Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

610 lines
13 KiB

// Dynamic Array APIs
//*******************************************************************************************
//
// Filename : Da.c
//
// Implementation of DPAs
//
// Copyright (c) 1994 - 1996 Microsoft Corporation. All rights reserved
//
//*******************************************************************************************
#include "pch.h"
#include "dpda.h"
#include <assert.h>
#ifdef DEBUG
#define DPA_MAGIC ('P' | ('A' << 256))
#define IsDPA(pdpa) ((pdpa) && (pdpa)->magic == DPA_MAGIC)
#else
#define IsDPA(pdsa)
#endif
#define ControlAlloc(hheap, cb) HeapAlloc((hheap), HEAP_ZERO_MEMORY, (cb))
#define ControlReAlloc(hheap, pb, cb) HeapReAlloc((hheap), HEAP_ZERO_MEMORY, (pb),(cb))
#define ControlFree(hheap, pb) HeapFree((hheap), 0, (pb))
#define ControlSize(hheap, pb) HeapSize((hheap), 0, (LPCVOID)(pb))
typedef struct {
void **pp;
PFNDPACOMPARE pfnCmp;
LPARAM lParam;
int cp;
void **ppT;
} SORTPARAMS;
BOOL DPA_MergeSort(SORTPARAMS * psp);
void DPA_MergeSort2(SORTPARAMS * psp, int iFirst, int cItems);
//================== Dynamic pointer array implementation ===========
typedef struct _DPA {
// NOTE: The following two fields MUST be defined in this order, at
// the beginning of the structure in order for the macro APIs to work.
//
int cp;
void **pp;
HANDLE hheap; // Heap to allocate from if NULL use shared
int cpAlloc;
int cpGrow;
#ifdef DEBUG
UINT magic;
#endif
} DPA;
HANDLE g_hSharedHeap = NULL;
void * Alloc(long cb)
{
// I will assume that this is the only one that needs the checks to
// see if the heap has been previously created or not
if (g_hSharedHeap == NULL)
{
g_hSharedHeap = HeapCreate(0, 1, 0);
// If still NULL we have problems!
if (g_hSharedHeap == NULL)
return(NULL);
}
return HeapAlloc(g_hSharedHeap, HEAP_ZERO_MEMORY, cb);
}
void * ReAlloc(void * pb, long cb)
{
if (pb == NULL)
return Alloc(cb);
return HeapReAlloc(g_hSharedHeap, HEAP_ZERO_MEMORY, pb, cb);
}
BOOL Free(void * pb)
{
return HeapFree(g_hSharedHeap, 0, pb);
}
DWORD GetSize(void * pb)
{
return HeapSize(g_hSharedHeap, 0, pb);
}
HDPA DPA_Create(int cpGrow)
{
HDPA pdpa = Alloc(sizeof(DPA));
if (pdpa)
{
pdpa->cp = 0;
pdpa->cpAlloc = 0;
pdpa->cpGrow = (cpGrow < 8 ? 8 : cpGrow);
pdpa->pp = NULL;
pdpa->hheap = g_hSharedHeap; // Defaults to use shared one (for now...)
#ifdef DEBUG
pdpa->magic = DPA_MAGIC;
#endif
}
return pdpa;
}
// Should nuke the standard DPA above...
HDPA DPA_CreateEx(int cpGrow, HANDLE hheap)
{
HDPA pdpa;
if (hheap == NULL)
{
pdpa = Alloc(sizeof(DPA));
hheap = g_hSharedHeap;
}
else
pdpa = ControlAlloc(hheap, sizeof(DPA));
if (pdpa)
{
pdpa->cp = 0;
pdpa->cpAlloc = 0;
pdpa->cpGrow = (cpGrow < 8 ? 8 : cpGrow);
pdpa->pp = NULL;
pdpa->hheap = hheap;
#ifdef DEBUG
pdpa->magic = DPA_MAGIC;
#endif
}
return pdpa;
}
BOOL DPA_Destroy(HDPA pdpa)
{
//assert(IsDPA(pdpa));
if (pdpa == NULL) // allow NULL for low memory cases, still assert
return TRUE;
assert (pdpa->hheap);
#ifdef DEBUG
pdpa->cp = 0;
pdpa->cpAlloc = 0;
pdpa->magic = 0;
#endif
if (pdpa->pp && !ControlFree(pdpa->hheap, pdpa->pp))
return FALSE;
return ControlFree(pdpa->hheap, pdpa);
}
HDPA DPA_Clone(HDPA pdpa, HDPA pdpaNew)
{
BOOL fAlloc = FALSE;
if (!pdpaNew)
{
pdpaNew = DPA_CreateEx(pdpa->cpGrow, pdpa->hheap);
if (!pdpaNew)
return NULL;
fAlloc = TRUE;
}
if (!DPA_Grow(pdpaNew, pdpa->cpAlloc)) {
if (!fAlloc)
DPA_Destroy(pdpaNew);
return NULL;
}
pdpaNew->cp = pdpa->cp;
hmemcpy(pdpaNew->pp, pdpa->pp, pdpa->cp * sizeof(void *));
return pdpaNew;
}
void * DPA_GetPtr(HDPA pdpa, int index)
{
// assert(IsDPA(pdpa));
if (index < 0 || index >= pdpa->cp)
return NULL;
return pdpa->pp[index];
}
int DPA_GetPtrIndex(HDPA pdpa, void * p)
{
void **pp;
void **ppMax;
if (pdpa->pp)
{
pp = pdpa->pp;
ppMax = pp + pdpa->cp;
for ( ; pp < ppMax; pp++)
{
if (*pp == p)
return (pp - pdpa->pp);
}
}
return -1;
}
BOOL DPA_Grow(HDPA pdpa, int cpAlloc)
{
if (cpAlloc > pdpa->cpAlloc)
{
void **ppNew;
cpAlloc = ((cpAlloc + pdpa->cpGrow - 1) / pdpa->cpGrow) * pdpa->cpGrow;
if (pdpa->pp)
ppNew = (void * *)ControlReAlloc(pdpa->hheap, pdpa->pp, cpAlloc * sizeof(void *));
else
ppNew = (void * *)ControlAlloc(pdpa->hheap, cpAlloc * sizeof(void *));
if (!ppNew)
return FALSE;
pdpa->pp = ppNew;
pdpa->cpAlloc = cpAlloc;
}
return TRUE;
}
BOOL DPA_SetPtr(HDPA pdpa, int index, void * p)
{
if (index < 0)
{
// DebugMsg(DM_ERROR, "DPA: Invalid index: %d", index);
return FALSE;
}
if (index >= pdpa->cp)
{
if (!DPA_Grow(pdpa, index + 1))
return FALSE;
pdpa->cp = index + 1;
}
pdpa->pp[index] = p;
return TRUE;
}
int DPA_InsertPtr(HDPA pdpa, int index, void * p)
{
if (index < 0)
{
return -1;
}
if (index > pdpa->cp)
index = pdpa->cp;
// Make sure we have room for one more item
//
if (pdpa->cp + 1 > pdpa->cpAlloc)
{
if (!DPA_Grow(pdpa, pdpa->cp + 1))
return -1;
}
// If we are inserting, we need to slide everybody up
//
if (index < pdpa->cp)
{
hmemcpy(&pdpa->pp[index + 1], &pdpa->pp[index],
(pdpa->cp - index) * sizeof(void *));
}
pdpa->pp[index] = p;
pdpa->cp++;
return index;
}
void * DPA_DeletePtr(HDPA pdpa, int index)
{
void * p;
// assert(IsDPA(pdpa));
if (index < 0 || index >= pdpa->cp)
{
// DebugMsg(DM_ERROR, "DPA: Invalid index: %d", index);
return NULL;
}
p = pdpa->pp[index];
if (index < pdpa->cp - 1)
{
hmemcpy(&pdpa->pp[index], &pdpa->pp[index + 1],
(pdpa->cp - (index + 1)) * sizeof(void *));
}
pdpa->cp--;
if (pdpa->cpAlloc - pdpa->cp > pdpa->cpGrow)
{
void **ppNew;
ppNew = ControlReAlloc(pdpa->hheap, pdpa->pp, (pdpa->cpAlloc - pdpa->cpGrow) * sizeof(void *));
assert(ppNew);
pdpa->pp = ppNew;
pdpa->cpAlloc -= pdpa->cpGrow;
}
return p;
}
BOOL DPA_DeleteAllPtrs(HDPA pdpa)
{
if (pdpa->pp && !ControlFree(pdpa->hheap, pdpa->pp))
return FALSE;
pdpa->pp = NULL;
pdpa->cp = pdpa->cpAlloc = 0;
return TRUE;
}
BOOL DPA_Sort(HDPA pdpa, PFNDPACOMPARE pfnCmp, LPARAM lParam)
{
SORTPARAMS sp;
sp.cp = pdpa->cp;
sp.pp = pdpa->pp;
sp.pfnCmp = pfnCmp;
sp.lParam = lParam;
return DPA_MergeSort(&sp);
}
#define SortCompare(psp, pp1, i1, pp2, i2) \
(psp->pfnCmp(pp1[i1], pp2[i2], psp->lParam))
//
// This function merges two sorted lists and makes one sorted list.
// psp->pp[iFirst, iFirst+cItes/2-1], psp->pp[iFirst+cItems/2, iFirst+cItems-1]
//
void DPA_MergeThem(SORTPARAMS * psp, int iFirst, int cItems)
{
//
// Notes:
// This function is separated from DPA_MergeSort2() to avoid comsuming
// stack variables. Never inline this.
//
int cHalf = cItems/2;
int iIn1, iIn2, iOut;
LPVOID * ppvSrc = &psp->pp[iFirst];
// Copy the first part to temp storage so we can write directly into
// the final buffer. Note that this takes at most psp->cp/2 DWORD's
hmemcpy(psp->ppT, ppvSrc, cHalf*sizeof(LPVOID));
for (iIn1=0, iIn2=cHalf, iOut=0;;)
{
if (SortCompare(psp, psp->ppT, iIn1, ppvSrc, iIn2) <= 0) {
ppvSrc[iOut++] = psp->ppT[iIn1++];
if (iIn1==cHalf) {
// We used up the first half; the rest of the second half
// should already be in place
break;
}
} else {
ppvSrc[iOut++] = ppvSrc[iIn2++];
if (iIn2==cItems) {
// We used up the second half; copy the rest of the first half
// into place
hmemcpy(&ppvSrc[iOut], &psp->ppT[iIn1], (cItems-iOut)*sizeof(LPVOID));
break;
}
}
}
}
//
// This function sorts a give list (psp->pp[iFirst,iFirst-cItems-1]).
//
void DPA_MergeSort2(SORTPARAMS * psp, int iFirst, int cItems)
{
//
// Notes:
// This function is recursively called. Therefore, we should minimize
// the number of local variables and parameters. At this point, we
// use one local variable and three parameters.
//
int cHalf;
switch(cItems)
{
case 1:
return;
case 2:
// Swap them, if they are out of order.
if (SortCompare(psp, psp->pp, iFirst, psp->pp, iFirst+1) > 0)
{
psp->ppT[0] = psp->pp[iFirst];
psp->pp[iFirst] = psp->pp[iFirst+1];
psp->pp[iFirst+1] = psp->ppT[0];
}
break;
default:
cHalf = cItems/2;
// Sort each half
DPA_MergeSort2(psp, iFirst, cHalf);
DPA_MergeSort2(psp, iFirst+cHalf, cItems-cHalf);
// Then, merge them.
DPA_MergeThem(psp, iFirst, cItems);
break;
}
}
BOOL DPA_MergeSort(SORTPARAMS * psp)
{
if (psp->cp==0)
return TRUE;
// Note that we divide by 2 below; we want to round down
psp->ppT = LocalAlloc(LPTR, psp->cp/2 * sizeof(LPVOID));
if (!psp->ppT)
return FALSE;
DPA_MergeSort2(psp, 0, psp->cp);
LocalFree(psp->ppT);
return TRUE;
}
// Search function
//
int DPA_Search(HDPA pdpa, void * pFind, int iStart,
PFNDPACOMPARE pfnCompare, LPARAM lParam, UINT options)
{
int cp = DPA_GetPtrCount(pdpa);
assert(pfnCompare);
assert(0 <= iStart);
// Only allow these wierd flags if the list is sorted
assert((options & DPAS_SORTED) || !(options & (DPAS_INSERTBEFORE | DPAS_INSERTAFTER)));
if (!(options & DPAS_SORTED))
{
// Not sorted: do lisearch.
int i;
for (i = iStart; i < cp; i++)
{
if (0 == pfnCompare(pFind, DPA_FastGetPtr(pdpa, i), lParam))
return i;
}
return -1;
}
else
{
// Search the array using binary search. If several adjacent
// elements match the target element, the index of the first
// matching element is returned.
int iRet = -1; // assume no match
BOOL bFound = FALSE;
int nCmp = 0;
int iLow = 0; // Don't bother using iStart for binary search
int iMid = 0;
int iHigh = cp - 1;
// (OK for cp == 0)
while (iLow <= iHigh)
{
iMid = (iLow + iHigh) / 2;
nCmp = pfnCompare(pFind, DPA_FastGetPtr(pdpa, iMid), lParam);
if (0 > nCmp)
iHigh = iMid - 1; // First is smaller
else if (0 < nCmp)
iLow = iMid + 1; // First is larger
else
{
// Match; search back for first match
bFound = TRUE;
while (0 < iMid)
{
if (0 != pfnCompare(pFind, DPA_FastGetPtr(pdpa, iMid-1), lParam))
break;
else
iMid--;
}
break;
}
}
if (bFound)
{
assert(0 <= iMid);
iRet = iMid;
}
// Did the search fail AND
// is one of the strange search flags set?
if (!bFound && (options & (DPAS_INSERTAFTER | DPAS_INSERTBEFORE)))
{
// Yes; return the index where the target should be inserted
// if not found
if (0 < nCmp) // First is larger
iRet = iLow;
else
iRet = iMid;
// (We don't distinguish between the two flags anymore)
}
else if ( !(options & (DPAS_INSERTAFTER | DPAS_INSERTBEFORE)) )
{
// Sanity check with lisearch
assert(DPA_Search(pdpa, pFind, iStart, pfnCompare, lParam, options & ~DPAS_SORTED) == iRet);
}
return iRet;
}
}
//===========================================================================
//
// String ptr management routines
//
// Copy as much of *psz to *pszBuf as will fit
//
int Str_GetPtr(LPCSTR psz, LPSTR pszBuf, int cchBuf)
{
int cch = 0;
// if pszBuf is NULL, just return length of string.
//
if (!pszBuf && psz)
return lstrlen(psz);
if (cchBuf)
{
if (psz)
{
cch = lstrlen(psz);
if (cch > cchBuf - 1)
cch = cchBuf - 1;
hmemcpy(pszBuf, psz, cch);
}
pszBuf[cch] = 0;
}
return cch;
}
BOOL Str_Set(LPSTR *ppsz, LPCSTR psz)
{
if (!psz)
{
if (*ppsz)
{
LocalFree(*ppsz);
*ppsz = NULL;
}
}
else
{
LPSTR pszNew;
UINT cbSize = lstrlen(psz) + 1;
if (*ppsz)
pszNew = LocalReAlloc(*ppsz, cbSize, LMEM_MOVEABLE | LMEM_ZEROINIT);
else
pszNew = LocalAlloc(LPTR, cbSize);
if (!pszNew)
return FALSE;
lstrcpy(pszNew, psz);
*ppsz = pszNew;
}
return TRUE;
}
// Set *ppsz to a copy of psz, reallocing as needed
//
BOOL Str_SetPtr(LPSTR * ppsz, LPCSTR psz)
{
if (!psz)
{
if (*ppsz)
{
Free(*ppsz);
*ppsz = NULL;
}
}
else
{
LPSTR pszNew = (LPSTR)ReAlloc(*ppsz, lstrlen(psz) + 1);
if (!pszNew)
return FALSE;
lstrcpy(pszNew, psz);
*ppsz = pszNew;
}
return TRUE;
}