Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

4378 lines
118 KiB

//+-----------------------------------------------------------------------
//
// Microsoft Windows
//
// Copyright (c) Microsoft Corporation 1992 - 1996
//
// File: userapi.cxx
//
// Contents: User-mode APIs to Kerberos package
//
//
// History: 17-April-1996 Created MikeSw
// 26-Sep-1998 ChandanS
// Added more debugging support etc.
//
//------------------------------------------------------------------------
/*
* Copyright 1993 by OpenVision Technologies, Inc.
*
* Permission to use, copy, modify, distribute, and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appears in all copies and
* that both that copyright notice and this permission notice appear in
* supporting documentation, and that the name of OpenVision not be used
* in advertising or publicity pertaining to distribution of the software
* without specific, written prior permission. OpenVision makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*
* OPENVISION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
* INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
* EVENT SHALL OPENVISION BE LIABLE FOR ANY SPECIAL, INDIRECT OR
* CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
* USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
* OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
#include <kerb.hxx>
#define USERAPI_ALLOCATE
#include <kerbp.h>
#ifdef RETAIL_LOG_SUPPORT
static TCHAR THIS_FILE[]=TEXT(__FILE__);
#endif
#ifndef WIN32_CHICAGO
extern "C"
{
#include <cryptdll.h>
}
#endif // WIN32_CHICAGO
#include "userapi.h"
#define DONT_SUPPORT_OLD_TYPES_USER 1
// can't sign or seal messages greater than this
#define KERB_MAX_MESSAGE_SIZE 0x40000000
//
// Common GSS object IDs, taken from MIT kerberos distribution.
//
gss_OID_desc oids[] = {
{5, "\053\005\001\005\002"}, // original mech id
{9, "\052\206\110\206\367\022\001\002\002"}, // standard mech id
{10, "\052\206\110\206\367\022\001\002\002\001"}, // krb5_name type
{10, "\052\206\110\206\367\022\001\002\002\002"}, // krb5_principal type
{10, "\052\206\110\206\367\022\001\002\002\003"}, // user2user mech id
{9, "\052\206\110\202\367\022\001\002\002"}, // bogus mangled OID from spnego
};
gss_OID_desc * gss_mech_krb5 = oids;
gss_OID_desc * gss_mech_krb5_new = oids+1;
gss_OID_desc * gss_mech_krb5_u2u = oids+4;
gss_OID_desc * gss_mech_krb5_spnego = oids+5;
#ifndef WIN32_CHICAGO
//+-------------------------------------------------------------------------
//
// Function: SpUserModeInitialize
//
// Synopsis: Returns table of usermode functions to caller
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns: SUCCESS if version is correct
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
SEC_ENTRY
SpUserModeInitialize(
IN ULONG LsaVersion,
OUT PULONG PackageVersion,
OUT PSECPKG_USER_FUNCTION_TABLE * UserFunctionTable,
OUT PULONG pcTables)
{
if (LsaVersion != SECPKG_INTERFACE_VERSION)
{
DebugLog((DEB_ERROR,"Invalid LSA version: %d. %ws, line %d\n", LsaVersion, THIS_FILE, __LINE__));
return(STATUS_INVALID_PARAMETER);
}
*PackageVersion = SECPKG_INTERFACE_VERSION ;
KerberosUserFunctionTable.InstanceInit = SpInstanceInit;
KerberosUserFunctionTable.MakeSignature = SpMakeSignature;
KerberosUserFunctionTable.VerifySignature = SpVerifySignature;
KerberosUserFunctionTable.SealMessage = SpSealMessage;
KerberosUserFunctionTable.UnsealMessage = SpUnsealMessage;
KerberosUserFunctionTable.GetContextToken = SpGetContextToken;
KerberosUserFunctionTable.QueryContextAttributes = SpQueryContextAttributes;
KerberosUserFunctionTable.CompleteAuthToken = SpCompleteAuthToken;
KerberosUserFunctionTable.InitUserModeContext = SpInitUserModeContext;
KerberosUserFunctionTable.DeleteUserModeContext = SpDeleteUserModeContext;
KerberosUserFunctionTable.FormatCredentials = SpFormatCredentials;
KerberosUserFunctionTable.MarshallSupplementalCreds = SpMarshallSupplementalCreds;
KerberosUserFunctionTable.ExportContext = SpExportSecurityContext;
KerberosUserFunctionTable.ImportContext = SpImportSecurityContext;
*pcTables = 1;
*UserFunctionTable = &KerberosUserFunctionTable;
return( STATUS_SUCCESS );
}
#endif // WIN32_CHICAGO
//+-------------------------------------------------------------------------
//
// Function: SpInstanceInit
//
// Synopsis: Initialize an instance of the Kerberos package in a client's
// address space
//
// Effects:
//
// Arguments: Version - Version of the security dll loading the package
// FunctionTable - Contains helper routines for use by Kerberos
// UserFunctions - Receives a copy of Kerberos's user mode
// function table
//
// Requires:
//
// Returns: STATUS_SUCCESS
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpInstanceInit(
IN ULONG Version,
IN PSECPKG_DLL_FUNCTIONS DllFunctionTable,
OUT PVOID * UserFunctionTable
)
{
NTSTATUS Status = STATUS_SUCCESS;
SID_IDENTIFIER_AUTHORITY NtAuthority = SECURITY_NT_AUTHORITY;
if (!KerbGlobalInitialized)
{
#ifndef WIN32_CHICAGO
KerbInitializeDebugging();
#endif // WIN32_CHICAGO
KerberosState = KerberosUserMode;
Status = KerbInitContextList();
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to initialize context list: 0x%x. %ws, line %d\n",
Status, THIS_FILE, __LINE__ ));
goto Cleanup;
}
}
else
{
D_DebugLog((DEB_TRACE,"Re-initializing kerberos from LSA mode to User Mode\n"));
}
UserFunctions = DllFunctionTable;
#ifndef WIN32_CHICAGO
//
// Build the two well known sids we need.
//
if( KerbGlobalLocalSystemSid == NULL )
{
Status = RtlAllocateAndInitializeSid(
&NtAuthority,
1,
SECURITY_LOCAL_SYSTEM_RID,
0,0,0,0,0,0,0,
&KerbGlobalLocalSystemSid
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
if( KerbGlobalAliasAdminsSid == NULL )
{
Status = RtlAllocateAndInitializeSid(
&NtAuthority,
2,
SECURITY_BUILTIN_DOMAIN_RID,
DOMAIN_ALIAS_RID_ADMINS,
0,0,0,0,0,0,
&KerbGlobalAliasAdminsSid
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
#endif // WIN32_CHICAGO
KerbGlobalInitialized = TRUE;
Cleanup:
if( !KerbGlobalInitialized && !NT_SUCCESS(Status) )
{
if( KerbGlobalLocalSystemSid != NULL )
{
RtlFreeSid( KerbGlobalLocalSystemSid );
KerbGlobalLocalSystemSid = NULL;
}
if( KerbGlobalAliasAdminsSid != NULL )
{
RtlFreeSid( KerbGlobalAliasAdminsSid );
KerbGlobalAliasAdminsSid = NULL;
}
}
return(Status);
}
//+-------------------------------------------------------------------------
//
// Function: SpDeleteUserModeContext
//
// Synopsis: Deletes a user mode context by unlinking it and then
// dereferencing it.
//
// Effects:
//
// Arguments: ContextHandle - Lsa context handle of the context to delete
//
// Requires:
//
// Returns: STATUS_SUCCESS on success, STATUS_INVALID_HANDLE if the
// context can't be located, SEC_I_NO_LSA_CONTEXT if this was
// created from an exported context
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpDeleteUserModeContext(
IN LSA_SEC_HANDLE ContextHandle
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
D_DebugLog((DEB_TRACE_API,"SpDeleteUserModeContext called\n"));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
TRUE,
&Context // unlink it
);
if (!NT_SUCCESS(Status))
{
D_DebugLog((DEB_TRACE,"Failed to reference context 0x%x by lsa handle\n",
ContextHandle));
return(STATUS_SUCCESS); // no error code should be returned in this case
}
//
// Make sure we don't try to call the LSA to delete imported contexts
//
KerbReadLockContexts();
if ((Context->ContextAttributes & KERB_CONTEXT_IMPORTED) != 0)
{
Status = SEC_I_NO_LSA_CONTEXT;
}
KerbUnlockContexts();
KerbDereferenceContext(
Context
);
D_DebugLog((DEB_TRACE_API, "SpDeleteUserModeContext returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpInitUserModeContext
//
// Synopsis: Creates a user-mode context from a packed LSA mode context
//
// Effects:
//
// Arguments: ContextHandle - Lsa mode context handle for the context
// PackedContext - A marshalled buffer containing the LSA
// mode context.
//
// Requires:
//
// Returns: STATUS_SUCCESS or STATUS_INSUFFICIENT_RESOURCES
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpInitUserModeContext(
IN LSA_SEC_HANDLE ContextHandle,
IN PSecBuffer PackedContext
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
D_DebugLog((DEB_TRACE_API,"SpInitUserModeContext called\n"));
Status = KerbCreateUserModeContext(
ContextHandle,
PackedContext,
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to create user mode context: 0x%x. %ws, line %d\n",
Status, THIS_FILE, __LINE__));
goto Cleanup;
}
Cleanup:
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
if (PackedContext->pvBuffer != NULL)
{
FreeContextBuffer(PackedContext->pvBuffer);
PackedContext->pvBuffer = NULL;
}
D_DebugLog((DEB_TRACE_API, "SpInitUserModeContext returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpExportSecurityContext
//
// Synopsis: Exports a security context to another process
//
// Effects: Allocates memory for output
//
// Arguments: ContextHandle - handle to context to export
// Flags - Flags concerning duplication. Allowable flags:
// SECPKG_CONTEXT_EXPORT_DELETE_OLD - causes old context
// to be deleted.
// PackedContext - Receives serialized context to be freed with
// FreeContextBuffer
// TokenHandle - Optionally receives handle to context's token.
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
SpExportSecurityContext(
IN LSA_SEC_HANDLE ContextHandle,
IN ULONG Flags,
OUT PSecBuffer PackedContext,
OUT PHANDLE TokenHandle
)
{
PKERB_CONTEXT Context = NULL;
NTSTATUS Status = STATUS_SUCCESS;
BOOLEAN MappedContext = FALSE;
D_DebugLog((DEB_TRACE_API,"SpExportContext Called\n"));
D_DebugLog((DEB_TRACE_USER,"Exporting context 0x%p, flags 0x%x\n",ContextHandle, Flags));
//
// We don't support reseting the context
//
if ((Flags & SECPKG_CONTEXT_EXPORT_RESET_NEW) != 0)
{
return(SEC_E_UNSUPPORTED_FUNCTION);
}
if (ARGUMENT_PRESENT(TokenHandle))
{
*TokenHandle = NULL;
}
PackedContext->pvBuffer = NULL;
PackedContext->cbBuffer = 0;
PackedContext->BufferType = 0;
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for ExportSecurityContext(%p) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
Status = KerbMapContext(
Context,
&MappedContext,
PackedContext
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
DsysAssert(MappedContext);
//
// We need to figure out if this was exported
//
((PKERB_CONTEXT)PackedContext->pvBuffer)->ContextAttributes |= KERB_CONTEXT_EXPORTED;
//
// Now either duplicate the token or copy it.
//
if (ARGUMENT_PRESENT(TokenHandle))
{
KerbWriteLockContexts();
if ((Flags & SECPKG_CONTEXT_EXPORT_DELETE_OLD) != 0)
{
*TokenHandle = Context->TokenHandle;
Context->TokenHandle = NULL;
}
else
{
Status = NtDuplicateObject(
NtCurrentProcess(),
Context->TokenHandle,
NULL,
TokenHandle,
0, // no new access
0, // no handle attributes
DUPLICATE_SAME_ACCESS
);
}
KerbUnlockContexts();
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
Cleanup:
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API, "SpExportSecurityContext returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpImportSecurityContext
//
// Synopsis:
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
SpImportSecurityContext(
IN PSecBuffer PackedContext,
IN HANDLE Token,
OUT PLSA_SEC_HANDLE ContextHandle
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
D_DebugLog((DEB_TRACE_API,"SpImportSecurityContext called\n"));
Status = KerbCreateUserModeContext(
0, // no lsa context
PackedContext,
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to create user mode context: 0x%x. %ws, line %d\n",
Status, THIS_FILE, __LINE__));
goto Cleanup;
}
KerbWriteLockContexts();
Context->TokenHandle = Token;
Context->ContextAttributes |= KERB_CONTEXT_IMPORTED;
*ContextHandle = KerbGetContextHandle(Context);
// Context->LsaContextHandle = *ContextHandle;
KerbUnlockContexts();
Cleanup:
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API, "SpImportSecurityContext returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
D_DebugLog((DEB_TRACE_USER," Imported Context handle = 0x%x\n",*ContextHandle));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: KerbGetChecksumAndEncryptionType
//
// Synopsis: Gets the ChecksumType and the EncryptionType
//
// Effects:
//
// Arguments: Context - Context to use for signing
// QualityOfProtection - flags indicating what kind of checksum
// to use
// ChecksumType - Receives the type of checksum to use
// EncryptionType - Receives the type of encryption to use
//
// Requires: The context must be write locked
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
KerbGetChecksumAndEncryptionType(
IN PKERB_CONTEXT Context,
IN ULONG QualityOfProtection,
OUT PULONG ChecksumType,
OUT PULONG EncryptionType
)
{
NTSTATUS Status = STATUS_SUCCESS;
//
// If the keytype is an MS keytype, we need to use an MS encryption
// scheme.
//
if (!KERB_IS_DES_ENCRYPTION(Context->SessionKey.keytype))
{
#ifndef DONT_SUPPORT_OLD_TYPES_USER
if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_OLD)
{
*ChecksumType = KERB_CHECKSUM_HMAC_MD5;
*EncryptionType = KERB_ETYPE_RC4_PLAIN_OLD;
}
else if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_OLD_EXP)
{
*ChecksumType = KERB_CHECKSUM_HMAC_MD5;
*EncryptionType = KERB_ETYPE_RC4_PLAIN_OLD_EXP;
}
else
#endif
if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_NT)
{
*ChecksumType = KERB_CHECKSUM_HMAC_MD5;
*EncryptionType = KERB_ETYPE_RC4_PLAIN;
}
else
{
DsysAssert (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_NT_EXP);
*ChecksumType = KERB_CHECKSUM_HMAC_MD5;
*EncryptionType = KERB_ETYPE_RC4_PLAIN_EXP;
}
}
else
{
//
// Use the exportable version if necessasry
//
*EncryptionType = KERB_ETYPE_DES_PLAIN;
switch(QualityOfProtection)
{
case GSS_KRB5_INTEG_C_QOP_MD5:
*ChecksumType = KERB_CHECKSUM_MD25;
break;
case KERB_WRAP_NO_ENCRYPT:
case GSS_KRB5_INTEG_C_QOP_DEFAULT:
case GSS_KRB5_INTEG_C_QOP_DES_MD5:
*ChecksumType = KERB_CHECKSUM_DES_MAC_MD5;
break;
case GSS_KRB5_INTEG_C_QOP_DES_MAC:
*ChecksumType = KERB_CHECKSUM_DES_MAC;
break;
default:
DebugLog((DEB_ERROR,"Invalid quality of protection sent to MakeSignature: %d. %ws, line %d\n",
QualityOfProtection, THIS_FILE, __LINE__ ));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
}
Cleanup:
return(Status);
}
//+-------------------------------------------------------------------------
//
// Function: KerbMakeSignatureToken
//
// Synopsis: Makes the signature token for a signed or sealed message
//
// Effects:
//
// Arguments: Context - Context to use for signing
// QualityOfProtection - flags indicating what kind of checksum
// to use
// SignatureBuffer - Buffer in which to place signature
// TotalBufferSize - Total size of all buffers to be signed
// Encrypt - if TRUE, then prepare a header for an encrypted buffer
// SuppliedNonce - Nonce supplied by caller, used for datagram
//
// Requires: The context must be write locked
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
KerbMakeSignatureToken(
IN PKERB_CONTEXT Context,
IN ULONG QualityOfProtection,
IN PSecBuffer SignatureBuffer,
IN ULONG TotalBufferSize,
IN BOOLEAN Encrypt,
IN ULONG SuppliedNonce,
OUT PKERB_GSS_SIGNATURE * OutputSignature,
OUT PULONG SequenceNumber
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_GSS_SIGNATURE Signature;
PKERB_GSS_SEAL_SIGNATURE SealSignature;
ULONG MessageSize;
ULONG SignatureSize;
PULONG Nonce;
gss_OID MechUsed;
BOOLEAN GssCompatible = TRUE;
//
// Compute the size of the header. For encryption headers, we need
// to round up the size of the data & add 8 bytes for a confounder.
//
if ((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) != 0 ||
(Context->ContextFlags & ISC_RET_DATAGRAM) != 0)
{
GssCompatible = FALSE;
}
//
// Since RPC doesn't carry around the size of the size of the
// signature bufer, we use it in the header. This break rfc1964 compat.
//
if (!GssCompatible || !Encrypt)
{
TotalBufferSize = 0;
}
if ((Context->ContextAttributes & KERB_CONTEXT_USER_TO_USER) != 0)
{
MechUsed = gss_mech_krb5_u2u;
}
else
{
MechUsed = gss_mech_krb5_new;
}
if (Encrypt)
{
//
// NOTE: according to rfc1964, buffers that are an even multiple of
// 8 bytes have 8 bytes of zeros appended. Because we cannot modify
// the input buffers, the caller will have to do this for us.
//
MessageSize = TotalBufferSize + sizeof(KERB_GSS_SEAL_SIGNATURE);
}
else
{
MessageSize = TotalBufferSize + sizeof(KERB_GSS_SIGNATURE);
}
SignatureSize = g_token_size(MechUsed, MessageSize) - TotalBufferSize;
//
// Make Dave happy (verify that the supplied signature buffer is large
// enough for a signature):
//
if (SignatureBuffer->cbBuffer < SignatureSize)
{
Status = STATUS_BUFFER_TOO_SMALL;
goto Cleanup;
}
//
// create the header with the GSS oid
//
Signature = (PKERB_GSS_SIGNATURE) SignatureBuffer->pvBuffer;
g_make_token_header(
MechUsed,
MessageSize,
(PUCHAR *) &Signature,
(Encrypt ? KG_TOK_WRAP_MSG : KG_TOK_MIC_MSG)
);
//
// Fill in the header information according to RFC1964
//
Signature->SignatureAlgorithm[1] = KERB_GSS_SIG_SECOND;
//
// If the keytype is an MS keytype, we need to use an MS encryption
// scheme.
//
if (!KERB_IS_DES_ENCRYPTION(Context->SessionKey.keytype))
{
#ifndef DONT_SUPPORT_OLD_TYPES_USER
if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_OLD)
{
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_HMAC;
if (Encrypt)
{
Signature->SealAlgorithm[1] = KERB_GSS_SIG_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_SEAL_RC4_OLD;
}
}
else if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_OLD_EXP)
{
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_HMAC;
if (Encrypt)
{
Signature->SealAlgorithm[1] = KERB_GSS_SIG_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_SEAL_RC4_OLD;
}
}
else
#endif
if (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_NT)
{
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_HMAC;
if (Encrypt)
{
Signature->SealAlgorithm[1] = KERB_GSS_SIG_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_SEAL_RC4;
}
}
else
{
DsysAssert (Context->SessionKey.keytype == KERB_ETYPE_RC4_HMAC_NT_EXP);
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_HMAC;
if (Encrypt)
{
Signature->SealAlgorithm[1] = KERB_GSS_SIG_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_SEAL_RC4;
}
}
//
// if we aren't actually encrypting, reset the encryption alg
//
if (QualityOfProtection == KERB_WRAP_NO_ENCRYPT)
{
if (!Encrypt)
{
DebugLog((DEB_ERROR,"KERB_WRAP_NO_ENCRYPT flag passed to MakeSignature!\n"));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
//
// In this case use the default, but we will not encrypt
//
Signature->SealAlgorithm[1] = KERB_GSS_NO_SEAL_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_NO_SEAL;
}
}
else
{
if (Encrypt)
{
Signature->SealAlgorithm[1] = KERB_GSS_SIG_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_SEAL_DES_CBC;
}
//
// Use the exportable version if necessasry
//
switch(QualityOfProtection)
{
case GSS_KRB5_INTEG_C_QOP_MD5:
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_MD25;
break;
case KERB_WRAP_NO_ENCRYPT:
if (!Encrypt)
{
DebugLog((DEB_ERROR,"KERB_WRAP_NO_ENCRYPT flag passed to MakeSignature!\n"));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
//
// In this case use the default, but we will not encrypt
//
Signature->SealAlgorithm[1] = KERB_GSS_NO_SEAL_SECOND;
Signature->SealAlgorithm[0] = KERB_GSS_NO_SEAL;
case GSS_KRB5_INTEG_C_QOP_DEFAULT:
case GSS_KRB5_INTEG_C_QOP_DES_MD5:
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_DES_MAC_MD5;
break;
case GSS_KRB5_INTEG_C_QOP_DES_MAC:
Signature->SignatureAlgorithm[0] = KERB_GSS_SIG_DES_MAC;
break;
default:
DebugLog((DEB_ERROR,"Invalid quality of protection sent to MakeSignature: %d. %ws, line %d\n",
QualityOfProtection, THIS_FILE, __LINE__ ));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
}
//
// Put in the filler - it is different for signing & sealing
//
if (Encrypt)
{
memset(Signature->SealFiller,0xff,2);
}
else
{
memset(Signature->SignFiller,0xff,4);
}
//
// Inbound contexts get a high dword of 0xffffffff, outbound gets
// 0x00000000.
//
Nonce = &Context->Nonce;
if (Context->ContextAttributes & KERB_CONTEXT_INBOUND)
{
*(ULONG UNALIGNED *)(&Signature->SequenceNumber[4]) = 0xffffffff;
}
else
{
DsysAssert((Context->ContextAttributes & KERB_CONTEXT_OUTBOUND) != 0);
*(ULONG UNALIGNED *)(&Signature->SequenceNumber[4]) = 0x00000000;
}
//
// If this is datagram, or integrity without replay & sequence detection,
// use the nonce from the caller
//
if (((Context->ContextFlags & ISC_RET_DATAGRAM) != 0) ||
((Context->ContextFlags & (ISC_RET_INTEGRITY | ISC_RET_SEQUENCE_DETECT | ISC_RET_REPLAY_DETECT)) == ISC_RET_INTEGRITY))
{
Nonce = &SuppliedNonce;
}
if (!KERB_IS_DES_ENCRYPTION(Context->SessionKey.keytype))
{
Signature->SequenceNumber[0] = (UCHAR) ((*Nonce & 0xff000000) >> 24);
Signature->SequenceNumber[1] = (UCHAR) ((*Nonce & 0x00ff0000) >> 16);
Signature->SequenceNumber[2] = (UCHAR) ((*Nonce & 0x0000ff00) >> 8);
Signature->SequenceNumber[3] = (UCHAR) (*Nonce & 0x000000ff);
}
else
{
Signature->SequenceNumber[3] = (UCHAR) ((*Nonce & 0xff000000) >> 24);
Signature->SequenceNumber[2] = (UCHAR) ((*Nonce & 0x00ff0000) >> 16);
Signature->SequenceNumber[1] = (UCHAR) ((*Nonce & 0x0000ff00) >> 8);
Signature->SequenceNumber[0] = (UCHAR) (*Nonce & 0x000000ff);
}
(*Nonce)++;
*SequenceNumber = *(ULONG UNALIGNED *)Signature->SequenceNumber;
D_DebugLog((DEB_TRACE_USER,"Makign signature buffer (encrypt = %d) with nonce 0x%x\n",
Encrypt,
*SequenceNumber
));
//
// If we are encrypting, add the confounder to the end of the signature
//
if (Encrypt)
{
SealSignature = (PKERB_GSS_SEAL_SIGNATURE) Signature;
KerbRandomFill(
SealSignature->Confounder,
KERB_GSS_SIG_CONFOUNDER_SIZE
);
}
//
// Set the size of the signature
//
SignatureBuffer->cbBuffer = SignatureSize;
*OutputSignature = Signature;
Cleanup:
return(Status);
}
//+-------------------------------------------------------------------------
//
// Function: KerbVerifySignatureToken
//
// Synopsis: Verifies the header on a signed or sealed message
//
// Effects:
//
// Arguments: Context - context to use for verification
// SignatureBuffer - Buffer containing signature
// TotalBufferSize - Size of all buffers signed/encrypted
// Decrypt - TRUE if we are unsealing
// SuppliedNonce - Nonce supplied by caller, used for datagram
// QualityOfProtection - returns GSS quality of protection flags
// ChecksumType - Type of checksum used in this signature
// EncryptionType - Type of encryption used in this signature
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS
KerbVerifySignatureToken(
IN PKERB_CONTEXT Context,
IN PSecBuffer SignatureBuffer,
IN ULONG TotalBufferSize,
IN BOOLEAN Decrypt,
IN ULONG SuppliedNonce,
OUT PKERB_GSS_SIGNATURE * OutputSignature,
OUT PULONG QualityOfProtection,
OUT PULONG ChecksumType,
OUT PCRYPTO_SYSTEM * CryptSystem,
OUT PULONG SequenceNumber
)
{
NTSTATUS Status = STATUS_SUCCESS;
ULONG SignatureSize = 0;
UCHAR Nonce[8];
PCRYPT_STATE_BUFFER CryptBuffer = NULL;
ULONG OutputSize;
ULONG EncryptionType = 0;
PCRYPTO_SYSTEM LocalCryptSystem = NULL ;
PKERB_GSS_SIGNATURE Signature;
PULONG ContextNonce;
gss_OID MechUsed;
//
// Since RPC doesn't carry around the size of the size of the
// signature bufer, we use it in the header. This break rfc1964 compat.
//
if (!Decrypt ||
((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) != 0) ||
((Context->ContextFlags & ISC_RET_DATAGRAM) != 0))
{
TotalBufferSize = 0;
}
//
// Verify the signature header
//
if ((Context->ContextAttributes & KERB_CONTEXT_USER_TO_USER) != 0)
{
MechUsed = gss_mech_krb5_u2u;
}
else
{
MechUsed = gss_mech_krb5_new;
}
Signature = (PKERB_GSS_SIGNATURE) SignatureBuffer->pvBuffer;
if (!g_verify_token_header(
MechUsed,
(INT *) &SignatureSize,
(PUCHAR *) &Signature,
(Decrypt ? KG_TOK_WRAP_MSG : KG_TOK_MIC_MSG),
SignatureBuffer->cbBuffer + TotalBufferSize))
{
//Status = SEC_E_MESSAGE_ALTERED; bug 28448
Status = SEC_E_INVALID_TOKEN;
}
//
// If that didn't work, try with the old mech. Need this is for DCE clients
// for whom we can't tell what mech they use.
//
if (!NT_SUCCESS(Status) && ((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) != 0))
{
Signature = (PKERB_GSS_SIGNATURE) SignatureBuffer->pvBuffer;
if (!g_verify_token_header(
gss_mech_krb5,
(INT *) &SignatureSize,
(PUCHAR *) &Signature,
(Decrypt ? KG_TOK_WRAP_MSG : KG_TOK_MIC_MSG),
SignatureBuffer->cbBuffer + TotalBufferSize))
{
//Status = SEC_E_MESSAGE_ALTERED; bug 28448
Status = SEC_E_INVALID_TOKEN;
}
else
{
Status = STATUS_SUCCESS;
}
}
//
// MS RPC clients don't send the size properly, so set the total size
// to zero and try again.
//
if (Decrypt && !NT_SUCCESS(Status))
{
TotalBufferSize = 0;
Signature = (PKERB_GSS_SIGNATURE) SignatureBuffer->pvBuffer;
if (!g_verify_token_header(
MechUsed,
(INT *) &SignatureSize,
(PUCHAR *) &Signature,
(Decrypt ? KG_TOK_WRAP_MSG : KG_TOK_MIC_MSG),
SignatureBuffer->cbBuffer + TotalBufferSize))
{
//Status = SEC_E_MESSAGE_ALTERED; bug 28448
Status = SEC_E_INVALID_TOKEN;
}
else
{
Status = STATUS_SUCCESS;
}
//
// If that didn't work, try with the old mech. Need this is for DCE clients
// for whom we can't tell what mech they use.
//
if (!NT_SUCCESS(Status) && ((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) != 0))
{
Signature = (PKERB_GSS_SIGNATURE) SignatureBuffer->pvBuffer;
if (!g_verify_token_header(
gss_mech_krb5,
(INT *) &SignatureSize,
(PUCHAR *) &Signature,
(Decrypt ? KG_TOK_WRAP_MSG : KG_TOK_MIC_MSG),
SignatureBuffer->cbBuffer + TotalBufferSize))
{
//Status = SEC_E_MESSAGE_ALTERED; bug 28448
Status = SEC_E_INVALID_TOKEN;
}
else
{
Status = STATUS_SUCCESS;
}
}
}
//
// Protection from bad Signature Size
//
if (SignatureSize == 0)
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
//
// Subtract the total buffer size from Signature size to get the real
// size of the signature.
//
SignatureSize -= TotalBufferSize;
//
// Make sure the signature is big enough. We can't enforce a strict
// size because RPC will transmit the maximum number of bytes instead
// of the actual number.
//
if ((Decrypt && (SignatureSize < sizeof(KERB_GSS_SEAL_SIGNATURE))) ||
(!Decrypt && (SignatureSize < sizeof(KERB_GSS_SIGNATURE))))
{
//Status = SEC_E_MESSAGE_ALTERED; bug 28448
Status = SEC_E_INVALID_TOKEN;
goto Cleanup;
}
//
// Verify the sequence number
//
if (Signature->SignatureAlgorithm[1] != KERB_GSS_SIG_SECOND)
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
//
// Figure out the algorithm
//
switch(Context->SessionKey.keytype) {
case KERB_ETYPE_DES_CBC_MD5:
case KERB_ETYPE_DES_CBC_CRC:
EncryptionType = KERB_ETYPE_DES_PLAIN;
break;
case KERB_ETYPE_RC4_HMAC_OLD_EXP:
EncryptionType = KERB_ETYPE_RC4_PLAIN_OLD_EXP;
break;
case KERB_ETYPE_RC4_HMAC_OLD:
EncryptionType = KERB_ETYPE_RC4_PLAIN_OLD;
break;
case KERB_ETYPE_RC4_HMAC_NT_EXP:
EncryptionType = KERB_ETYPE_RC4_PLAIN_EXP;
break;
case KERB_ETYPE_RC4_HMAC_NT:
EncryptionType = KERB_ETYPE_RC4_PLAIN;
break;
default:
DebugLog((DEB_ERROR,"Unknown key type: %d. %ws, %d\n",
Context->SessionKey.keytype,
THIS_FILE, __LINE__ ));
Status = STATUS_INTERNAL_ERROR;
goto Cleanup;
}
//
// if the key is exportable, make sure to use the exportable plain
// version.
//
switch(Signature->SignatureAlgorithm[0]) {
case KERB_GSS_SIG_MD25:
*QualityOfProtection = GSS_KRB5_INTEG_C_QOP_MD5;
*ChecksumType = KERB_CHECKSUM_MD25;
break;
case KERB_GSS_SIG_DES_MAC_MD5:
*QualityOfProtection = GSS_KRB5_INTEG_C_QOP_DES_MD5;
*ChecksumType = KERB_CHECKSUM_DES_MAC_MD5;
break;
case KERB_GSS_SIG_DES_MAC:
*QualityOfProtection = GSS_KRB5_INTEG_C_QOP_DES_MAC;
*ChecksumType = KERB_CHECKSUM_DES_MAC;
break;
case KERB_GSS_SIG_HMAC:
*QualityOfProtection = GSS_KRB5_INTEG_C_QOP_DEFAULT;
*ChecksumType = KERB_CHECKSUM_HMAC_MD5;
break;
default:
DebugLog((DEB_ERROR,"Invalid signature type to VerifySignature: %d. %ws, line %d\n",
Signature->SignatureAlgorithm[0], THIS_FILE, __LINE__ ));
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
if (Decrypt)
{
if ((Signature->SealAlgorithm[1] == KERB_GSS_NO_SEAL_SECOND) &&
(Signature->SealAlgorithm[0] == KERB_GSS_NO_SEAL))
{
*QualityOfProtection = KERB_WRAP_NO_ENCRYPT;
}
else
{
if (Signature->SealAlgorithm[1] != KERB_GSS_SIG_SECOND)
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
//
// Verify the seal algorithm
//
switch(EncryptionType) {
case KERB_ETYPE_DES_PLAIN:
if (Signature->SealAlgorithm[0] != KERB_GSS_SEAL_DES_CBC)
{
DebugLog((DEB_ERROR,"Trying to mix encryption types. %ws, line %d\n", THIS_FILE, __LINE__));
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
break;
case KERB_ETYPE_RC4_PLAIN_OLD_EXP:
case KERB_ETYPE_RC4_PLAIN_OLD:
if (Signature->SealAlgorithm[0] != KERB_GSS_SEAL_RC4_OLD)
{
DebugLog((DEB_ERROR,"Trying to mix encryption types. %ws, line %d\n", THIS_FILE, __LINE__));
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
break;
case KERB_ETYPE_RC4_PLAIN_EXP:
case KERB_ETYPE_RC4_PLAIN:
if (Signature->SealAlgorithm[0] != KERB_GSS_SEAL_RC4)
{
DebugLog((DEB_ERROR,"Trying to mix encryption types. %ws, line %d\n", THIS_FILE, __LINE__));
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
break;
default:
DebugLog((DEB_ERROR,"Invalid seal type to VerifySignature: %d, %d. %ws, line %d\n",
Signature->SealAlgorithm[0], EncryptionType, THIS_FILE, __LINE__ ));
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
}
}
//
// Check the filler
//
if ((Decrypt && (*(USHORT UNALIGNED *) Signature->SealFiller != 0xffff)) ||
(!Decrypt && (*(ULONG UNALIGNED *) Signature->SignFiller != 0xffffffff)))
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
//
// Verify the sequence number. To do this we need to decrypt it with
// the session key with the checksum as the IV.
//
Status = CDLocateCSystem(EncryptionType, &LocalCryptSystem);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d crypt system: 0x%x. %ws, line %d\n",EncryptionType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Now we need to Decrypt the sequence number, using the checksum as the
// IV
//
Status = LocalCryptSystem->Initialize(
Context->SessionKey.keyvalue.value,
Context->SessionKey.keyvalue.length,
0, // no flags
&CryptBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Set the initial vector
//
Status = LocalCryptSystem->Control(
CRYPT_CONTROL_SET_INIT_VECT,
CryptBuffer,
Signature->Checksum,
8
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Now encrypt the sequence number
//
OutputSize = 8;
Status = LocalCryptSystem->Decrypt(
CryptBuffer,
Signature->SequenceNumber,
8,
Signature->SequenceNumber,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// For datagram or integrity only, we use just the supplied nonce.
//
if (((Context->ContextFlags & ISC_RET_DATAGRAM) != 0) ||
((Context->ContextFlags & (ISC_RET_INTEGRITY | ISC_RET_SEQUENCE_DETECT | ISC_RET_REPLAY_DETECT)) == ISC_RET_INTEGRITY))
{
ContextNonce = &SuppliedNonce;
}
else
{
ContextNonce = &Context->ReceiveNonce;
}
if (!KERB_IS_DES_ENCRYPTION(Context->SessionKey.keytype))
{
Nonce[0] = (UCHAR) ((*ContextNonce & 0xff000000) >> 24);
Nonce[1] = (UCHAR) ((*ContextNonce & 0x00ff0000) >> 16);
Nonce[2] = (UCHAR) ((*ContextNonce & 0x0000ff00) >> 8);
Nonce[3] = (UCHAR) (*ContextNonce & 0x000000ff);
}
else
{
Nonce[3] = (UCHAR) ((*ContextNonce & 0xff000000) >> 24);
Nonce[2] = (UCHAR) ((*ContextNonce & 0x00ff0000) >> 16);
Nonce[1] = (UCHAR) ((*ContextNonce & 0x0000ff00) >> 8);
Nonce[0] = (UCHAR) (*ContextNonce & 0x000000ff);
}
*SequenceNumber = *(ULONG UNALIGNED *) Nonce;
D_DebugLog((DEB_TRACE_USER,"Verifying signature buffer (decrypt = %d) with nonce 0x%x, message seq 0x%x\n",
Decrypt,
*(ULONG UNALIGNED *) Nonce,
*(ULONG UNALIGNED *) Signature->SequenceNumber
));
if (!RtlEqualMemory(
Nonce,
Signature->SequenceNumber,
4))
{
Status = SEC_E_OUT_OF_SEQUENCE;
goto Cleanup;
}
(*ContextNonce)++;
//
// Inbound contexts send a high dword of 0xffffffff, outbound gets
// 0x00000000.
//
if (Context->ContextAttributes & KERB_CONTEXT_OUTBOUND)
{
if (*(ULONG UNALIGNED *)(&Signature->SequenceNumber[4]) != 0xffffffff)
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
}
else
{
DsysAssert((Context->ContextAttributes & KERB_CONTEXT_INBOUND) != 0);
if (*(ULONG UNALIGNED *)(&Signature->SequenceNumber[4]) != 0)
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
}
if (ARGUMENT_PRESENT(CryptSystem))
{
*CryptSystem = LocalCryptSystem;
}
*OutputSignature = Signature;
Cleanup:
if ( ( CryptBuffer != NULL ) &&
( LocalCryptSystem != NULL ) )
{
LocalCryptSystem->Discard(&CryptBuffer);
}
return(Status);
}
#define KERB_MAX_CHECKSUM_LENGTH 24
#define KERB_MAX_KEY_LENGTH 24
#define KERB_MAX_BLOCK_LENGTH 24
//+-------------------------------------------------------------------------
//
// Function: SpMakeSignature
//
// Synopsis: Signs a message buffer by calculatinga checksum over all
// the non-read only data buffers and encrypting the checksum
// along with a nonce.
//
// Effects:
//
// Arguments: ContextHandle - Handle of the context to use to sign the
// message.
// QualityOfProtection - Unused flags.
// MessageBuffers - Contains an array of buffers to sign and
// to store the signature.
// MessageSequenceNumber - Sequence number for this message,
// only used in datagram cases.
//
// Requires: STATUS_INVALID_HANDLE - the context could not be found or
// was not configured for message integrity.
// STATUS_INVALID_PARAMETER - the signature buffer could not
// be found.
// STATUS_BUFFER_TOO_SMALL - the signature buffer is too small
// to hold the signature
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpMakeSignature(
IN LSA_SEC_HANDLE ContextHandle,
IN ULONG QualityOfProtection,
IN PSecBufferDesc MessageBuffers,
IN ULONG MessageSequenceNumber
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
PCHECKSUM_FUNCTION Check;
PCRYPTO_SYSTEM CryptSystem = NULL ;
PSecBuffer SignatureBuffer = NULL;
ULONG Index;
PCHECKSUM_BUFFER CheckBuffer = NULL;
PCRYPT_STATE_BUFFER CryptBuffer = NULL;
PKERB_GSS_SIGNATURE Signature;
UCHAR LocalChecksum[KERB_MAX_CHECKSUM_LENGTH];
BOOLEAN ContextsLocked = FALSE;
ULONG ChecksumType = 0;
ULONG EncryptType;
ULONG TotalBufferSize = 0;
ULONG OutputSize;
ULONG SequenceNumber;
D_DebugLog((DEB_TRACE_API,"SpMakeSignature Called\n"));
D_DebugLog((DEB_TRACE_USER, "Make Signature handle = 0x%x\n",ContextHandle));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for MakeSignature(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Find the body and signature SecBuffers from pMessage
//
for (Index = 0; Index < MessageBuffers->cBuffers ; Index++ )
{
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_TOKEN)
{
SignatureBuffer = &MessageBuffers->pBuffers[Index];
}
else if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)))
{
TotalBufferSize += MessageBuffers->pBuffers[Index].cbBuffer;
}
}
if (SignatureBuffer == NULL)
{
DebugLog((DEB_ERROR, "No signature buffer found. %ws, line %d\n", THIS_FILE, __LINE__));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
KerbWriteLockContexts();
ContextsLocked = TRUE;
//
// Verify that the context was created with the integrity bit
//
if ((Context->ContextFlags & KERB_SIGN_FLAGS) == 0)
{
if (SignatureBuffer->cbBuffer < sizeof(KERB_NULL_SIGNATURE))
{
Status = SEC_E_BUFFER_TOO_SMALL;
goto Cleanup;
}
SignatureBuffer->cbBuffer = sizeof(KERB_NULL_SIGNATURE);
*(PKERB_NULL_SIGNATURE) SignatureBuffer->pvBuffer = 0;
Status = STATUS_SUCCESS;
goto Cleanup;
}
Status = KerbGetChecksumAndEncryptionType(
Context,
QualityOfProtection,
&ChecksumType,
&EncryptType
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
Status = KerbMakeSignatureToken(
Context,
QualityOfProtection,
SignatureBuffer,
TotalBufferSize,
FALSE, // don't encrypt
MessageSequenceNumber,
&Signature,
&SequenceNumber
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Locate the checksum for the context, loading it if necessary from the
// the crypto support DLL
//
Status = CDLocateCheckSum(ChecksumType, &Check);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d checksum: 0x%x. %ws, line %d\n",ChecksumType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
DsysAssert(Check->CheckSumSize <= sizeof(LocalChecksum));
Status = CDLocateCSystem(EncryptType, &CryptSystem);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d crypt system: 0x%x. %ws, line %d\n",EncryptType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Generate a check sum of the message, and store it into the signature
// buffer.
//
if (NULL != Check->InitializeEx2)
{
Status = Check->InitializeEx2(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
NULL,
KERB_SAFE_SALT,
&CheckBuffer
);
}
else
{
Status = Check->InitializeEx(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
KERB_SAFE_SALT,
&CheckBuffer
);
}
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
KerbUnlockContexts();
ContextsLocked = FALSE;
//
// Sum in 8 bytes of the signature
//
Check->Sum(
CheckBuffer,
8,
((PUCHAR) Signature) -2
);
for (Index = 0; Index < MessageBuffers->cBuffers; Index++ )
{
if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)) &&
(MessageBuffers->pBuffers[Index].cbBuffer != 0))
{
Check->Sum(
CheckBuffer,
MessageBuffers->pBuffers[Index].cbBuffer,
(PBYTE) MessageBuffers->pBuffers[Index].pvBuffer
);
}
}
(void) Check->Finalize(CheckBuffer, LocalChecksum);
Status = Check->Finish(&CheckBuffer);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Copy in the first 8 bytes of the checksum
//
RtlCopyMemory(
Signature->Checksum,
LocalChecksum,
8
);
//
// Now we need to encrypt the sequence number, using the checksum as the
// IV
//
Status = CryptSystem->Initialize(
Context->SessionKey.keyvalue.value,
Context->SessionKey.keyvalue.length,
0, // no options
&CryptBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Set the initial vector
//
Status = CryptSystem->Control(
CRYPT_CONTROL_SET_INIT_VECT,
CryptBuffer,
LocalChecksum,
8
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Now encrypt the sequence number
//
Status = CryptSystem->Encrypt(
CryptBuffer,
Signature->SequenceNumber,
8,
Signature->SequenceNumber,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
Cleanup:
if ( ( CryptBuffer != NULL) &&
( CryptSystem != NULL ) )
{
CryptSystem->Discard(&CryptBuffer);
}
if (ContextsLocked)
{
KerbUnlockContexts();
}
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API, "SpMakeSignature returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpVerifySignature
//
// Synopsis: Verifies a signed message buffer by calculating a checksum over all
// the non-read only data buffers and encrypting the checksum
// along with a nonce.
//
// Effects:
//
// Arguments: ContextHandle - Handle of the context to use to sign the
// message.
// MessageBuffers - Contains an array of signed buffers and
// a signature buffer.
// MessageSequenceNumber - Sequence number for this message,
// only used in datagram cases.
// QualityOfProtection - Unused flags.
//
// Requires: STATUS_INVALID_HANDLE - the context could not be found or
// was not configured for message integrity.
// STATUS_INVALID_PARAMETER - the signature buffer could not
// be found or was too small.
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpVerifySignature(
IN LSA_SEC_HANDLE ContextHandle,
IN PSecBufferDesc MessageBuffers,
IN ULONG MessageSequenceNumber,
OUT PULONG QualityOfProtection
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
PCHECKSUM_FUNCTION Check;
PSecBuffer SignatureBuffer = NULL;
ULONG Index;
PCHECKSUM_BUFFER CheckBuffer = NULL;
PKERB_GSS_SIGNATURE Signature;
ULONG ChecksumType;
BOOLEAN ContextsLocked = FALSE;
UCHAR LocalChecksum[KERB_MAX_CHECKSUM_LENGTH];
ULONG Protection;
ULONG TotalBufferSize = 0;
ULONG SequenceNumber;
D_DebugLog((DEB_TRACE_API,"SpVerifySignature Called\n"));
D_DebugLog((DEB_TRACE_USER, "Verify Signature handle = 0x%x\n",ContextHandle));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for VerifySignature(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Find the body and signature SecBuffers from pMessage
//
for (Index = 0; Index < MessageBuffers->cBuffers ; Index++ )
{
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_TOKEN)
{
SignatureBuffer = &MessageBuffers->pBuffers[Index];
}
else if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)))
{
TotalBufferSize += MessageBuffers->pBuffers[Index].cbBuffer;
}
}
if (SignatureBuffer == NULL)
{
DebugLog((DEB_ERROR, "No signature buffer found. %ws, line %d\n", THIS_FILE, __LINE__));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
KerbWriteLockContexts();
ContextsLocked = TRUE;
//
// Also, verify that the context was created with the integrity bit
//
if ((Context->ContextFlags & KERB_SIGN_FLAGS) == 0)
{
PKERB_NULL_SIGNATURE NullSignature = (PKERB_NULL_SIGNATURE) SignatureBuffer->pvBuffer;
if (SignatureBuffer->cbBuffer >= sizeof(KERB_NULL_SIGNATURE) &&
(*NullSignature == 0))
{
Status = STATUS_SUCCESS;
}
else
{
Status = SEC_E_MESSAGE_ALTERED;
}
goto Cleanup;
}
//
// Verify the signature header
//
Status = KerbVerifySignatureToken(
Context,
SignatureBuffer,
TotalBufferSize,
FALSE, // don't decrypt
MessageSequenceNumber,
&Signature,
&Protection,
&ChecksumType,
NULL, // don't need crypt system
&SequenceNumber
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Failed to verify signature token: 0x%x. %ws, line %d\n",Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Now compute the checksum and verify it
//
Status = CDLocateCheckSum(ChecksumType, &Check);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load MD5 checksum: 0x%x. %ws, line %d\n",Status, THIS_FILE, __LINE__));
goto Cleanup;
}
DsysAssert(Check->CheckSumSize <= sizeof(LocalChecksum));
//
// Generate a check sum of the message, and store it into the signature
// buffer.
//
//
// if available use the Ex2 version for keyed checksums where checksum
// must be passed in on verification
//
if (NULL != Check->InitializeEx2)
{
Status = Check->InitializeEx2(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
Signature->Checksum,
KERB_SAFE_SALT,
&CheckBuffer
);
}
else
{
Status = Check->InitializeEx(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
KERB_SAFE_SALT,
&CheckBuffer
);
}
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
KerbUnlockContexts();
ContextsLocked = FALSE;
//
// Sum in 8 bytes of the signature
//
Check->Sum(
CheckBuffer,
8,
((PUCHAR) Signature) -2
);
for (Index = 0; Index < MessageBuffers->cBuffers; Index++ )
{
if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)) &&
(MessageBuffers->pBuffers[Index].cbBuffer != 0))
{
Check->Sum(
CheckBuffer,
MessageBuffers->pBuffers[Index].cbBuffer,
(PBYTE) MessageBuffers->pBuffers[Index].pvBuffer
);
}
}
(void) Check->Finalize(CheckBuffer, LocalChecksum);
Status = Check->Finish(&CheckBuffer);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
if (!RtlEqualMemory(
LocalChecksum,
Signature->Checksum,
8))
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
if (ARGUMENT_PRESENT(QualityOfProtection))
{
*QualityOfProtection = Protection;
}
Cleanup:
if (ContextsLocked)
{
KerbUnlockContexts();
}
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API, "SpVerifySignature returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
#define STREAM_CIPHER_BLOCKLEN 1
//+-------------------------------------------------------------------------
//
// Function: SpSealMessage
//
// Synopsis: Seals a message buffer by calculating a checksum over all
// the non-read only data buffers and encrypting the data, checksum
// and a sequence number.
//
// Effects:
//
// Arguments: ContextHandle - Handle of the context to use to sign the
// message.
// QualityOfProtection - Unused flags.
// MessageBuffers - Contains an array of buffers to sign and
// to store the signature.
// MessageSequenceNumber - Sequence number for this message,
// only used in datagram cases.
//
// Requires: STATUS_INVALID_HANDLE - the context could not be found or
// was not configured for message integrity.
// STATUS_INVALID_PARAMETER - the signature buffer could not
// be found.
// STATUS_BUFFER_TOO_SMALL - the signature buffer is too small
// to hold the signature
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpSealMessage(
IN LSA_SEC_HANDLE ContextHandle,
IN ULONG QualityOfProtection,
IN PSecBufferDesc MessageBuffers,
IN ULONG MessageSequenceNumber
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
PCHECKSUM_FUNCTION Check = NULL ;
PCRYPTO_SYSTEM CryptSystem = NULL ;
PSecBuffer SignatureBuffer = NULL;
ULONG Index;
PCHECKSUM_BUFFER CheckBuffer = NULL;
PCRYPT_STATE_BUFFER CryptBuffer = NULL;
PKERB_GSS_SEAL_SIGNATURE SealSignature;
UCHAR LocalChecksum[KERB_MAX_CHECKSUM_LENGTH];
UCHAR LocalKey[KERB_MAX_KEY_LENGTH];
UCHAR LocalBlockBuffer[KERB_MAX_BLOCK_LENGTH];
ULONG BeginBlockSize = 0;
PBYTE BeginBlockPointer = NULL;
ULONG EndBlockSize = 0;
ULONG EncryptBufferSize;
PBYTE EncryptBuffer;
BOOLEAN ContextsLocked = FALSE;
BOOLEAN DoEncryption = TRUE;
ULONG BlockSize = 1;
ULONG ChecksumType = 0;
ULONG EncryptType;
ULONG TotalBufferSize = 0;
ULONG OutputSize;
ULONG ContextAttributes;
ULONG SequenceNumber;
D_DebugLog((DEB_TRACE_API,"SpSealMessage Called\n"));
D_DebugLog((DEB_TRACE_USER, "SealMessage handle = 0x%x\n",ContextHandle));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for SpSealMessage(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// get the encryption type for the context
//
Status = KerbGetChecksumAndEncryptionType(
Context,
QualityOfProtection,
&ChecksumType,
&EncryptType
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Locate the cryptsystem for the context, loading it if necessary from the
// the crypto support DLL
//
Status = CDLocateCSystem(EncryptType, &CryptSystem);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d crypt system: 0x%x. %ws, line %d\n",EncryptType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
BlockSize = CryptSystem->BlockSize;
//
// Find the body and signature SecBuffers from pMessage
//
KerbWriteLockContexts();
ContextsLocked = TRUE;
for (Index = 0; Index < MessageBuffers->cBuffers ; Index++ )
{
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_TOKEN)
{
SignatureBuffer = &MessageBuffers->pBuffers[Index];
}
else if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)))
{
//
// use real block size from crypt type
//
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_PADDING)
{
if (STREAM_CIPHER_BLOCKLEN != BlockSize)
{
TotalBufferSize = ROUND_UP_COUNT(TotalBufferSize+1,BlockSize);
}
else
{
//
// For stream encryption, only 1 byte of padding
//
TotalBufferSize += BlockSize;
}
}
else
{
TotalBufferSize += MessageBuffers->pBuffers[Index].cbBuffer;
}
}
}
if (SignatureBuffer == NULL)
{
DebugLog((DEB_ERROR, "No signature buffer found. %ws, line %d\n", THIS_FILE, __LINE__));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
ContextAttributes = Context->ContextAttributes;
//
// If we are not encrypting, just wrapping, remember that
//
if (QualityOfProtection == KERB_WRAP_NO_ENCRYPT)
{
DoEncryption = FALSE;
//
// Reset the block size because we are not really encrypting
//
}
//
// Verify that the context was created with the integrity bit
//
if (DoEncryption && ((Context->ContextFlags & ISC_RET_CONFIDENTIALITY) == 0))
{
DebugLog((DEB_ERROR,"Trying to seal without asking for confidentiality. %ws, line %d\n", THIS_FILE, __LINE__));
Status = SEC_E_UNSUPPORTED_FUNCTION;
goto Cleanup;
}
Status = KerbMakeSignatureToken(
Context,
QualityOfProtection,
SignatureBuffer,
TotalBufferSize,
TRUE, // do encrypt
MessageSequenceNumber,
(PKERB_GSS_SIGNATURE *) &SealSignature,
&SequenceNumber
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Locate the checksum for the context, loading it if necessary from the
// the crypto support DLL
//
Status = CDLocateCheckSum(ChecksumType, &Check);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d checksum: 0x%x. %ws, line %d\n",ChecksumType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
DsysAssert(Check->CheckSumSize <= sizeof(LocalChecksum));
//
// Generate a check sum of the message, and store it into the signature
// buffer.
//
Status = Check->InitializeEx(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
KERB_PRIV_SALT,
&CheckBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Now we need to encrypt the sequence number, using the checksum as the
// IV
//
//
// Create the encryption key by xoring with 0xf0f0f0f0
//
DsysAssert(Context->SessionKey.keyvalue.length <= sizeof(LocalKey));
if (Context->SessionKey.keyvalue.length > sizeof(LocalKey))
{
Status = SEC_E_UNSUPPORTED_FUNCTION;
goto Cleanup;
}
for (Index = 0; Index < Context->SessionKey.keyvalue.length ; Index++ )
{
LocalKey[Index] = Context->SessionKey.keyvalue.value[Index] ^ 0xf0;
}
Status = CryptSystem->Initialize(
LocalKey,
Context->SessionKey.keyvalue.length,
0, // no options
&CryptBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
KerbUnlockContexts();
ContextsLocked = FALSE;
//
// Sum in 8 bytes of the signature
//
Check->Sum(
CheckBuffer,
8,
((PUCHAR) SealSignature) -2
);
//
// Sum the confounder
//
Check->Sum(
CheckBuffer,
KERB_GSS_SIG_CONFOUNDER_SIZE,
SealSignature->Confounder
);
if ((EncryptType == KERB_ETYPE_RC4_PLAIN) ||
(EncryptType == KERB_ETYPE_RC4_PLAIN_EXP))
{
Status = CryptSystem->Control(
CRYPT_CONTROL_SET_INIT_VECT,
CryptBuffer,
(PUCHAR) &SequenceNumber,
sizeof(ULONG)
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
//
// Encrypt the 8 confounder bytes
//
if (DoEncryption)
{
Status = CryptSystem->Encrypt(
CryptBuffer,
SealSignature->Confounder,
KERB_GSS_SIG_CONFOUNDER_SIZE,
SealSignature->Confounder,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
for (Index = 0; Index < MessageBuffers->cBuffers; Index++ )
{
if ((BUFFERTYPE(MessageBuffers->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY)) &&
(MessageBuffers->pBuffers[Index].cbBuffer != 0))
{
//
// Take into account that the input buffers may not all be aligned
// properly
//
DsysAssert(BeginBlockSize < BlockSize);
if (BeginBlockSize != 0)
{
//
// We have a fragment we still need to encrypt
//
EncryptBuffer = (PBYTE) MessageBuffers->pBuffers[Index].pvBuffer +
(BlockSize - BeginBlockSize);
EncryptBufferSize = MessageBuffers->pBuffers[Index].cbBuffer -
(BlockSize - BeginBlockSize);
}
else
{
//
// There is no fragment to encrypt, so try to do the whole
// buffer
//
EncryptBuffer = (PBYTE) MessageBuffers->pBuffers[Index].pvBuffer;
EncryptBufferSize = MessageBuffers->pBuffers[Index].cbBuffer;
}
EndBlockSize = EncryptBufferSize - ROUND_DOWN_COUNT(EncryptBufferSize,BlockSize);
DsysAssert(EndBlockSize < BlockSize);
EncryptBufferSize = EncryptBufferSize - EndBlockSize;
//
// If this is padding, fill it in with the appropriate data &
// length
//
if (MessageBuffers->pBuffers[Index].BufferType == SECBUFFER_PADDING)
{
if (MessageBuffers->pBuffers[Index].cbBuffer < BlockSize)
{
DebugLog((DEB_ERROR, "Pad buffer is too small: %d instead of %d. %ws, %d\n",
MessageBuffers->pBuffers[Index].cbBuffer,
BlockSize,
THIS_FILE,
__LINE__
));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
memset(
MessageBuffers->pBuffers[Index].pvBuffer,
BlockSize - BeginBlockSize,
BlockSize - BeginBlockSize
);
MessageBuffers->pBuffers[Index].cbBuffer = BlockSize - BeginBlockSize;
//
// If there is a fragment, we will encrypt the padding with the fragment.
// Otherwise we will do just a padding buffer.
//
if (BeginBlockSize != 0)
{
EncryptBufferSize = 0;
}
//
// The padding fixes up the end block.
//
EndBlockSize = 0;
}
//
// Checksum the whole buffer. We do this now to get the right amount of
// padding.
//
Check->Sum(
CheckBuffer,
MessageBuffers->pBuffers[Index].cbBuffer,
(PBYTE) MessageBuffers->pBuffers[Index].pvBuffer
);
if (BeginBlockSize != 0)
{
RtlCopyMemory(
LocalBlockBuffer+BeginBlockSize,
MessageBuffers->pBuffers[Index].pvBuffer,
BlockSize - BeginBlockSize
);
if (DoEncryption)
{
//
// Now encrypt the buffer
//
Status = CryptSystem->Encrypt(
CryptBuffer,
LocalBlockBuffer,
BlockSize,
LocalBlockBuffer,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
//
// Copy the pieces back
//
RtlCopyMemory(
BeginBlockPointer,
LocalBlockBuffer,
BeginBlockSize
);
RtlCopyMemory(
MessageBuffers->pBuffers[Index].pvBuffer,
LocalBlockBuffer + BeginBlockSize,
BlockSize - BeginBlockSize
);
}
if (DoEncryption && (EncryptBufferSize != 0))
{
//
// Now encrypt the buffer
//
Status = CryptSystem->Encrypt(
CryptBuffer,
EncryptBuffer,
EncryptBufferSize,
EncryptBuffer,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
DsysAssert(OutputSize == EncryptBufferSize);
}
//
// Prepare for the next go-round
//
RtlCopyMemory(
LocalBlockBuffer,
EncryptBuffer+EncryptBufferSize,
EndBlockSize
);
BeginBlockSize = EndBlockSize;
BeginBlockPointer = (PBYTE) MessageBuffers->pBuffers[Index].pvBuffer +
MessageBuffers->pBuffers[Index].cbBuffer -
EndBlockSize;
}
}
//
// Make sure there are no left-over bits
//
if (BeginBlockSize != 0)
{
DebugLog((DEB_ERROR,"Non-aligned buffer size to SealMessage: %d extra bytes\n",
BeginBlockSize ));
Status = SEC_E_INVALID_TOKEN;
goto Cleanup;
}
(void) Check->Finalize(CheckBuffer, LocalChecksum);
Status = Check->Finish(&CheckBuffer);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
CheckBuffer = NULL;
//
// Copy in the first 8 bytes of the checksum
//
RtlCopyMemory(
SealSignature->Signature.Checksum,
LocalChecksum,
8
);
//
// Now we need to encrypt the sequence number, using the checksum as the
// IV
//
CryptSystem->Discard( &CryptBuffer );
Status = CryptSystem->Initialize(
Context->SessionKey.keyvalue.value,
Context->SessionKey.keyvalue.length,
0, // no options
&CryptBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Set the initial vector
//
Status = CryptSystem->Control(
CRYPT_CONTROL_SET_INIT_VECT,
CryptBuffer,
LocalChecksum,
8
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Now encrypt the sequence number
//
Status = CryptSystem->Encrypt(
CryptBuffer,
SealSignature->Signature.SequenceNumber,
8,
SealSignature->Signature.SequenceNumber,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
Cleanup:
if ( ( CryptBuffer != NULL ) &&
( CryptSystem != NULL ) )
{
CryptSystem->Discard(&CryptBuffer);
}
if ( ( CheckBuffer != NULL ) &&
( Check != NULL ) )
{
Check->Finish(&CheckBuffer);
}
if (ContextsLocked)
{
KerbUnlockContexts();
}
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API, "SpSealMessage returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: KerbGetSealMessageBodySize
//
// Synopsis: From a input encrypted message, figures out where the
// body starts
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns: 0 on failure, # of bytes of data on success
//
// Notes:
//
//
//--------------------------------------------------------------------------
ULONG
KerbGetSealMessageBodySize(
IN OUT PVOID * InputBuffer,
IN ULONG InputBufferSize
)
{
INT BufferSize = (INT) InputBufferSize;
PBYTE Buffer = (PBYTE) *InputBuffer;
INT DerBufferSize;
INT OidLength;
if ((BufferSize-=1) < 0)
return(0);
if (*(Buffer++) != 0x60)
return(0);
if ((DerBufferSize = der_read_length(&Buffer, &BufferSize)) < 0)
return(0);
if (DerBufferSize != BufferSize)
return(0);
if ((BufferSize-=1) < 0)
return(0);
if (*(Buffer++) != 0x06)
return(0);
if ((BufferSize-=1) < 0)
return(0);
OidLength = *(Buffer++);
if ((OidLength & 0x7fffffff) != OidLength) /* Overflow??? */
return(0);
if ((BufferSize-= (int) OidLength) < 0)
return(0);
Buffer+=OidLength;
if ((BufferSize-=2) < 0)
return(0);
Buffer += 2;
//
// take off size of header
//
if ((BufferSize -= sizeof(KERB_GSS_SEAL_SIGNATURE)) < 0)
{
return(0);
}
Buffer += sizeof(KERB_GSS_SEAL_SIGNATURE);
*InputBuffer = Buffer;
return((ULONG) BufferSize);
}
//+-------------------------------------------------------------------------
//
// Function: SpUnsealMessage
//
// Synopsis: Decrypts & Verifies an encrypted message according to
// RFC 1964 Unwrap() API description
//
// Effects:
//
// Arguments: ContextHandle - Handle of the context to use to sign the
// message.
// MessageBuffers - Contains an array of signed buffers and
// a signature buffer.
// MessageSequenceNumber - Sequence number for this message,
// only used in datagram cases.
// QualityOfProtection - Unused flags.
//
// Requires: STATUS_INVALID_HANDLE - the context could not be found or
// was not configured for message integrity.
// STATUS_INVALID_PARAMETER - the signature buffer could not
// be found or was too small.
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpUnsealMessage(
IN LSA_SEC_HANDLE ContextHandle,
IN PSecBufferDesc MessageBuffers,
IN ULONG MessageSequenceNumber,
OUT PULONG QualityOfProtection
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
PCHECKSUM_FUNCTION Check = NULL ;
PCRYPTO_SYSTEM CryptSystem = NULL ;
PSecBuffer SignatureBuffer = NULL;
PSecBuffer StreamBuffer = NULL;
SecBuffer LocalSignatureBuffer = {0};
SecBuffer LocalDataBuffer = {0};
SecBufferDesc LocalBufferDesc = {0};
PSecBufferDesc BufferList = NULL;
ULONG Index;
PCHECKSUM_BUFFER CheckBuffer = NULL;
PCRYPT_STATE_BUFFER CryptBuffer = NULL;
PKERB_GSS_SEAL_SIGNATURE SealSignature;
ULONG ChecksumType;
BOOLEAN ContextsLocked = FALSE;
UCHAR LocalChecksum[KERB_MAX_CHECKSUM_LENGTH];
UCHAR LocalKey[KERB_MAX_KEY_LENGTH];
UCHAR LocalBlockBuffer[KERB_MAX_BLOCK_LENGTH];
ULONG BeginBlockSize = 0;
PBYTE BeginBlockPointer = NULL;
ULONG EndBlockSize = 0;
ULONG EncryptBufferSize;
PBYTE EncryptBuffer;
BOOLEAN DoDecryption = TRUE;
ULONG BlockSize = 1;
ULONG Protection = 0;
ULONG TotalBufferSize = 0;
ULONG OutputSize;
ULONG ContextAttributes;
ULONG SequenceNumber;
D_DebugLog((DEB_TRACE_API,"SpUnsealSignature Called\n"));
D_DebugLog((DEB_TRACE_USER, "SealMessage handle = 0x%x\n",ContextHandle));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for SpUnsealMessage (0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Find the body and signature SecBuffers from pMessage
//
for (Index = 0; Index < MessageBuffers->cBuffers ; Index++ )
{
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_TOKEN)
{
SignatureBuffer = &MessageBuffers->pBuffers[Index];
}
else if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_STREAM)
{
StreamBuffer = &MessageBuffers->pBuffers[Index];
//
// The total buffer size is everything in the stream buffer
//
TotalBufferSize = MessageBuffers->pBuffers[Index].cbBuffer;
}
else if ((MessageBuffers->pBuffers[Index].BufferType & SECBUFFER_READONLY) == 0)
{
TotalBufferSize += MessageBuffers->pBuffers[Index].cbBuffer;
}
}
//
// Check for a stream buffer. If it is present, it contains the whole
// message
//
if (StreamBuffer != NULL)
{
if (SignatureBuffer != NULL)
{
DebugLog((DEB_ERROR,"Both stream and signature buffer present. %ws, line %d\n",THIS_FILE, __LINE__));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
//
// Parse the stream to distinguish the header from the body
//
LocalSignatureBuffer = *StreamBuffer;
LocalSignatureBuffer.BufferType = SECBUFFER_TOKEN;
LocalDataBuffer = *StreamBuffer;
LocalDataBuffer.BufferType = SECBUFFER_DATA;
LocalDataBuffer.cbBuffer = KerbGetSealMessageBodySize(
&LocalDataBuffer.pvBuffer,
LocalDataBuffer.cbBuffer
);
if (LocalDataBuffer.cbBuffer == 0)
{
DebugLog((DEB_ERROR,"Failed to find header on stream buffer. %ws %d\n",
THIS_FILE,__LINE__ ));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
LocalSignatureBuffer.cbBuffer = StreamBuffer->cbBuffer - LocalDataBuffer.cbBuffer;
SignatureBuffer = &LocalSignatureBuffer;
LocalBufferDesc.cBuffers = 1;
LocalBufferDesc.pBuffers = &LocalDataBuffer;
BufferList = &LocalBufferDesc;
//
// Adjust the total buffer size to remove the signature
//
TotalBufferSize -= LocalSignatureBuffer.cbBuffer;
}
else if (SignatureBuffer == NULL)
{
DebugLog((DEB_ERROR, "No signature buffer found. %ws, line %d\n", THIS_FILE, __LINE__));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
else
{
BufferList = MessageBuffers;
}
KerbWriteLockContexts();
ContextsLocked = TRUE;
ContextAttributes = Context->ContextAttributes;
//
// Verify the signature header
//
Status = KerbVerifySignatureToken(
Context,
SignatureBuffer,
TotalBufferSize,
TRUE, // do decrypt
MessageSequenceNumber,
(PKERB_GSS_SIGNATURE *) &SealSignature,
&Protection,
&ChecksumType,
&CryptSystem,
&SequenceNumber
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Failed to verify signature token: 0x%x. %ws, line %d\n",Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// If the protection level is no encryption, remember not to do the
// decryption
//
if (Protection == KERB_WRAP_NO_ENCRYPT)
{
DoDecryption = FALSE;
}
//
// Also, verify that the context was created with the Confidentiality bit
//
if ((DoDecryption && (Context->ContextFlags & ISC_RET_CONFIDENTIALITY) == 0))
{
DebugLog((DEB_ERROR,"Tried to decrypt using non-confidential context. %ws, line %d\n", THIS_FILE, __LINE__));
Status = SEC_E_UNSUPPORTED_FUNCTION;
goto Cleanup;
}
BlockSize = CryptSystem->BlockSize;
//
// Now compute the checksum and verify it
//
Status = CDLocateCheckSum(ChecksumType, &Check);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load MD5 checksum: 0x%x. %ws, line %d\n",Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Create the encryption key by xoring with 0xf0f0f0f0
//
DsysAssert(Context->SessionKey.keyvalue.length <= sizeof(LocalKey));
if (Context->SessionKey.keyvalue.length > sizeof(LocalKey))
{
Status = SEC_E_UNSUPPORTED_FUNCTION;
goto Cleanup;
}
//
// Generate a check sum of the message, and store it into the signature
// buffer.
//
if (NULL != Check->InitializeEx2)
{
Status = Check->InitializeEx2(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
SealSignature->Signature.Checksum,
KERB_PRIV_SALT,
&CheckBuffer
);
}
else
{
Status = Check->InitializeEx(
Context->SessionKey.keyvalue.value,
(ULONG) Context->SessionKey.keyvalue.length,
KERB_PRIV_SALT,
&CheckBuffer
);
}
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
for (Index = 0; Index < Context->SessionKey.keyvalue.length ; Index++ )
{
LocalKey[Index] = Context->SessionKey.keyvalue.value[Index] ^ 0xf0;
}
Status = CryptSystem->Initialize(
LocalKey,
Context->SessionKey.keyvalue.length,
0, // no options
&CryptBuffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
KerbUnlockContexts();
ContextsLocked = FALSE;
//
// Sum in 8 bytes of the signature
//
Check->Sum(
CheckBuffer,
8,
((PUCHAR) SealSignature) -2
);
//
// Decrypt the confounder
//
if ((CryptSystem->EncryptionType == KERB_ETYPE_RC4_PLAIN) ||
(CryptSystem->EncryptionType == KERB_ETYPE_RC4_PLAIN_EXP))
{
Status = CryptSystem->Control(
CRYPT_CONTROL_SET_INIT_VECT,
CryptBuffer,
(PUCHAR) &SequenceNumber,
sizeof(ULONG)
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
if (DoDecryption)
{
OutputSize = KERB_GSS_SIG_CONFOUNDER_SIZE;
Status = CryptSystem->Decrypt(
CryptBuffer,
SealSignature->Confounder,
KERB_GSS_SIG_CONFOUNDER_SIZE,
SealSignature->Confounder,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
//
// Sum the confounder
//
Check->Sum(
CheckBuffer,
KERB_GSS_SIG_CONFOUNDER_SIZE,
SealSignature->Confounder
);
for (Index = 0; Index < BufferList->cBuffers; Index++ )
{
if ((BUFFERTYPE(BufferList->pBuffers[Index]) != SECBUFFER_TOKEN) &&
(!(BufferList->pBuffers[Index].BufferType & SECBUFFER_READONLY)) &&
(BufferList->pBuffers[Index].cbBuffer != 0))
{
//
// Take into account that the input buffers may not all be aligned
// properly
//
//
// If there is a fragment to decrypt, convert it to a block
// size fragment
//
if (BeginBlockSize != 0)
{
EncryptBuffer = (PBYTE) BufferList->pBuffers[Index].pvBuffer +
(BlockSize - BeginBlockSize);
EncryptBufferSize = BufferList->pBuffers[Index].cbBuffer -
(BlockSize - BeginBlockSize);
}
else
{
EncryptBuffer = (PBYTE) BufferList->pBuffers[Index].pvBuffer;
EncryptBufferSize = BufferList->pBuffers[Index].cbBuffer;
}
EndBlockSize = EncryptBufferSize - ROUND_DOWN_COUNT(EncryptBufferSize,BlockSize);
DsysAssert(EndBlockSize < BlockSize);
EncryptBufferSize = EncryptBufferSize - EndBlockSize;
if (BeginBlockSize != 0)
{
RtlCopyMemory(
LocalBlockBuffer+BeginBlockSize,
BufferList->pBuffers[Index].pvBuffer,
BlockSize - BeginBlockSize
);
//
// Now decrpt the buffer
//
if (DoDecryption)
{
Status = CryptSystem->Decrypt(
CryptBuffer,
LocalBlockBuffer,
BlockSize,
LocalBlockBuffer,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
//
// Then checksum the buffer
//
Check->Sum(
CheckBuffer,
BlockSize,
LocalBlockBuffer
);
//
// Copy the pieces back
//
RtlCopyMemory(
BeginBlockPointer,
LocalBlockBuffer,
BeginBlockSize
);
RtlCopyMemory(
BufferList->pBuffers[Index].pvBuffer,
LocalBlockBuffer + BeginBlockSize,
BlockSize - BeginBlockSize
);
}
//
// Decrypt the buffer first
//
if (DoDecryption)
{
OutputSize = BufferList->pBuffers[Index].cbBuffer;
Status = CryptSystem->Decrypt(
CryptBuffer,
EncryptBuffer,
EncryptBufferSize,
EncryptBuffer,
&OutputSize
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
DsysAssert(OutputSize == BufferList->pBuffers[Index].cbBuffer);
}
//
// Prepare for the next go-round
//
RtlCopyMemory(
LocalBlockBuffer,
EncryptBuffer+EncryptBufferSize,
EndBlockSize
);
BeginBlockSize = EndBlockSize;
BeginBlockPointer = (PBYTE) MessageBuffers->pBuffers[Index].pvBuffer +
MessageBuffers->pBuffers[Index].cbBuffer -
EndBlockSize;
//
// Then checksum the buffer
//
Check->Sum(
CheckBuffer,
EncryptBufferSize,
EncryptBuffer
);
}
}
(void) Check->Finalize(CheckBuffer, LocalChecksum);
Status = Check->Finish(&CheckBuffer);
CheckBuffer = NULL;
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Make sure there are no left-over bits
//
if (BeginBlockSize != 0)
{
DebugLog((DEB_ERROR,"Non-aligned buffer size to SealMessage: %d extra bytes\n",
BeginBlockSize ));
Status = SEC_E_INVALID_TOKEN;
goto Cleanup;
}
if (!RtlEqualMemory(
LocalChecksum,
SealSignature->Signature.Checksum,
8))
{
Status = SEC_E_MESSAGE_ALTERED;
goto Cleanup;
}
if (ARGUMENT_PRESENT(QualityOfProtection))
{
*QualityOfProtection = Protection;
}
//
// If this was a stream input, return the data in the data buffer
//
if (StreamBuffer != NULL)
{
BYTE PaddingBytes;
//
// Pull the padding off the data buffer
//
if (LocalDataBuffer.cbBuffer < 1)
{
DebugLog((DEB_ERROR,"Data buffer is zero length!\n"));
Status = STATUS_INVALID_PARAMETER;
goto Cleanup;
}
PaddingBytes = *(((PBYTE)LocalDataBuffer.pvBuffer) + LocalDataBuffer.cbBuffer - 1 );
//
// Verify the padding:
//
if ((BlockSize >= PaddingBytes) &&
(LocalDataBuffer.cbBuffer >= PaddingBytes))
{
LocalDataBuffer.cbBuffer -= PaddingBytes;
for (Index = 0; Index < MessageBuffers->cBuffers; Index++ )
{
if (BUFFERTYPE(MessageBuffers->pBuffers[Index]) == SECBUFFER_DATA)
{
MessageBuffers->pBuffers[Index] = LocalDataBuffer;
break;
}
}
}
else
{
DebugLog((DEB_ERROR,"Bad padding: %d bytes\n", PaddingBytes));
Status = STATUS_INVALID_PARAMETER;
}
}
Cleanup:
if (ContextsLocked)
{
KerbUnlockContexts();
}
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
if ( ( CheckBuffer != NULL ) &&
( Check != NULL ) )
{
Check->Finish(&CheckBuffer);
}
if ( ( CryptBuffer != NULL ) &&
( CryptSystem != NULL ) )
{
CryptSystem->Discard(&CryptBuffer);
}
D_DebugLog((DEB_TRACE_API, "SpUnsealMessage returned 0x%x\n", KerbMapKerbNtStatusToNtStatus(Status)));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
#ifndef WIN32_CHICAGO
//+-------------------------------------------------------------------------
//
// Function: SpGetContextToken
//
// Synopsis: returns a pointer to the token for a server-side context
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpGetContextToken(
IN LSA_SEC_HANDLE ContextHandle,
OUT PHANDLE ImpersonationToken
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
LARGE_INTEGER CurrentTime;
LARGE_INTEGER ContextExpires;
D_DebugLog((DEB_TRACE_API,"SpGetContextToken called pid:0x%x, ctxt:0x%x\n", GetCurrentProcessId(), ContextHandle));
if (ImpersonationToken == NULL)
{
Status = STATUS_INVALID_PARAMETER;
DebugLog((DEB_ERROR, "Null token handle supplied for GetContextToken. %ws, line %d\n", THIS_FILE, __LINE__));
goto Cleanup;
}
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for GetContextToken(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
}
GetSystemTimeAsFileTime((PFILETIME) &CurrentTime);
KerbReadLockContexts();
*ImpersonationToken = Context->TokenHandle;
ContextExpires = Context->Lifetime;
KerbUnlockContexts();
if (KerbGlobalEnforceTime && ContextExpires.QuadPart < CurrentTime.QuadPart)
{
DebugLog((DEB_ERROR, "GetContextToken: Context 0x%x expired. %ws, line %d\n", ContextHandle, THIS_FILE, __LINE__));
Status = SEC_E_CONTEXT_EXPIRED;
*ImpersonationToken = NULL;
}
else if (*ImpersonationToken == NULL)
{
Status = SEC_E_NO_IMPERSONATION;
}
if (Context != NULL)
{
//
// Note: once we dereference the context the handle we return
// may go away or be re-used. That is the price we have to pay
// to avoid duplicating it.
//
KerbDereferenceContext(Context);
}
Cleanup:
D_DebugLog((DEB_TRACE_API,"SpGetContextToken returned 0x%x, pid:0x%x, ctxt:0x%x\n", KerbMapKerbNtStatusToNtStatus(Status), GetCurrentProcessId(), ContextHandle));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
#endif // WIN32_CHICAGO
//+-------------------------------------------------------------------------
//
// Function: SpQueryContextAttributes
//
// Synopsis: Querys attributes of the specified context
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpQueryContextAttributes(
IN LSA_SEC_HANDLE ContextHandle,
IN ULONG ContextAttribute,
IN OUT PVOID Buffer
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
PSecPkgContext_Sizes SizeInfo;
PSecPkgContext_Names NameInfo;
PSecPkgContext_DceInfo DceInfo;
PSecPkgContext_Lifespan LifespanInfo;
PSecPkgContext_Flags FlagsInfo;
PSecPkgContext_PackageInfo PackageInfo;
PSecPkgContext_NegotiationInfo NegInfo ;
PSecPkgContext_SessionKey SessionKeyInfo;
PSecPkgContext_KeyInfo KeyInfo;
PSecPkgContext_AccessToken AccessToken;
ULONG PackageInfoSize = 0;
UNICODE_STRING FullName;
ULONG ChecksumType;
ULONG EncryptType;
PCRYPTO_SYSTEM CryptSystem = NULL ;
TimeStamp CurrentTime;
D_DebugLog((DEB_TRACE_API,"SpQueryContextAttributes called pid:0x%x, ctxt:0x%x, Attr:0x%x\n", GetCurrentProcessId(), ContextHandle, ContextAttribute));
Status = KerbReferenceContextByLsaHandle(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for QueryContextAttributes(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// Return the appropriate information
//
switch(ContextAttribute)
{
case SECPKG_ATTR_SIZES:
gss_OID_desc * MechId;
UINT MessageSize;
if ((Context->ContextAttributes & KERB_CONTEXT_USER_TO_USER) != 0)
{
MechId = gss_mech_krb5_u2u;
}
else
{
MechId = gss_mech_krb5_new;
}
//
// The sizes returned are used by RPC to determine whether to call
// MakeSignature or SealMessage. The signature size should be zero
// if neither is to be called, and the block size and trailer size
// should be zero if SignMessage is not to be called.
//
SizeInfo = (PSecPkgContext_Sizes) Buffer;
SizeInfo->cbMaxToken = KerbGlobalMaxTokenSize;
// If we need to be Gss Compatible, then the Signature buffer size is
// dependent on the message size. So, we'll set it to be largest pad
// for the largest message size, say 1G. But, don't tax dce style
// callers with extra bytes.
if (((Context->ContextFlags & ISC_RET_DATAGRAM) != 0) ||
((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) != 0))
{
MessageSize = 0;
}
else
{
MessageSize = KERB_MAX_MESSAGE_SIZE;
}
if ((Context->ContextFlags & (KERB_SIGN_FLAGS | ISC_RET_CONFIDENTIALITY)) != 0)
{
SizeInfo->cbMaxSignature = g_token_size(MechId, sizeof(KERB_GSS_SIGNATURE));
}
else
{
SizeInfo->cbMaxSignature = sizeof(KERB_NULL_SIGNATURE);
}
//
// get the encryption type for the context
//
Status = KerbGetChecksumAndEncryptionType(
Context,
KERB_WRAP_NO_ENCRYPT, // checksum not needed so use hardcoded QOP
&ChecksumType, // checksum not needed here
&EncryptType
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
//
// Locate the cryptsystem for the context, loading it if necessary from the
// the crypto support DLL
//
Status = CDLocateCSystem(EncryptType, &CryptSystem);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR,"Failed to load %d crypt system: 0x%x. %ws, line %d\n",EncryptType,Status, THIS_FILE, __LINE__));
goto Cleanup;
}
//
// RPC keys off the trailer size to tell whether or not
// to encrypt, not the flags from isc/asc. So, for dce style,
// say the blocksize & trailersize are zero.
//
if (((Context->ContextFlags & ISC_RET_CONFIDENTIALITY) != 0) ||
((Context->ContextFlags & ISC_RET_USED_DCE_STYLE) == 0))
{
//
// Use block size from crypto system
//
SizeInfo->cbBlockSize = CryptSystem->BlockSize;
SizeInfo->cbSecurityTrailer =
g_token_size(MechId, sizeof(KERB_GSS_SEAL_SIGNATURE) + MessageSize) - MessageSize;
}
else
{
SizeInfo->cbBlockSize = 0;
SizeInfo->cbSecurityTrailer = 0;
}
break;
case SECPKG_ATTR_SESSION_KEY:
SessionKeyInfo = (PSecPkgContext_SessionKey) Buffer;
SessionKeyInfo->SessionKeyLength = Context->SessionKey.keyvalue.length;
if (SessionKeyInfo->SessionKeyLength != 0)
{
SessionKeyInfo->SessionKey = (PUCHAR)
UserFunctions->AllocateHeap(
SessionKeyInfo->SessionKeyLength);
if (SessionKeyInfo->SessionKey!=NULL)
{
RtlCopyMemory(
SessionKeyInfo->SessionKey,
Context->SessionKey.keyvalue.value,
Context->SessionKey.keyvalue.length
);
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
}
else
{
SessionKeyInfo->SessionKey = (PUCHAR) UserFunctions->AllocateHeap(1);
if (SessionKeyInfo->SessionKey!=NULL)
{
*(PUCHAR) SessionKeyInfo->SessionKey = 0;
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
}
break;
case SECPKG_ATTR_NAMES:
NameInfo = (PSecPkgContext_Names) Buffer;
if (!KERB_SUCCESS(KerbBuildFullServiceName(
&Context->ClientRealm,
&Context->ClientName,
&FullName
)))
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
#ifndef WIN32_CHICAGO
NameInfo->sUserName = (LPWSTR) UserFunctions->AllocateHeap(FullName.Length + sizeof(WCHAR));
if (NameInfo->sUserName != NULL)
{
RtlCopyMemory(
NameInfo->sUserName,
FullName.Buffer,
FullName.Length
);
NameInfo->sUserName[FullName.Length/sizeof(WCHAR)] = L'\0';
}
#else // WIN32_CHICAGO
ANSI_STRING AnsiString;
RtlUnicodeStringToAnsiString( &AnsiString,
&FullName,
TRUE);
NameInfo->sUserName = (LPTSTR) UserFunctions->AllocateHeap(AnsiString.Length + sizeof(CHAR));
if (NameInfo->sUserName != NULL)
{
RtlCopyMemory(
NameInfo->sUserName,
AnsiString.Buffer,
AnsiString.Length
);
NameInfo->sUserName[AnsiString.Length] = '\0';
RtlFreeAnsiString(&AnsiString);
}
#endif // WIN32_CHICAGO
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
KerbFreeString(&FullName);
break;
case SECPKG_ATTR_DCE_INFO:
DceInfo = (PSecPkgContext_DceInfo) Buffer;
if (!KERB_SUCCESS(KerbBuildFullServiceName(
&Context->ClientRealm,
&Context->ClientName,
&FullName
)))
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
DceInfo->AuthzSvc = RPC_C_AUTHZ_NAME;
#ifndef WIN32_CHICAGO
DceInfo->pPac = UserFunctions->AllocateHeap(FullName.Length + sizeof(WCHAR));
if (DceInfo->pPac != NULL)
{
RtlCopyMemory(
DceInfo->pPac,
FullName.Buffer,
FullName.Length
);
((LPWSTR)DceInfo->pPac)[FullName.Length/sizeof(WCHAR)] = L'\0';
}
#else // WIN32_CHICAGO
RtlUnicodeStringToAnsiString( &AnsiString,
&FullName,
TRUE);
DceInfo->pPac = UserFunctions->AllocateHeap(AnsiString.Length + sizeof(CHAR));
if (DceInfo->pPac != NULL)
{
RtlCopyMemory(
DceInfo->pPac,
AnsiString.Buffer,
AnsiString.Length
);
((LPTSTR) DceInfo->pPac)[AnsiString.Length] = '\0';
RtlFreeAnsiString(&AnsiString);
}
#endif // WIN32_CHICAGO
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
KerbFreeString(&FullName);
break;
case SECPKG_ATTR_LIFESPAN:
LifespanInfo = (PSecPkgContext_Lifespan) Buffer;
if (KerbGetTime(Context->StartTime) != KerbGetTime(KerbGlobalHasNeverTime))
{
KerbUtcTimeToLocalTime(
&LifespanInfo->tsStart,
&(Context->StartTime)
);
D_DebugLog((DEB_TRACE, "Used context start time \n"));
}
else if (NULL != Context->TicketCacheEntry)
{
KerbUtcTimeToLocalTime(
&LifespanInfo->tsStart,
&(Context->TicketCacheEntry->StartTime)
);
KerbWriteLockContexts();
Context->StartTime = Context->TicketCacheEntry->StartTime;
KerbUnlockContexts();
DebugLog((DEB_ERROR, "Used tkt cache entry start time \n"));
}
else // set it to current time
{
// The context is not in a state where we've got a
// tkt cache entry, so let's use current time.
GetSystemTimeAsFileTime((PFILETIME)
&CurrentTime
);
KerbUtcTimeToLocalTime(
&LifespanInfo->tsStart,
&CurrentTime
);
DebugLog((DEB_ERROR, "NO START TIME PRESENT IN CONTEXT, or CACHE ENTRY!\n"));
}
KerbUtcTimeToLocalTime(
&LifespanInfo->tsExpiry,
&Context->Lifetime
);
break;
case SECPKG_ATTR_FLAGS:
FlagsInfo = (PSecPkgContext_Flags) Buffer;
if ((Context->ContextAttributes & KERB_CONTEXT_INBOUND) != 0)
{
FlagsInfo->Flags = KerbMapContextFlags( Context->ContextFlags );
}
else
{
FlagsInfo->Flags = Context->ContextFlags;
}
break;
#ifndef WIN32_CHICAGO
case SECPKG_ATTR_KEY_INFO:
PCRYPTO_SYSTEM CryptoSystem;
KeyInfo = (PSecPkgContext_KeyInfo) Buffer;
KeyInfo->KeySize = KerbIsKeyExportable(&Context->SessionKey) ? 56 : 128;
KeyInfo->EncryptAlgorithm = Context->SessionKey.keytype;
KeyInfo->SignatureAlgorithm = KERB_IS_DES_ENCRYPTION(Context->SessionKey.keytype) ? KERB_CHECKSUM_MD25 : KERB_CHECKSUM_HMAC_MD5;
KeyInfo->sSignatureAlgorithmName = NULL;
KeyInfo->sEncryptAlgorithmName = NULL;
//
// The checksum doesn't include a name, so don't fill it in - leave
// it as an empty string, so callers don't die when they
// try to manipulate it.
//
Status = CDLocateCSystem(KeyInfo->EncryptAlgorithm, &CryptoSystem);
if (NT_SUCCESS(Status))
{
KeyInfo->sEncryptAlgorithmName = (LPWSTR)
UserFunctions->AllocateHeap(sizeof(WCHAR) * (wcslen(CryptoSystem->Name) + 1));
if (KeyInfo->sEncryptAlgorithmName != NULL)
{
wcscpy(
KeyInfo->sEncryptAlgorithmName,
CryptoSystem->Name
);
KeyInfo->sSignatureAlgorithmName = (LPWSTR)
UserFunctions->AllocateHeap(sizeof(WCHAR));
if (KeyInfo->sSignatureAlgorithmName != NULL)
{
*KeyInfo->sSignatureAlgorithmName = L'\0';
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
UserFunctions->FreeHeap(KeyInfo->sEncryptAlgorithmName);
KeyInfo->sEncryptAlgorithmName = NULL;
}
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
}
}
break;
#endif // WIN32_CHICAGO
case SECPKG_ATTR_PACKAGE_INFO:
case SECPKG_ATTR_NEGOTIATION_INFO:
//
// Return the information about this package. This is useful for
// callers who used SPNEGO and don't know what package they got.
//
PackageInfo = (PSecPkgContext_PackageInfo) Buffer;
PackageInfoSize = sizeof(SecPkgInfo) + sizeof(KERBEROS_PACKAGE_NAME) + sizeof(KERBEROS_PACKAGE_COMMENT);
PackageInfo->PackageInfo = (PSecPkgInfo) UserFunctions->AllocateHeap(PackageInfoSize);
if (PackageInfo->PackageInfo == NULL)
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
PackageInfo->PackageInfo->Name = (LPTSTR) (PackageInfo->PackageInfo + 1);
PackageInfo->PackageInfo->Comment = (LPTSTR) (((PBYTE) PackageInfo->PackageInfo->Name) + sizeof(KERBEROS_PACKAGE_NAME));
lstrcpy(
PackageInfo->PackageInfo->Name,
KERBEROS_PACKAGE_NAME
);
lstrcpy(
PackageInfo->PackageInfo->Comment,
KERBEROS_PACKAGE_COMMENT
);
PackageInfo->PackageInfo->wVersion = SECURITY_SUPPORT_PROVIDER_INTERFACE_VERSION;
PackageInfo->PackageInfo->wRPCID = RPC_C_AUTHN_GSS_KERBEROS;
PackageInfo->PackageInfo->fCapabilities = KERBEROS_CAPABILITIES;
PackageInfo->PackageInfo->cbMaxToken = KerbGlobalMaxTokenSize;
if ( ContextAttribute == SECPKG_ATTR_NEGOTIATION_INFO )
{
NegInfo = (PSecPkgContext_NegotiationInfo) PackageInfo ;
NegInfo->NegotiationState = SECPKG_NEGOTIATION_COMPLETE ;
}
break;
case SECPKG_ATTR_ACCESS_TOKEN:
{
AccessToken = (PSecPkgContext_AccessToken) Buffer;
//
// ClientTokenHandle can be NULL, for instance:
// 1. client side context.
// 2. incomplete server context.
//
AccessToken->AccessToken = (void*)Context->TokenHandle;
break;
}
default:
Status = STATUS_NOT_SUPPORTED;
break;
}
Cleanup:
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
D_DebugLog((DEB_TRACE_API,"SpQueryContextAttributes returned 0x%x, pid:0x%x, ctxt:0x%x, Attr:0x%x\n", KerbMapKerbNtStatusToNtStatus(Status), GetCurrentProcessId(), ContextHandle, ContextAttribute));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpQueryLsaModeContextAttributes
//
// Synopsis: Querys attributes of the specified context
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpQueryLsaModeContextAttributes(
IN LSA_SEC_HANDLE ContextHandle,
IN ULONG ContextAttribute,
IN OUT PVOID Buffer
)
{
NTSTATUS Status = STATUS_SUCCESS;
PKERB_CONTEXT Context = NULL;
SecPkgContext_NativeNames NameInfo = {0};
BOOLEAN ContextsLocked = FALSE;
UNICODE_STRING ServerName = {0};
UNICODE_STRING ClientName = {0};
BOOLEAN IsClientContext = FALSE;
D_DebugLog((DEB_TRACE_API,"SpQueryLsaModeContextAttributes called ctxt:0x%x, Attr:0x%x\n", ContextHandle, ContextAttribute));
Status = KerbReferenceContext(
ContextHandle,
FALSE, // don't unlink
&Context
);
if (!NT_SUCCESS(Status))
{
DebugLog((DEB_ERROR, "Invalid handle supplied for QueryContextAttributes(0x%x) Status = 0x%x. %ws, line %d\n",
ContextHandle, Status, THIS_FILE, __LINE__));
goto Cleanup;
}
KerbReadLockContexts();
ContextsLocked = TRUE;
//
// Return the appropriate information
//
switch(ContextAttribute)
{
case SECPKG_ATTR_NATIVE_NAMES:
//
// Get outbound names from the ticket
//
if (Context->ContextAttributes & KERB_CONTEXT_OUTBOUND)
{
IsClientContext = TRUE;
if (Context->TicketCacheEntry != NULL)
{
KERBERR KerbErr = KDC_ERR_NONE;
KerbReadLockTicketCache();
KerbErr = KerbConvertKdcNameToString(
&ServerName,
Context->TicketCacheEntry->ServiceName,
&Context->TicketCacheEntry->DomainName
);
if (KERB_SUCCESS(KerbErr))
{
KerbErr = KerbConvertKdcNameToString(
&ClientName,
Context->TicketCacheEntry->ClientName,
&Context->TicketCacheEntry->ClientDomainName
);
}
KerbUnlockTicketCache();
if (!KERB_SUCCESS(KerbErr))
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
}
else
{
//
// We couldn't find the names, so return an error
//
Status = STATUS_OBJECT_NAME_NOT_FOUND;
goto Cleanup;
}
}
else
{
//
// We have a server context
//
ClientName = Context->ClientPrincipalName;
ServerName = Context->ServerPrincipalName;
}
#ifndef WIN32_CHICAGO
if (ServerName.Length != 0)
{
Status = LsaFunctions->AllocateClientBuffer(
NULL,
ServerName.Length + sizeof(WCHAR),
(PVOID *) &NameInfo.sServerName
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
Status = LsaFunctions->CopyToClientBuffer(
NULL,
ServerName.Length + sizeof(WCHAR),
NameInfo.sServerName,
ServerName.Buffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
if (ClientName.Length != 0)
{
Status = LsaFunctions->AllocateClientBuffer(
NULL,
ClientName.Length + sizeof(WCHAR),
(PVOID *) &NameInfo.sClientName
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
Status = LsaFunctions->CopyToClientBuffer(
NULL,
ClientName.Length + sizeof(WCHAR),
NameInfo.sClientName,
ClientName.Buffer
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
}
//
// Copy the whole structure
//
Status = LsaFunctions->CopyToClientBuffer(
NULL,
sizeof(SecPkgContext_NativeNames),
Buffer,
&NameInfo
);
if (!NT_SUCCESS(Status))
{
goto Cleanup;
}
#else // WIN32_CHICAGO
{
ANSI_STRING AnsiString = {0};
if (ServerName.Length != 0)
{
RtlUnicodeStringToAnsiString(
&AnsiString,
&ServerName,
TRUE);
if (AnsiString.Length > 0)
{
NameInfo.sServerName = (LPSTR) LsaFunctions->AllocateLsaHeap(
AnsiString.Length + sizeof(CHAR)
);
if (NameInfo.sServerName == NULL)
{
RtlFreeAnsiString(&AnsiString);
goto Cleanup;
}
RtlCopyMemory(
NameInfo.sServerName,
AnsiString.Buffer,
AnsiString.Length
);
NameInfo.sServerName[AnsiString.Length+1] = '\0';
RtlFreeAnsiString(&AnsiString);
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
}
if (ClientName.Length != 0)
{
RtlUnicodeStringToAnsiString(
&AnsiString,
&ClientName,
TRUE);
if (AnsiString.Length > 0)
{
NameInfo.sClientName = (LPSTR) LsaFunctions->AllocateLsaHeap(
AnsiString.Length + sizeof(CHAR)
);
if (NameInfo.sClientName == NULL)
{
RtlFreeAnsiString(&AnsiString);
goto Cleanup;
}
RtlCopyMemory(
NameInfo.sClientName,
AnsiString.Buffer,
AnsiString.Length
);
NameInfo.sClientName[AnsiString.Length+1] = '\0';
RtlFreeAnsiString(&AnsiString);
}
else
{
Status = STATUS_INSUFFICIENT_RESOURCES;
goto Cleanup;
}
}
RtlCopyMemory(
Buffer,
&NameInfo,
sizeof(SecPkgContext_NativeNames)
);
}
#endif // WIN32_CHICAGO
break;
default:
Status = STATUS_NOT_SUPPORTED;
break;
}
Cleanup:
if (ContextsLocked)
{
KerbUnlockContexts();
}
if (Context != NULL)
{
KerbDereferenceContext(Context);
}
if (IsClientContext)
{
KerbFreeString(
&ClientName
);
KerbFreeString(
&ServerName
);
}
if (!NT_SUCCESS(Status))
{
#ifndef WIN32_CHICAGO
if (NameInfo.sServerName != NULL)
{
LsaFunctions->FreeClientBuffer(
NULL,
NameInfo.sServerName
);
}
if (NameInfo.sClientName != NULL)
{
LsaFunctions->FreeClientBuffer(
NULL,
NameInfo.sClientName
);
}
#else // WIN32_CHICAGO
if (NameInfo.sServerName != NULL)
{
LsaFunctions->FreeLsaHeap(
NameInfo.sServerName
);
}
if (NameInfo.sClientName != NULL)
{
LsaFunctions->FreeLsaHeap(
NameInfo.sClientName
);
}
#endif
}
D_DebugLog((DEB_TRACE_API,"SpQueryLsaModeContextAttributes returned 0x%x, pid:0x%x, ctxt:0x%x, Attr:0x%x\n", KerbMapKerbNtStatusToNtStatus(Status), GetCurrentProcessId(), ContextHandle, ContextAttribute));
return(KerbMapKerbNtStatusToNtStatus(Status));
}
//+-------------------------------------------------------------------------
//
// Function: SpCompleteAuthToken
//
// Synopsis: Completes a context (in Kerberos case, does nothing)
//
// Effects:
//
// Arguments:
//
// Requires:
//
// Returns:
//
// Notes:
//
//
//--------------------------------------------------------------------------
NTSTATUS NTAPI
SpCompleteAuthToken(
IN LSA_SEC_HANDLE ContextHandle,
IN PSecBufferDesc InputBuffer
)
{
return(STATUS_SUCCESS);
}
#ifndef WIN32_CHICAGO
NTSTATUS NTAPI
SpFormatCredentials(
IN PSecBuffer Credentials,
OUT PSecBuffer FormattedCredentials
)
{
return(STATUS_NOT_SUPPORTED);
}
NTSTATUS NTAPI
SpMarshallSupplementalCreds(
IN ULONG CredentialSize,
IN PUCHAR Credentials,
OUT PULONG MarshalledCredSize,
OUT PVOID * MarshalledCreds
)
{
return(STATUS_NOT_SUPPORTED);
}
#endif // WIN32_CHICAGO