Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

329 lines
11 KiB

//-----------------------------------------------------------------------------
// File: D3DMath.cpp
//
// Desc: Shortcut macros and functions for using DX objects
//
// Copyright (c) 1997-1999 Microsoft Corporation. All rights reserved
//-----------------------------------------------------------------------------
#define D3D_OVERLOADS
#define STRICT
#include "StdAfx.h"
#include <math.h>
#include "D3DMath.h"
//-----------------------------------------------------------------------------
// Name: D3DMath_MatrixMultiply()
// Desc: Does the matrix operation: [Q] = [A] * [B]. Note that the order of
// this operation was changed from the previous version of the DXSDK.
//-----------------------------------------------------------------------------
VOID D3DMath_MatrixMultiply(D3DMATRIX& q, D3DMATRIX& a, D3DMATRIX& b)
{
FLOAT* pA = (FLOAT*)&a;
FLOAT* pB = (FLOAT*)&b;
FLOAT pM[16];
ZeroMemory(pM, sizeof(D3DMATRIX));
for(WORD i=0; i<4; i++)
for(WORD j=0; j<4; j++)
for(WORD k=0; k<4; k++)
pM[4*i+j] += pA[4*i+k] * pB[4*k+j];
memcpy(&q, pM, sizeof(D3DMATRIX));
}
//-----------------------------------------------------------------------------
// Name: D3DMath_MatrixInvert()
// Desc: Does the matrix operation: [Q] = inv[A]. Note: this function only
// works for matrices with [0 0 0 1] for the 4th column.
//-----------------------------------------------------------------------------
HRESULT D3DMath_MatrixInvert(D3DMATRIX& q, D3DMATRIX& a)
{
if (fabs(a._44 - 1.0f) > .001f)
return E_INVALIDARG;
if (fabs(a._14) > .001f || fabs(a._24) > .001f || fabs(a._34) > .001f)
return E_INVALIDARG;
FLOAT fDetInv = 1.0f / (a._11 * (a._22 * a._33 - a._23 * a._32) -
a._12 * (a._21 * a._33 - a._23 * a._31) +
a._13 * (a._21 * a._32 - a._22 * a._31));
q._11 = fDetInv * (a._22 * a._33 - a._23 * a._32);
q._12 = -fDetInv * (a._12 * a._33 - a._13 * a._32);
q._13 = fDetInv * (a._12 * a._23 - a._13 * a._22);
q._14 = 0.0f;
q._21 = -fDetInv * (a._21 * a._33 - a._23 * a._31);
q._22 = fDetInv * (a._11 * a._33 - a._13 * a._31);
q._23 = -fDetInv * (a._11 * a._23 - a._13 * a._21);
q._24 = 0.0f;
q._31 = fDetInv * (a._21 * a._32 - a._22 * a._31);
q._32 = -fDetInv * (a._11 * a._32 - a._12 * a._31);
q._33 = fDetInv * (a._11 * a._22 - a._12 * a._21);
q._34 = 0.0f;
q._41 = -(a._41 * q._11 + a._42 * q._21 + a._43 * q._31);
q._42 = -(a._41 * q._12 + a._42 * q._22 + a._43 * q._32);
q._43 = -(a._41 * q._13 + a._42 * q._23 + a._43 * q._33);
q._44 = 1.0f;
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_VectorMatrixMultiply()
// Desc: Multiplies a vector by a matrix
//-----------------------------------------------------------------------------
HRESULT D3DMath_VectorMatrixMultiply(D3DVECTOR& vDest, D3DVECTOR& vSrc,
D3DMATRIX& mat)
{
FLOAT x = vSrc.x*mat._11 + vSrc.y*mat._21 + vSrc.z* mat._31 + mat._41;
FLOAT y = vSrc.x*mat._12 + vSrc.y*mat._22 + vSrc.z* mat._32 + mat._42;
FLOAT z = vSrc.x*mat._13 + vSrc.y*mat._23 + vSrc.z* mat._33 + mat._43;
FLOAT w = vSrc.x*mat._14 + vSrc.y*mat._24 + vSrc.z* mat._34 + mat._44;
if (fabs(w) < g_EPSILON)
return E_INVALIDARG;
vDest.x = x/w;
vDest.y = y/w;
vDest.z = z/w;
return S_OK;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_VertexMatrixMultiply()
// Desc: Multiplies a vertex by a matrix
//-----------------------------------------------------------------------------
HRESULT D3DMath_VertexMatrixMultiply(D3DVERTEX& vDest, D3DVERTEX& vSrc,
D3DMATRIX& mat)
{
HRESULT hr;
D3DVECTOR* pSrcVec = (D3DVECTOR*)&vSrc.x;
D3DVECTOR* pDestVec = (D3DVECTOR*)&vDest.x;
if (SUCCEEDED(hr = D3DMath_VectorMatrixMultiply(*pDestVec, *pSrcVec,
mat)))
{
pSrcVec = (D3DVECTOR*)&vSrc.nx;
pDestVec = (D3DVECTOR*)&vDest.nx;
hr = D3DMath_VectorMatrixMultiply(*pDestVec, *pSrcVec, mat);
}
return hr;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_QuaternionFromRotation()
// Desc: Converts a normalized axis and angle to a unit quaternion.
//-----------------------------------------------------------------------------
VOID D3DMath_QuaternionFromRotation(FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
D3DVECTOR& v, FLOAT fTheta)
{
x = sinf(fTheta/2.0f) * v.x;
y = sinf(fTheta/2.0f) * v.y;
z = sinf(fTheta/2.0f) * v.z;
w = cosf(fTheta/2.0f);
}
//-----------------------------------------------------------------------------
// Name: D3DMath_RotationFromQuaternion()
// Desc: Converts a normalized axis and angle to a unit quaternion.
//-----------------------------------------------------------------------------
VOID D3DMath_RotationFromQuaternion(D3DVECTOR& v, FLOAT& fTheta,
FLOAT x, FLOAT y, FLOAT z, FLOAT w)
{
fTheta = acosf(w) * 2.0f;
v.x = x / sinf(fTheta/2.0f);
v.y = y / sinf(fTheta/2.0f);
v.z = z / sinf(fTheta/2.0f);
}
//-----------------------------------------------------------------------------
// Name: D3DMath_QuaternionFromAngles()
// Desc: Converts euler angles to a unit quaternion.
//-----------------------------------------------------------------------------
VOID D3DMath_QuaternionFromAngles(FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
FLOAT fYaw, FLOAT fPitch, FLOAT fRoll)
{
FLOAT fSinYaw = sinf(fYaw/2.0f);
FLOAT fSinPitch = sinf(fPitch/2.0f);
FLOAT fSinRoll = sinf(fRoll/2.0f);
FLOAT fCosYaw = cosf(fYaw/2.0f);
FLOAT fCosPitch = cosf(fPitch/2.0f);
FLOAT fCosRoll = cosf(fRoll/2.0f);
x = fSinRoll * fCosPitch * fCosYaw - fCosRoll * fSinPitch * fSinYaw;
y = fCosRoll * fSinPitch * fCosYaw + fSinRoll * fCosPitch * fSinYaw;
z = fCosRoll * fCosPitch * fSinYaw - fSinRoll * fSinPitch * fCosYaw;
w = fCosRoll * fCosPitch * fCosYaw + fSinRoll * fSinPitch * fSinYaw;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_MatrixFromQuaternion()
// Desc: Converts a unit quaternion into a rotation matrix.
//-----------------------------------------------------------------------------
VOID D3DMath_MatrixFromQuaternion(D3DMATRIX& mat, FLOAT x, FLOAT y, FLOAT z,
FLOAT w)
{
FLOAT xx = x*x; FLOAT yy = y*y; FLOAT zz = z*z;
FLOAT xy = x*y; FLOAT xz = x*z; FLOAT yz = y*z;
FLOAT wx = w*x; FLOAT wy = w*y; FLOAT wz = w*z;
mat._11 = 1 - 2 * (yy + zz);
mat._12 = 2 * (xy - wz);
mat._13 = 2 * (xz + wy);
mat._21 = 2 * (xy + wz);
mat._22 = 1 - 2 * (xx + zz);
mat._23 = 2 * (yz - wx);
mat._31 = 2 * (xz - wy);
mat._32 = 2 * (yz + wx);
mat._33 = 1 - 2 * (xx + yy);
mat._14 = mat._24 = mat._34 = 0.0f;
mat._41 = mat._42 = mat._43 = 0.0f;
mat._44 = 1.0f;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_QuaternionFromMatrix()
// Desc: Converts a rotation matrix into a unit quaternion.
//-----------------------------------------------------------------------------
VOID D3DMath_QuaternionFromMatrix(FLOAT& x, FLOAT& y, FLOAT& z, FLOAT& w,
D3DMATRIX& mat)
{
if (mat._11 + mat._22 + mat._33 > 0.0f)
{
FLOAT s = sqrtf(mat._11 + mat._22 + mat._33 + mat._44);
x = (mat._23-mat._32) / (2*s);
y = (mat._31-mat._13) / (2*s);
z = (mat._12-mat._21) / (2*s);
w = 0.5f * s;
}
else
{
}
FLOAT xx = x*x; FLOAT yy = y*y; FLOAT zz = z*z;
FLOAT xy = x*y; FLOAT xz = x*z; FLOAT yz = y*z;
FLOAT wx = w*x; FLOAT wy = w*y; FLOAT wz = w*z;
mat._11 = 1 - 2 * (yy + zz);
mat._12 = 2 * (xy - wz);
mat._13 = 2 * (xz + wy);
mat._21 = 2 * (xy + wz);
mat._22 = 1 - 2 * (xx + zz);
mat._23 = 2 * (yz - wx);
mat._31 = 2 * (xz - wy);
mat._32 = 2 * (yz + wx);
mat._33 = 1 - 2 * (xx + yy);
mat._14 = mat._24 = mat._34 = 0.0f;
mat._41 = mat._42 = mat._43 = 0.0f;
mat._44 = 1.0f;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_QuaternionMultiply()
// Desc: Mulitples two quaternions together as in {Q} = {A} * {B}.
//-----------------------------------------------------------------------------
VOID D3DMath_QuaternionMultiply(FLOAT& Qx, FLOAT& Qy, FLOAT& Qz, FLOAT& Qw,
FLOAT Ax, FLOAT Ay, FLOAT Az, FLOAT Aw,
FLOAT Bx, FLOAT By, FLOAT Bz, FLOAT Bw)
{
FLOAT Dx = Ax*Bw + Ay*Bz - Az*By + Aw*Bx;
FLOAT Dy = -Ax*Bz + Ay*Bw + Az*Bx + Aw*By;
FLOAT Dz = Ax*By - Ay*Bx + Az*Bw + Aw*Bz;
FLOAT Dw = -Ax*Bx - Ay*By - Az*Bz + Aw*Bw;
Qx = Dx; Qy = Dy; Qz = Dz; Qw = Dw;
}
//-----------------------------------------------------------------------------
// Name: D3DMath_SlerpQuaternions()
// Desc: Compute a quaternion which is the spherical linear interpolation
// between two other quaternions by dvFraction.
//-----------------------------------------------------------------------------
VOID D3DMath_QuaternionSlerp(FLOAT& Qx, FLOAT& Qy, FLOAT& Qz, FLOAT& Qw,
FLOAT Ax, FLOAT Ay, FLOAT Az, FLOAT Aw,
FLOAT Bx, FLOAT By, FLOAT Bz, FLOAT Bw,
FLOAT fAlpha)
{
// Compute dot product (equal to cosine of the angle between quaternions)
FLOAT fCosTheta = Ax*Bx + Ay*By + Az*Bz + Aw*Bw;
// Check angle to see if quaternions are in opposite hemispheres
if (fCosTheta < 0.0f)
{
// If so, flip one of the quaterions
fCosTheta = -fCosTheta;
Bx = -Bx; By = -By; Bz = -Bz; Bw = -Bw;
}
// Set factors to do linear interpolation, as a special case where the
// quaternions are close together.
FLOAT fBeta = 1.0f - fAlpha;
// If the quaternions aren't close, proceed with spherical interpolation
if (1.0f - fCosTheta > 0.001f)
{
FLOAT fTheta = acosf(fCosTheta);
fBeta = sinf(fTheta*fBeta) / sinf(fTheta);
fAlpha = sinf(fTheta*fAlpha) / sinf(fTheta);
}
// Do the interpolation
Qx = fBeta*Ax + fAlpha*Bx;
Qy = fBeta*Ay + fAlpha*By;
Qz = fBeta*Az + fAlpha*Bz;
Qw = fBeta*Aw + fAlpha*Bw;
}