Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

910 lines
33 KiB

/*++
Copyright (C) Microsoft Corporation, 1991 - 1999
Module Name:
xferpkt.c
Abstract:
Packet routines for CLASSPNP
Environment:
kernel mode only
Notes:
Revision History:
--*/
#include "classp.h"
#include "debug.h"
#ifdef ALLOC_PRAGMA
#pragma alloc_text(PAGE, InitializeTransferPackets)
#pragma alloc_text(PAGE, DestroyAllTransferPackets)
#pragma alloc_text(PAGE, SetupEjectionTransferPacket)
#pragma alloc_text(PAGE, SetupModeSenseTransferPacket)
#endif
ULONG MinWorkingSetTransferPackets = MIN_WORKINGSET_TRANSFER_PACKETS_Consumer;
ULONG MaxWorkingSetTransferPackets = MAX_WORKINGSET_TRANSFER_PACKETS_Consumer;
/*
* InitializeTransferPackets
*
* Allocate/initialize TRANSFER_PACKETs and related resources.
*/
NTSTATUS InitializeTransferPackets(PDEVICE_OBJECT Fdo)
{
PCOMMON_DEVICE_EXTENSION commonExt = Fdo->DeviceExtension;
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PSTORAGE_ADAPTER_DESCRIPTOR adapterDesc = commonExt->PartitionZeroExtension->AdapterDescriptor;
ULONG hwMaxPages;
NTSTATUS status = STATUS_SUCCESS;
PAGED_CODE();
/*
* Precompute the maximum transfer length
*/
ASSERT(adapterDesc->MaximumTransferLength);
ASSERT(adapterDesc->MaximumPhysicalPages);
hwMaxPages = adapterDesc->MaximumPhysicalPages ? adapterDesc->MaximumPhysicalPages-1 : 0;
#if defined(_AMD64_SIMULATOR_)
//
// The simulator appears to have a problem with large transfers.
//
if (hwMaxPages > 4) {
hwMaxPages = 4;
}
#endif
fdoData->HwMaxXferLen = MIN(adapterDesc->MaximumTransferLength, hwMaxPages << PAGE_SHIFT);
fdoData->HwMaxXferLen = MAX(fdoData->HwMaxXferLen, PAGE_SIZE);
fdoData->NumTotalTransferPackets = 0;
fdoData->NumFreeTransferPackets = 0;
InitializeSListHead(&fdoData->FreeTransferPacketsList);
InitializeListHead(&fdoData->AllTransferPacketsList);
InitializeListHead(&fdoData->DeferredClientIrpList);
/*
* Set the packet threshold numbers based on the Windows SKU.
*/
if (ExVerifySuite(Personal)){
// this is Windows Personal
MinWorkingSetTransferPackets = MIN_WORKINGSET_TRANSFER_PACKETS_Consumer;
MaxWorkingSetTransferPackets = MAX_WORKINGSET_TRANSFER_PACKETS_Consumer;
}
else if (ExVerifySuite(Enterprise) || ExVerifySuite(DataCenter)){
// this is Advanced Server or Datacenter
MinWorkingSetTransferPackets = MIN_WORKINGSET_TRANSFER_PACKETS_Enterprise;
MaxWorkingSetTransferPackets = MAX_WORKINGSET_TRANSFER_PACKETS_Enterprise;
}
else if (ExVerifySuite(TerminalServer)){
// this is standard Server or Pro with terminal server
MinWorkingSetTransferPackets = MIN_WORKINGSET_TRANSFER_PACKETS_Server;
MaxWorkingSetTransferPackets = MAX_WORKINGSET_TRANSFER_PACKETS_Server;
}
else {
// this is Professional without terminal server
MinWorkingSetTransferPackets = MIN_WORKINGSET_TRANSFER_PACKETS_Consumer;
MaxWorkingSetTransferPackets = MAX_WORKINGSET_TRANSFER_PACKETS_Consumer;
}
while (fdoData->NumFreeTransferPackets < MIN_INITIAL_TRANSFER_PACKETS){
PTRANSFER_PACKET pkt = NewTransferPacket(Fdo);
if (pkt){
InterlockedIncrement(&fdoData->NumTotalTransferPackets);
EnqueueFreeTransferPacket(Fdo, pkt);
}
else {
status = STATUS_INSUFFICIENT_RESOURCES;
break;
}
}
fdoData->DbgPeakNumTransferPackets = fdoData->NumTotalTransferPackets;
/*
* Pre-initialize our SCSI_REQUEST_BLOCK template with all
* the constant fields. This will save a little time for each xfer.
* NOTE: a CdbLength field of 10 may not always be appropriate
*/
RtlZeroMemory(&fdoData->SrbTemplate, sizeof(SCSI_REQUEST_BLOCK));
fdoData->SrbTemplate.Length = sizeof(SCSI_REQUEST_BLOCK);
fdoData->SrbTemplate.Function = SRB_FUNCTION_EXECUTE_SCSI;
fdoData->SrbTemplate.QueueAction = SRB_SIMPLE_TAG_REQUEST;
fdoData->SrbTemplate.SenseInfoBufferLength = sizeof(SENSE_DATA);
fdoData->SrbTemplate.CdbLength = 10;
return status;
}
VOID DestroyAllTransferPackets(PDEVICE_OBJECT Fdo)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
TRANSFER_PACKET *pkt;
PAGED_CODE();
ASSERT(IsListEmpty(&fdoData->DeferredClientIrpList));
while (pkt = DequeueFreeTransferPacket(Fdo, FALSE)){
DestroyTransferPacket(pkt);
InterlockedDecrement(&fdoData->NumTotalTransferPackets);
}
ASSERT(fdoData->NumTotalTransferPackets == 0);
}
PTRANSFER_PACKET NewTransferPacket(PDEVICE_OBJECT Fdo)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PTRANSFER_PACKET newPkt;
newPkt = ExAllocatePoolWithTag(NonPagedPool, sizeof(TRANSFER_PACKET), 'pnPC');
if (newPkt){
RtlZeroMemory(newPkt, sizeof(TRANSFER_PACKET)); // just to be sure
/*
* Allocate resources for the packet.
*/
newPkt->Irp = IoAllocateIrp(Fdo->StackSize, FALSE);
if (newPkt->Irp){
KIRQL oldIrql;
newPkt->Fdo = Fdo;
/*
* Enqueue the packet in our static AllTransferPacketsList
* (just so we can find it during debugging if its stuck somewhere).
*/
KeAcquireSpinLock(&fdoData->SpinLock, &oldIrql);
InsertTailList(&fdoData->AllTransferPacketsList, &newPkt->AllPktsListEntry);
KeReleaseSpinLock(&fdoData->SpinLock, oldIrql);
}
else {
ExFreePool(newPkt);
newPkt = NULL;
}
}
return newPkt;
}
/*
* DestroyTransferPacket
*
*/
VOID DestroyTransferPacket(PTRANSFER_PACKET Pkt)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
KIRQL oldIrql;
ASSERT(!Pkt->SlistEntry.Next);
ASSERT(!Pkt->OriginalIrp);
KeAcquireSpinLock(&fdoData->SpinLock, &oldIrql);
/*
* Delete the packet from our all-packets queue.
*/
ASSERT(!IsListEmpty(&Pkt->AllPktsListEntry));
ASSERT(!IsListEmpty(&fdoData->AllTransferPacketsList));
RemoveEntryList(&Pkt->AllPktsListEntry);
InitializeListHead(&Pkt->AllPktsListEntry);
KeReleaseSpinLock(&fdoData->SpinLock, oldIrql);
IoFreeIrp(Pkt->Irp);
ExFreePool(Pkt);
}
VOID EnqueueFreeTransferPacket(PDEVICE_OBJECT Fdo, PTRANSFER_PACKET Pkt)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
KIRQL oldIrql;
ULONG newNumPkts;
ASSERT(!Pkt->SlistEntry.Next);
InterlockedPushEntrySList(&fdoData->FreeTransferPacketsList, &Pkt->SlistEntry);
newNumPkts = InterlockedIncrement(&fdoData->NumFreeTransferPackets);
ASSERT(newNumPkts <= fdoData->NumTotalTransferPackets);
/*
* If the total number of packets is larger than MinWorkingSetTransferPackets,
* that means that we've been in stress. If all those packets are now
* free, then we are now out of stress and can free the extra packets.
* Free down to MaxWorkingSetTransferPackets immediately, and
* down to MinWorkingSetTransferPackets lazily (one at a time).
*/
if (fdoData->NumFreeTransferPackets >= fdoData->NumTotalTransferPackets){
/*
* 1. Immediately snap down to our UPPER threshold.
*/
if (fdoData->NumTotalTransferPackets > MaxWorkingSetTransferPackets){
SINGLE_LIST_ENTRY pktList;
PSINGLE_LIST_ENTRY slistEntry;
PTRANSFER_PACKET pktToDelete;
DBGTRACE(ClassDebugTrace, ("Exiting stress, block freeing (%d-%d) packets.", fdoData->NumTotalTransferPackets, MaxWorkingSetTransferPackets));
/*
* Check the counter again with lock held. This eliminates a race condition
* while still allowing us to not grab the spinlock in the common codepath.
*
* Note that the spinlock does not synchronize with threads dequeuing free
* packets to send (DequeueFreeTransferPacket does that with a lightweight
* interlocked exchange); the spinlock prevents multiple threads in this function
* from deciding to free too many extra packets at once.
*/
SimpleInitSlistHdr(&pktList);
KeAcquireSpinLock(&fdoData->SpinLock, &oldIrql);
while ((fdoData->NumFreeTransferPackets >= fdoData->NumTotalTransferPackets) &&
(fdoData->NumTotalTransferPackets > MaxWorkingSetTransferPackets)){
pktToDelete = DequeueFreeTransferPacket(Fdo, FALSE);
if (pktToDelete){
SimplePushSlist(&pktList, &pktToDelete->SlistEntry);
InterlockedDecrement(&fdoData->NumTotalTransferPackets);
}
else {
DBGTRACE(ClassDebugTrace, ("Extremely unlikely condition (non-fatal): %d packets dequeued at once for Fdo %p. NumTotalTransferPackets=%d (1).", MaxWorkingSetTransferPackets, Fdo, fdoData->NumTotalTransferPackets));
break;
}
}
KeReleaseSpinLock(&fdoData->SpinLock, oldIrql);
while (slistEntry = SimplePopSlist(&pktList)){
pktToDelete = CONTAINING_RECORD(slistEntry, TRANSFER_PACKET, SlistEntry);
DestroyTransferPacket(pktToDelete);
}
}
/*
* 2. Lazily work down to our LOWER threshold (by only freeing one packet at a time).
*/
if (fdoData->NumTotalTransferPackets > MinWorkingSetTransferPackets){
/*
* Check the counter again with lock held. This eliminates a race condition
* while still allowing us to not grab the spinlock in the common codepath.
*
* Note that the spinlock does not synchronize with threads dequeuing free
* packets to send (DequeueFreeTransferPacket does that with a lightweight
* interlocked exchange); the spinlock prevents multiple threads in this function
* from deciding to free too many extra packets at once.
*/
PTRANSFER_PACKET pktToDelete = NULL;
DBGTRACE(ClassDebugTrace, ("Exiting stress, lazily freeing one of %d/%d packets.", fdoData->NumTotalTransferPackets, MinWorkingSetTransferPackets));
KeAcquireSpinLock(&fdoData->SpinLock, &oldIrql);
if ((fdoData->NumFreeTransferPackets >= fdoData->NumTotalTransferPackets) &&
(fdoData->NumTotalTransferPackets > MinWorkingSetTransferPackets)){
pktToDelete = DequeueFreeTransferPacket(Fdo, FALSE);
if (pktToDelete){
InterlockedDecrement(&fdoData->NumTotalTransferPackets);
}
else {
DBGTRACE(ClassDebugTrace, ("Extremely unlikely condition (non-fatal): %d packets dequeued at once for Fdo %p. NumTotalTransferPackets=%d (2).", MinWorkingSetTransferPackets, Fdo, fdoData->NumTotalTransferPackets));
}
}
KeReleaseSpinLock(&fdoData->SpinLock, oldIrql);
if (pktToDelete){
DestroyTransferPacket(pktToDelete);
}
}
}
}
PTRANSFER_PACKET DequeueFreeTransferPacket(PDEVICE_OBJECT Fdo, BOOLEAN AllocIfNeeded)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PTRANSFER_PACKET pkt;
PSINGLE_LIST_ENTRY slistEntry;
KIRQL oldIrql;
slistEntry = InterlockedPopEntrySList(&fdoData->FreeTransferPacketsList);
if (slistEntry){
slistEntry->Next = NULL;
pkt = CONTAINING_RECORD(slistEntry, TRANSFER_PACKET, SlistEntry);
ASSERT(fdoData->NumFreeTransferPackets > 0);
InterlockedDecrement(&fdoData->NumFreeTransferPackets);
}
else {
if (AllocIfNeeded){
/*
* We are in stress and have run out of lookaside packets.
* In order to service the current transfer,
* allocate an extra packet.
* We will free it lazily when we are out of stress.
*/
pkt = NewTransferPacket(Fdo);
if (pkt){
InterlockedIncrement(&fdoData->NumTotalTransferPackets);
fdoData->DbgPeakNumTransferPackets = max(fdoData->DbgPeakNumTransferPackets, fdoData->NumTotalTransferPackets);
}
else {
DBGWARN(("DequeueFreeTransferPacket: packet allocation failed"));
}
}
else {
pkt = NULL;
}
}
return pkt;
}
/*
* SetupReadWriteTransferPacket
*
* This function is called once to set up the first attempt to send a packet.
* It is not called before a retry, as SRB fields may be modified for the retry.
*
* Set up the Srb of the TRANSFER_PACKET for the transfer.
* The Irp is set up in SubmitTransferPacket because it must be reset
* for each packet submission.
*/
VOID SetupReadWriteTransferPacket( PTRANSFER_PACKET Pkt,
PVOID Buf,
ULONG Len,
LARGE_INTEGER DiskLocation,
PIRP OriginalIrp)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PIO_STACK_LOCATION origCurSp = IoGetCurrentIrpStackLocation(OriginalIrp);
UCHAR majorFunc = origCurSp->MajorFunction;
ULONG logicalBlockAddr;
ULONG numTransferBlocks;
PCDB pCdb;
logicalBlockAddr = (ULONG)Int64ShrlMod32(DiskLocation.QuadPart, fdoExt->SectorShift);
numTransferBlocks = Len >> fdoExt->SectorShift;
/*
* Slap the constant SRB fields in from our pre-initialized template.
* We'll then only have to fill in the unique fields for this transfer.
* Tell lower drivers to sort the SRBs by the logical block address
* so that disk seeks are minimized.
*/
Pkt->Srb = fdoData->SrbTemplate; // copies _contents_ of SRB blocks
Pkt->Srb.DataBuffer = Buf;
Pkt->Srb.DataTransferLength = Len;
Pkt->Srb.QueueSortKey = logicalBlockAddr;
Pkt->Srb.OriginalRequest = Pkt->Irp;
Pkt->Srb.SenseInfoBuffer = &Pkt->SrbErrorSenseData;
Pkt->Srb.TimeOutValue = (Len/0x10000) + ((Len%0x10000) ? 1 : 0);
Pkt->Srb.TimeOutValue *= fdoExt->TimeOutValue;
/*
* Arrange values in CDB in big-endian format.
*/
pCdb = (PCDB)Pkt->Srb.Cdb;
pCdb->CDB10.LogicalBlockByte0 = ((PFOUR_BYTE)&logicalBlockAddr)->Byte3;
pCdb->CDB10.LogicalBlockByte1 = ((PFOUR_BYTE)&logicalBlockAddr)->Byte2;
pCdb->CDB10.LogicalBlockByte2 = ((PFOUR_BYTE)&logicalBlockAddr)->Byte1;
pCdb->CDB10.LogicalBlockByte3 = ((PFOUR_BYTE)&logicalBlockAddr)->Byte0;
pCdb->CDB10.TransferBlocksMsb = ((PFOUR_BYTE)&numTransferBlocks)->Byte1;
pCdb->CDB10.TransferBlocksLsb = ((PFOUR_BYTE)&numTransferBlocks)->Byte0;
pCdb->CDB10.OperationCode = (majorFunc==IRP_MJ_READ) ? SCSIOP_READ : SCSIOP_WRITE;
/*
* Set SRB and IRP flags
*/
Pkt->Srb.SrbFlags = fdoExt->SrbFlags;
if (TEST_FLAG(OriginalIrp->Flags, IRP_PAGING_IO) ||
TEST_FLAG(OriginalIrp->Flags, IRP_SYNCHRONOUS_PAGING_IO)){
SET_FLAG(Pkt->Srb.SrbFlags, SRB_CLASS_FLAGS_PAGING);
}
SET_FLAG(Pkt->Srb.SrbFlags, (majorFunc==IRP_MJ_READ) ? SRB_FLAGS_DATA_IN : SRB_FLAGS_DATA_OUT);
/*
* Allow caching only if this is not a write-through request.
* If write-through and caching is enabled on the device, force
* media access.
*/
if (TEST_FLAG(origCurSp->Flags, SL_WRITE_THROUGH)){
if (TEST_FLAG(fdoExt->DeviceFlags, DEV_WRITE_CACHE)){
pCdb->CDB10.ForceUnitAccess = TRUE;
}
}
else {
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_ADAPTER_CACHE_ENABLE);
}
/*
* Remember the buf and len in the SRB because miniports
* can overwrite SRB.DataTransferLength and we may need it again
* for the retry.
*/
Pkt->BufPtrCopy = Buf;
Pkt->BufLenCopy = Len;
Pkt->TargetLocationCopy = DiskLocation;
Pkt->OriginalIrp = OriginalIrp;
Pkt->NumRetries = MAXIMUM_RETRIES;
Pkt->SyncEventPtr = NULL;
Pkt->CompleteOriginalIrpWhenLastPacketCompletes = TRUE;
}
/*
* SubmitTransferPacket
*
* Set up the IRP for the TRANSFER_PACKET submission and send it down.
*/
VOID SubmitTransferPacket(PTRANSFER_PACKET Pkt)
{
PCOMMON_DEVICE_EXTENSION commonExtension = Pkt->Fdo->DeviceExtension;
PDEVICE_OBJECT nextDevObj = commonExtension->LowerDeviceObject;
PIO_STACK_LOCATION nextSp = IoGetNextIrpStackLocation(Pkt->Irp);
ASSERT(Pkt->Irp->CurrentLocation == Pkt->Irp->StackCount+1);
/*
* Attach the SRB to the IRP.
* The reused IRP's stack location has to be rewritten for each retry
* call because IoCompleteRequest clears the stack locations.
*/
IoReuseIrp(Pkt->Irp, STATUS_NOT_SUPPORTED);
nextSp->MajorFunction = IRP_MJ_SCSI;
nextSp->Parameters.Scsi.Srb = &Pkt->Srb;
Pkt->Srb.ScsiStatus = Pkt->Srb.SrbStatus = 0;
if (Pkt->CompleteOriginalIrpWhenLastPacketCompletes){
/*
* Only dereference the "original IRP"'s stack location
* if its a real client irp (as opposed to a static irp
* we're using just for result status for one of the non-IO scsi commands).
*
* For read/write, propagate the storage-specific IRP stack location flags
* (e.g. SL_OVERRIDE_VERIFY_VOLUME, SL_WRITE_THROUGH).
*/
PIO_STACK_LOCATION origCurSp = IoGetCurrentIrpStackLocation(Pkt->OriginalIrp);
nextSp->Flags = origCurSp->Flags;
}
/*
* Write MDL address to new IRP. In the port driver the SRB DataBuffer
* field is used as the actual buffer pointer within the MDL,
* so the same MDL can be used for each partial transfer.
* This saves having to build a new MDL for each partial transfer.
*/
Pkt->Irp->MdlAddress = Pkt->OriginalIrp->MdlAddress;
IoSetCompletionRoutine(Pkt->Irp, TransferPktComplete, Pkt, TRUE, TRUE, TRUE);
IoCallDriver(nextDevObj, Pkt->Irp);
}
NTSTATUS TransferPktComplete(IN PDEVICE_OBJECT NullFdo, IN PIRP Irp, IN PVOID Context)
{
PTRANSFER_PACKET pkt = (PTRANSFER_PACKET)Context;
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PIO_STACK_LOCATION origCurrentSp = IoGetCurrentIrpStackLocation(pkt->OriginalIrp);
BOOLEAN packetDone = FALSE;
/*
* Put all the assertions and spew in here so we don't have to look at them.
*/
DBGCHECKRETURNEDPKT(pkt);
if (SRB_STATUS(pkt->Srb.SrbStatus) == SRB_STATUS_SUCCESS){
fdoData->LoggedTURFailureSinceLastIO = FALSE;
/*
* The port driver should not have allocated a sense buffer
* if the SRB succeeded.
*/
ASSERT(!PORT_ALLOCATED_SENSE(fdoExt, &pkt->Srb));
/*
* Add this packet's transferred length to the original IRP's.
*/
InterlockedExchangeAdd((PLONG)&pkt->OriginalIrp->IoStatus.Information,
(LONG)pkt->Srb.DataTransferLength);
if (pkt->InLowMemRetry){
packetDone = StepLowMemRetry(pkt);
}
else {
packetDone = TRUE;
}
}
else {
/*
* The packet failed. We may retry it if possible.
*/
BOOLEAN shouldRetry;
/*
* Make sure IRP status matches SRB error status (since we propagate it).
*/
if (NT_SUCCESS(Irp->IoStatus.Status)){
Irp->IoStatus.Status = STATUS_UNSUCCESSFUL;
}
/*
* Interpret the SRB error (to a meaningful IRP status)
* and determine if we should retry this packet.
* This call looks at the returned SENSE info to figure out what to do.
*/
shouldRetry = InterpretTransferPacketError(pkt);
/*
* Sometimes the port driver can allocates a new 'sense' buffer
* to report transfer errors, e.g. when the default sense buffer
* is too small. If so, it is up to us to free it.
* Now that we're done interpreting the sense info, free it if appropriate.
*/
if (PORT_ALLOCATED_SENSE(fdoExt, &pkt->Srb)) {
DBGTRACE(ClassDebugSenseInfo, ("Freeing port-allocated sense buffer for pkt %ph.", pkt));
FREE_PORT_ALLOCATED_SENSE_BUFFER(fdoExt, &pkt->Srb);
pkt->Srb.SenseInfoBuffer = &pkt->SrbErrorSenseData;
pkt->Srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
}
/*
* If the SRB queue is locked-up, release it.
* Do this after calling the error handler.
*/
if (pkt->Srb.SrbStatus & SRB_STATUS_QUEUE_FROZEN){
ClassReleaseQueue(pkt->Fdo);
}
if (shouldRetry && (pkt->NumRetries > 0)){
packetDone = RetryTransferPacket(pkt);
}
else {
packetDone = TRUE;
}
}
/*
* If the packet is completed, put it back in the free list.
* If it is the last packet servicing the original request, complete the original irp.
*/
if (packetDone){
LONG numPacketsRemaining;
PIRP deferredIrp;
PDEVICE_OBJECT Fdo = pkt->Fdo;
UCHAR uniqueAddr;
/*
* In case a remove is pending, bump the lock count so we don't get freed
* right after we complete the original irp.
*/
ClassAcquireRemoveLock(Fdo, (PIRP)&uniqueAddr);
/*
* The original IRP should get an error code
* if any one of the packets failed.
*/
if (!NT_SUCCESS(Irp->IoStatus.Status)){
pkt->OriginalIrp->IoStatus.Status = Irp->IoStatus.Status;
/*
* If the original I/O originated in user space (i.e. it is thread-queued),
* and the error is user-correctable (e.g. media is missing, for removable media),
* alert the user.
* Since this is only one of possibly several packets completing for the original IRP,
* we may do this more than once for a single request. That's ok; this allows
* us to test each returned status with IoIsErrorUserInduced().
*/
if (IoIsErrorUserInduced(Irp->IoStatus.Status) &&
pkt->CompleteOriginalIrpWhenLastPacketCompletes &&
pkt->OriginalIrp->Tail.Overlay.Thread){
IoSetHardErrorOrVerifyDevice(pkt->OriginalIrp, pkt->Fdo);
}
}
/*
* We use a field in the original IRP to count
* down the transfer pieces as they complete.
*/
numPacketsRemaining = InterlockedDecrement(
(PLONG)&pkt->OriginalIrp->Tail.Overlay.DriverContext[0]);
if (numPacketsRemaining > 0){
/*
* More transfer pieces remain for the original request.
* Wait for them to complete before completing the original irp.
*/
}
else {
/*
* All the transfer pieces are done.
* Complete the original irp if appropriate.
*/
ASSERT(numPacketsRemaining == 0);
if (pkt->CompleteOriginalIrpWhenLastPacketCompletes){
if (NT_SUCCESS(pkt->OriginalIrp->IoStatus.Status)){
ASSERT((ULONG)pkt->OriginalIrp->IoStatus.Information == origCurrentSp->Parameters.Read.Length);
ClasspPerfIncrementSuccessfulIo(fdoExt);
}
ClassReleaseRemoveLock(pkt->Fdo, pkt->OriginalIrp);
ClassCompleteRequest(pkt->Fdo, pkt->OriginalIrp, IO_DISK_INCREMENT);
/*
* We may have been called by one of the class drivers (e.g. cdrom)
* via the legacy API ClassSplitRequest.
* This is the only case for which the packet engine is called for an FDO
* with a StartIo routine; in that case, we have to call IoStartNextPacket
* now that the original irp has been completed.
*/
if (fdoExt->CommonExtension.DriverExtension->InitData.ClassStartIo) {
if (TEST_FLAG(pkt->Srb.SrbFlags, SRB_FLAGS_DONT_START_NEXT_PACKET)){
DBGTRAP(("SRB_FLAGS_DONT_START_NEXT_PACKET should never be set here (??)"));
}
else {
KIRQL oldIrql;
KeRaiseIrql(DISPATCH_LEVEL, &oldIrql);
IoStartNextPacket(pkt->Fdo, FALSE);
KeLowerIrql(oldIrql);
}
}
}
}
/*
* If the packet was synchronous, write the final
* result back to the issuer's status buffer and
* signal his event.
*/
if (pkt->SyncEventPtr){
KeSetEvent(pkt->SyncEventPtr, 0, FALSE);
pkt->SyncEventPtr = NULL;
}
/*
* Free the completed packet.
*/
pkt->OriginalIrp = NULL;
pkt->InLowMemRetry = FALSE;
EnqueueFreeTransferPacket(pkt->Fdo, pkt);
/*
* Now that we have freed some resources,
* try again to send one of the previously deferred irps.
*/
deferredIrp = DequeueDeferredClientIrp(fdoData);
if (deferredIrp){
DBGWARN(("... retrying deferred irp %xh.", deferredIrp));
ServiceTransferRequest(pkt->Fdo, deferredIrp);
}
ClassReleaseRemoveLock(Fdo, (PIRP)&uniqueAddr);
}
return STATUS_MORE_PROCESSING_REQUIRED;
}
/*
* SetupEjectionTransferPacket
*
* Set up a transferPacket for a synchronous Ejection Control transfer.
*/
VOID SetupEjectionTransferPacket( TRANSFER_PACKET *Pkt,
BOOLEAN PreventMediaRemoval,
PKEVENT SyncEventPtr,
PIRP OriginalIrp)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PCDB pCdb;
PAGED_CODE();
RtlZeroMemory(&Pkt->Srb, sizeof(SCSI_REQUEST_BLOCK));
Pkt->Srb.Length = sizeof(SCSI_REQUEST_BLOCK);
Pkt->Srb.Function = SRB_FUNCTION_EXECUTE_SCSI;
Pkt->Srb.QueueAction = SRB_SIMPLE_TAG_REQUEST;
Pkt->Srb.CdbLength = 6;
Pkt->Srb.OriginalRequest = Pkt->Irp;
Pkt->Srb.SenseInfoBuffer = &Pkt->SrbErrorSenseData;
Pkt->Srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
Pkt->Srb.TimeOutValue = fdoExt->TimeOutValue;
Pkt->Srb.SrbFlags = fdoExt->SrbFlags;
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_NO_QUEUE_FREEZE);
pCdb = (PCDB)Pkt->Srb.Cdb;
pCdb->MEDIA_REMOVAL.OperationCode = SCSIOP_MEDIUM_REMOVAL;
pCdb->MEDIA_REMOVAL.Prevent = PreventMediaRemoval;
Pkt->BufPtrCopy = NULL;
Pkt->BufLenCopy = 0;
Pkt->OriginalIrp = OriginalIrp;
Pkt->NumRetries = NUM_LOCKMEDIAREMOVAL_RETRIES;
Pkt->SyncEventPtr = SyncEventPtr;
Pkt->CompleteOriginalIrpWhenLastPacketCompletes = FALSE;
}
/*
* SetupModeSenseTransferPacket
*
* Set up a transferPacket for a synchronous Mode Sense transfer.
*/
VOID SetupModeSenseTransferPacket( TRANSFER_PACKET *Pkt,
PKEVENT SyncEventPtr,
PVOID ModeSenseBuffer,
UCHAR ModeSenseBufferLen,
UCHAR PageMode,
PIRP OriginalIrp)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PCDB pCdb;
PAGED_CODE();
RtlZeroMemory(&Pkt->Srb, sizeof(SCSI_REQUEST_BLOCK));
Pkt->Srb.Length = sizeof(SCSI_REQUEST_BLOCK);
Pkt->Srb.Function = SRB_FUNCTION_EXECUTE_SCSI;
Pkt->Srb.QueueAction = SRB_SIMPLE_TAG_REQUEST;
Pkt->Srb.CdbLength = 6;
Pkt->Srb.OriginalRequest = Pkt->Irp;
Pkt->Srb.SenseInfoBuffer = &Pkt->SrbErrorSenseData;
Pkt->Srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
Pkt->Srb.TimeOutValue = fdoExt->TimeOutValue;
Pkt->Srb.DataBuffer = ModeSenseBuffer;
Pkt->Srb.DataTransferLength = ModeSenseBufferLen;
Pkt->Srb.SrbFlags = fdoExt->SrbFlags;
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DATA_IN);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_NO_QUEUE_FREEZE);
pCdb = (PCDB)Pkt->Srb.Cdb;
pCdb->MODE_SENSE.OperationCode = SCSIOP_MODE_SENSE;
pCdb->MODE_SENSE.PageCode = PageMode;
pCdb->MODE_SENSE.AllocationLength = (UCHAR)ModeSenseBufferLen;
Pkt->BufPtrCopy = ModeSenseBuffer;
Pkt->BufLenCopy = ModeSenseBufferLen;
Pkt->OriginalIrp = OriginalIrp;
Pkt->NumRetries = NUM_MODESENSE_RETRIES;
Pkt->SyncEventPtr = SyncEventPtr;
Pkt->CompleteOriginalIrpWhenLastPacketCompletes = FALSE;
}
/*
* SetupDriveCapacityTransferPacket
*
* Set up a transferPacket for a synchronous Drive Capacity transfer.
*/
VOID SetupDriveCapacityTransferPacket( TRANSFER_PACKET *Pkt,
PVOID ReadCapacityBuffer,
ULONG ReadCapacityBufferLen,
PKEVENT SyncEventPtr,
PIRP OriginalIrp)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PCDB pCdb;
RtlZeroMemory(&Pkt->Srb, sizeof(SCSI_REQUEST_BLOCK));
Pkt->Srb.Length = sizeof(SCSI_REQUEST_BLOCK);
Pkt->Srb.Function = SRB_FUNCTION_EXECUTE_SCSI;
Pkt->Srb.QueueAction = SRB_SIMPLE_TAG_REQUEST;
Pkt->Srb.CdbLength = 10;
Pkt->Srb.OriginalRequest = Pkt->Irp;
Pkt->Srb.SenseInfoBuffer = &Pkt->SrbErrorSenseData;
Pkt->Srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
Pkt->Srb.TimeOutValue = fdoExt->TimeOutValue;
Pkt->Srb.DataBuffer = ReadCapacityBuffer;
Pkt->Srb.DataTransferLength = ReadCapacityBufferLen;
Pkt->Srb.SrbFlags = fdoExt->SrbFlags;
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DATA_IN);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_NO_QUEUE_FREEZE);
pCdb = (PCDB)Pkt->Srb.Cdb;
pCdb->CDB10.OperationCode = SCSIOP_READ_CAPACITY;
Pkt->BufPtrCopy = ReadCapacityBuffer;
Pkt->BufLenCopy = ReadCapacityBufferLen;
Pkt->OriginalIrp = OriginalIrp;
Pkt->NumRetries = NUM_DRIVECAPACITY_RETRIES;
Pkt->SyncEventPtr = SyncEventPtr;
Pkt->CompleteOriginalIrpWhenLastPacketCompletes = FALSE;
}
#if 0
/*
* SetupSendStartUnitTransferPacket
*
* Set up a transferPacket for a synchronous Send Start Unit transfer.
*/
VOID SetupSendStartUnitTransferPacket( TRANSFER_PACKET *Pkt,
PIRP OriginalIrp)
{
PFUNCTIONAL_DEVICE_EXTENSION fdoExt = Pkt->Fdo->DeviceExtension;
PCLASS_PRIVATE_FDO_DATA fdoData = fdoExt->PrivateFdoData;
PCDB pCdb;
PAGED_CODE();
RtlZeroMemory(&Pkt->Srb, sizeof(SCSI_REQUEST_BLOCK));
/*
* Initialize the SRB.
* Use a very long timeout value to give the drive time to spin up.
*/
Pkt->Srb.Length = sizeof(SCSI_REQUEST_BLOCK);
Pkt->Srb.Function = SRB_FUNCTION_EXECUTE_SCSI;
Pkt->Srb.TimeOutValue = START_UNIT_TIMEOUT;
Pkt->Srb.CdbLength = 6;
Pkt->Srb.OriginalRequest = Pkt->Irp;
Pkt->Srb.SenseInfoBuffer = &Pkt->SrbErrorSenseData;
Pkt->Srb.SenseInfoBufferLength = sizeof(SENSE_DATA);
Pkt->Srb.Lun = 0;
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_NO_DATA_TRANSFER);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DISABLE_AUTOSENSE);
SET_FLAG(Pkt->Srb.SrbFlags, SRB_FLAGS_DISABLE_SYNCH_TRANSFER);
pCdb = (PCDB)Pkt->Srb.Cdb;
pCdb->START_STOP.OperationCode = SCSIOP_START_STOP_UNIT;
pCdb->START_STOP.Start = 1;
pCdb->START_STOP.Immediate = 0;
pCdb->START_STOP.LogicalUnitNumber = 0;
Pkt->OriginalIrp = OriginalIrp;
Pkt->NumRetries = 0;
Pkt->SyncEventPtr = NULL;
Pkt->CompleteOriginalIrpWhenLastPacketCompletes = FALSE;
}
#endif