestartReceive: (exp) IRP %p, endpoint %p, conn %p, "
"status %X\n",
Irp, endpoint, connection,
Irp->IoStatus.Status ));
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
" req. bytes %ld, actual %ld, ind %ld, "
" taken %ld, out %ld\n",
requestedBytes.LowPart, actualBytes.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart
));
}
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
DEREFERENCE_CONNECTION (connection);
//
// If pending has be returned for this irp then mark the current
// stack as pending.
//
if ( Irp->PendingReturned ) {
IoMarkIrpPending(Irp);
}
return STATUS_SUCCESS;
} // AfdRestartReceive
NTSTATUS
AfdReceiveEventHandler (
IN PVOID TdiEventContext,
IN CONNECTION_CONTEXT ConnectionContext,
IN ULONG ReceiveFlags,
IN ULONG BytesIndicated,
IN ULONG BytesAvailable,
OUT ULONG *BytesTaken,
IN PVOID Tsdu,
OUT PIRP *IoRequestPacket
)
{
PAFD_CONNECTION connection;
PAFD_ENDPOINT endpoint;
AFD_LOCK_QUEUE_HANDLE lockHandle;
BOOLEAN result;
connection = (PAFD_CONNECTION)ConnectionContext;
ASSERT( connection != NULL );
CHECK_REFERENCE_CONNECTION (connection,result);
if (!result) {
return STATUS_DATA_NOT_ACCEPTED;
}
ASSERT( connection->Type == AfdBlockTypeConnection );
endpoint = connection->Endpoint;
ASSERT( endpoint != NULL );
ASSERT( endpoint->Type == AfdBlockTypeVcConnecting ||
endpoint->Type == AfdBlockTypeVcListening ||
endpoint->Type == AfdBlockTypeVcBoth);
ASSERT( !connection->DisconnectIndicated );
ASSERT( !connection->AbortIndicated );
ASSERT( IS_TDI_BUFFERRING(endpoint) );
//
// Bump the count of bytes indicated on the connection to account for
// the bytes indicated by this event.
//
AfdAcquireSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Check if connection was accepted and use accept endpoint instead
// of the listening. Note that accept cannot happen while we are
// holding listening endpoint spinlock, nor can endpoint change after
// the accept, so it is safe to release listening spinlock if
// we discover that endpoint was accepted.
//
if (((endpoint->Type & AfdBlockTypeVcListening) == AfdBlockTypeVcListening)
&& (connection->Endpoint != endpoint)) {
AfdReleaseSpinLock (&endpoint->SpinLock, &lockHandle);
endpoint = connection->Endpoint;
ASSERT( endpoint->Type == AfdBlockTypeVcConnecting );
ASSERT( !IS_TDI_BUFFERRING(endpoint) );
ASSERT( !IS_VC_ENDPOINT (endpoint) );
AfdAcquireSpinLock (&endpoint->SpinLock, &lockHandle);
}
if ( BytesAvailable == 0 ) {
connection->VcZeroByteReceiveIndicated = TRUE;
} else {
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart =
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart +
BytesAvailable;
}
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceiveEventHandler: conn %p, bytes %ld, "
"ind %ld, taken %ld, out %ld\n",
connection, BytesAvailable,
connection->Common.Bufferring.ReceiveBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveBytesOutstanding.LowPart ));
}
//
// If the receive side of the endpoint has been shut down, tell the
// provider that we took all the data and reset the connection.
// Also, account for these bytes in our count of bytes taken from
// the transport.
//
if ( (endpoint->DisconnectMode & AFD_PARTIAL_DISCONNECT_RECEIVE) != 0 ) {
#if DBG
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_INFO_LEVEL,
"AfdReceiveEventHandler: receive shutdown, "
"%ld bytes, aborting endp %p\n",
BytesAvailable, endpoint ));
#endif
connection->Common.Bufferring.ReceiveBytesTaken.QuadPart =
connection->Common.Bufferring.ReceiveBytesTaken.QuadPart +
BytesAvailable;
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
*BytesTaken = BytesAvailable;
//
// Abort the connection. Note that if the abort attempt fails
// we can't do anything about it.
//
(VOID)AfdBeginAbort( connection );
DEREFERENCE_CONNECTION (connection);
return STATUS_SUCCESS;
} else {
// Make sure connection was accepted/connected to prevent
// indication on listening endpoint
//
if (connection->State==AfdConnectionStateConnected) {
ASSERT (endpoint->Type & AfdBlockTypeVcConnecting);
AfdIndicateEventSelectEvent(
endpoint,
AFD_POLL_RECEIVE,
STATUS_SUCCESS
);
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Note to the TDI provider that we didn't take any of the data here.
//
// !!! needs bufferring for non-bufferring transports!
*BytesTaken = 0;
//
// If there are any outstanding poll IRPs for this endpoint/
// event, complete them.
//
// Make sure connection was accepted/connected to prevent
// indication on listening endpoint
//
if (connection->State==AfdConnectionStateConnected) {
ASSERT (endpoint->Type & AfdBlockTypeVcConnecting);
AfdIndicatePollEvent(
endpoint,
AFD_POLL_RECEIVE,
STATUS_SUCCESS
);
}
DEREFERENCE_CONNECTION (connection);
return STATUS_DATA_NOT_ACCEPTED;
}
} // AfdReceiveEventHandler
NTSTATUS
AfdReceiveExpeditedEventHandler (
IN PVOID TdiEventContext,
IN CONNECTION_CONTEXT ConnectionContext,
IN ULONG ReceiveFlags,
IN ULONG BytesIndicated,
IN ULONG BytesAvailable,
OUT ULONG *BytesTaken,
IN PVOID Tsdu,
OUT PIRP *IoRequestPacket
)
{
PAFD_CONNECTION connection;
PAFD_ENDPOINT endpoint;
AFD_LOCK_QUEUE_HANDLE lockHandle;
BOOLEAN result;
connection = (PAFD_CONNECTION)ConnectionContext;
ASSERT( connection != NULL );
CHECK_REFERENCE_CONNECTION (connection, result);
if (!result) {
return STATUS_DATA_NOT_ACCEPTED;
}
ASSERT( connection->Type == AfdBlockTypeConnection );
endpoint = connection->Endpoint;
ASSERT( endpoint != NULL );
//
// Bump the count of bytes indicated on the connection to account for
// the expedited bytes indicated by this event.
//
AfdAcquireSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Check if connection was accepted and use accept endpoint instead
// of the listening. Note that accept cannot happen while we are
// holding listening endpoint spinlock, nor can endpoint change after
// the accept, so it is safe to release listening spinlock if
// we discover that endpoint was accepted.
//
if (((endpoint->Type & AfdBlockTypeVcListening) == AfdBlockTypeVcListening)
&& (connection->Endpoint != endpoint)) {
AfdReleaseSpinLock (&endpoint->SpinLock, &lockHandle);
endpoint = connection->Endpoint;
ASSERT( endpoint->Type == AfdBlockTypeVcConnecting );
ASSERT( !IS_TDI_BUFFERRING(endpoint) );
ASSERT( !IS_VC_ENDPOINT (endpoint) );
AfdAcquireSpinLock (&endpoint->SpinLock, &lockHandle);
}
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart +
BytesAvailable;
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceiveExpeditedEventHandler: conn %p, bytes %ld, "
"ind %ld, taken %ld, out %ld, offset %ld\n",
connection, BytesAvailable,
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.LowPart,
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.LowPart ));
}
//
// If the receive side of the endpoint has been shut down, tell
// the provider that we took all the data. Also, account for these
// bytes in our count of bytes taken from the transport.
//
//
if ( (endpoint->DisconnectMode & AFD_PARTIAL_DISCONNECT_RECEIVE) != 0 ) {
IF_DEBUG(RECEIVE) {
KdPrintEx(( DPFLTR_WSOCKTRANSPORT_ID, DPFLTR_TRACE_LEVEL,
"AfdReceiveExpeditedEventHandler: receive shutdown, "
"%ld bytes dropped.\n", BytesAvailable ));
}
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart +
BytesAvailable;
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
*BytesTaken = BytesAvailable;
//
// Abort the connection. Note that if the abort attempt fails
// we can't do anything about it.
//
(VOID)AfdBeginAbort( connection );
} else {
if (connection->State==AfdConnectionStateConnected) {
ASSERT (endpoint->Type & AfdBlockTypeVcConnecting);
AfdIndicateEventSelectEvent(
endpoint,
endpoint->InLine
? AFD_POLL_RECEIVE
: AFD_POLL_RECEIVE_EXPEDITED,
STATUS_SUCCESS
);
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
//
// Note to the TDI provider that we didn't take any of the data here.
//
// !!! needs bufferring for non-bufferring transports!
*BytesTaken = 0;
//
// If there are any outstanding poll IRPs for this endpoint/
// event, complete them. Indicate this data as normal data if
// this endpoint is set up for inline reception of expedited
// data.
//
// Make sure connection was accepted/connected to prevent
// indication on listening endpoint
//
if (connection->State==AfdConnectionStateConnected) {
ASSERT (endpoint->Type & AfdBlockTypeVcConnecting);
AfdIndicatePollEvent(
endpoint,
endpoint->InLine
? AFD_POLL_RECEIVE
: AFD_POLL_RECEIVE_EXPEDITED,
STATUS_SUCCESS
);
}
}
DEREFERENCE_CONNECTION (connection);
return STATUS_DATA_NOT_ACCEPTED;
} // AfdReceiveExpeditedEventHandler
NTSTATUS
AfdQueryReceiveInformation (
IN PFILE_OBJECT FileObject,
IN ULONG IoctlCode,
IN KPROCESSOR_MODE RequestorMode,
IN PVOID InputBuffer,
IN ULONG InputBufferLength,
IN PVOID OutputBuffer,
IN ULONG OutputBufferLength,
OUT PUINT_PTR Information
)
{
AFD_RECEIVE_INFORMATION receiveInformation;
PAFD_ENDPOINT endpoint;
AFD_LOCK_QUEUE_HANDLE lockHandle;
LARGE_INTEGER result;
PAFD_CONNECTION connection;
NTSTATUS status;
*Information = 0;
//
// Make sure that the output buffer is large enough.
//
if ( OutputBufferLength < sizeof(receiveInformation) ) {
return STATUS_BUFFER_TOO_SMALL;
}
//
// If this endpoint has a connection block, use the connection block's
// information, else use the information from the endpoint itself.
//
endpoint = FileObject->FsContext;
ASSERT( IS_AFD_ENDPOINT_TYPE( endpoint ) );
AfdAcquireSpinLock( &endpoint->SpinLock, &lockHandle );
connection = AFD_CONNECTION_FROM_ENDPOINT( endpoint );
if ( connection != NULL ) {
ASSERT( endpoint->Type == AfdBlockTypeVcConnecting ||
endpoint->Type == AfdBlockTypeVcBoth );
ASSERT( connection->Type == AfdBlockTypeConnection );
if ( !IS_TDI_BUFFERRING(endpoint) ) {
receiveInformation.BytesAvailable =
connection->VcBufferredReceiveBytes;
receiveInformation.ExpeditedBytesAvailable =
connection->VcBufferredExpeditedBytes;
} else {
//
// Determine the number of bytes available to be read.
//
result.QuadPart =
connection->Common.Bufferring.ReceiveBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveBytesOutstanding.QuadPart);
ASSERT( result.HighPart == 0 );
receiveInformation.BytesAvailable = result.LowPart;
//
// Determine the number of expedited bytes available to be read.
//
result.QuadPart =
connection->Common.Bufferring.ReceiveExpeditedBytesIndicated.QuadPart -
(connection->Common.Bufferring.ReceiveExpeditedBytesTaken.QuadPart +
connection->Common.Bufferring.ReceiveExpeditedBytesOutstanding.QuadPart);
ASSERT( result.HighPart == 0 );
receiveInformation.ExpeditedBytesAvailable = result.LowPart;
}
} else {
//
// Determine the number of bytes available to be read.
//
if ( IS_DGRAM_ENDPOINT(endpoint) ) {
//
// Return the amount of bytes of datagrams that are
// bufferred on the endpoint.
//
if (endpoint->DgBufferredReceiveBytes>0) {
receiveInformation.BytesAvailable = endpoint->DgBufferredReceiveBytes;
}
else { // Report one byte to the application to prompt it to
// read the data if zero-sized datagrams are available.
receiveInformation.BytesAvailable = endpoint->DgBufferredReceiveCount>0 ? 1 : 0;
}
} else {
//
// This is an unconnected endpoint, hence no bytes are
// available to be read.
//
receiveInformation.BytesAvailable = 0;
}
//
// Whether this is a datagram endpoint or just unconnected,
// there are no expedited bytes available.
//
receiveInformation.ExpeditedBytesAvailable = 0;
}
AfdReleaseSpinLock( &endpoint->SpinLock, &lockHandle );
try {
//
// Validate the output structure if it comes from the user mode
// application
//
if (RequestorMode != KernelMode ) {
ProbeForWrite (OutputBuffer,
sizeof (receiveInformation),
PROBE_ALIGNMENT (AFD_RECEIVE_INFORMATION));
}
//
// Copy parameters back to application's memory
//
*((PAFD_RECEIVE_INFORMATION)OutputBuffer) = receiveInformation;
} except( AFD_EXCEPTION_FILTER(&status) ) {
return status;
}
*Information = sizeof(AFD_RECEIVE_INFORMATION);
return STATUS_SUCCESS;
} // AfdQueryReceiveInformation