Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1135 lines
32 KiB

/*
* optenc.c
*
* Encoder for optimal parser
*
*
* Future Improvements:
*
* When two estimations are equal, for example, "should I output a
* character or a match?" there should be some way of deciding
* which to take. Right now we force it to output a match, but
* for text files, outputting a character results in a small
* savings. Even when comparing two matches, we might want to
* force it to take one type of match over another.
*/
#include "encoder.h"
#define copymem(src,dst,size) memcpy(dst,src,size)
static bool redo_first_block(t_encoder_context *context, long *bufpos_ptr);
static void block_end(t_encoder_context *context, long BufPos);
/*
* encode a match of length <len> (where <len> >=2), and position <pos>
*/
#define OUT_MATCH(len,pos) \
{\
context->enc_ItemType[(context->enc_literals >> 3)] |= (1 << (context->enc_literals & 7)); \
context->enc_LitData [context->enc_literals++] = (byte) (len-2); \
context->enc_DistData[context->enc_distances++] = pos; \
}
/* encode a character */
#define OUT_CHAR(ch) \
context->enc_LitData [context->enc_literals++] = ch;
#define TREE_CREATE_CHECK() \
if (context->enc_literals >= context->enc_next_tree_create) \
{ \
update_tree_estimates(context);\
context->enc_next_tree_create += TREE_CREATE_INTERVAL; \
}
/*
* Returns an estimation of how many bits it would take to output
* a given character
*/
#define CHAR_EST(c) (numbits_t) (context->enc_main_tree_len[(c)])
/*
* Returns an estimation of how many bits it would take to output
* a given match.
*
* <ml> is the match length, where ml >= 2
* <mp> is the match position
*
* The result is stored in <result>
*/
#define MATCH_EST(ml,mp,result) \
{ \
byte mp_slot; \
mp_slot = (byte) MP_SLOT(mp); \
if (ml < (NUM_PRIMARY_LENGTHS+2)) \
{ \
result = (numbits_t) \
(context->enc_main_tree_len[(NUM_CHARS-2)+(mp_slot<<NL_SHIFT)+ml] + \
enc_extra_bits[mp_slot]); \
} \
else \
{ \
result = (numbits_t) \
(context->enc_main_tree_len[(NUM_CHARS+NUM_PRIMARY_LENGTHS)+(mp_slot<<NL_SHIFT)] + \
context->enc_secondary_tree_len[ml-(NUM_PRIMARY_LENGTHS+2)] + \
enc_extra_bits[mp_slot]); \
} \
}
#ifdef _DEBUG
static void VERIFY_MATCH(
t_encoder_context *context,
long bufpos,
int largest_match_len
)
{
int i, j;
ulong match_pos;
/*
* Ensure match does not cross boundary
*/
_ASSERTE(
largest_match_len <=
(CHUNK_SIZE-1) - (bufpos & (CHUNK_SIZE-1))
);
for (i = MIN_MATCH; i <= largest_match_len; i++)
{
match_pos = context->enc_matchpos_table[i];
if (match_pos < NUM_REPEATED_OFFSETS)
match_pos = context->enc_last_matchpos_offset[match_pos];
else
match_pos -= (NUM_REPEATED_OFFSETS-1);
_ASSERTE (match_pos <= context->enc_window_size-4);
for (j = 0; j < i; j++)
{
_ASSERTE (
context->enc_MemWindow[bufpos+j] ==
context->enc_MemWindow[bufpos-match_pos+j]
);
}
}
}
#else
# define VERIFY_MATCH(a,b,c) ;
#endif
void flush_all_pending_blocks(t_encoder_context *context)
{
/*
* Force all blocks to be output
*/
while (context->enc_literals > 0)
output_block(context);
/*
* Flush compressed data out to the caller
*/
perform_flush_output_callback(context);
}
void encoder_start(t_encoder_context *context)
{
long BytesRead, RealBufPos;
/*
* RealBufPos is our position in the window,
* and equals [0...window_size + second_partition_size - 1]
*/
RealBufPos = (long) (context->enc_BufPos - (context->enc_RealMemWindow - context->enc_MemWindow));
BytesRead = comp_read_input(context, RealBufPos, CHUNK_SIZE);
if (BytesRead > 0)
opt_encode_top(context, BytesRead);
}
static void update_tree_estimates(t_encoder_context *context)
{
if (context->enc_literals)
{
/*
* Get stats on literals from 0...context->enc_literals
*/
if (context->enc_need_to_recalc_stats)
{
/*
* Cumulative total was destroyed, so need to
* recalculate
*/
get_block_stats(
context,
0,
0,
context->enc_literals
);
context->enc_need_to_recalc_stats = false;
}
else
{
/*
* Add stats from last_literals...context->enc_literals
* to cumulative total
*/
update_cumulative_block_stats(
context,
context->enc_last_literals,
context->enc_last_distances,
context->enc_literals
);
}
create_trees(context, false); /* don't generate codes */
fix_tree_cost_estimates(context);
/*
* For cumulative total
*/
context->enc_last_literals = context->enc_literals;
context->enc_last_distances = context->enc_distances;
}
}
void opt_encode_top(t_encoder_context *context, long BytesRead)
{
ulong BufPos;
ulong RealBufPos;
ulong BufPosEnd;
ulong MatchPos;
ulong i;
ulong end_pos;
int EncMatchLength; /* must be a signed number */
/*
* Current position in encoding window
*/
BufPos = context->enc_BufPos;
/*
* Stop encoding when we reach here
*/
BufPosEnd = context->enc_BufPos + BytesRead;
/*
* If this is our first time in here (since a new group), then
* when we reach this many literals, update our tree cost
* estimates.
*
* Also, output the file size we're using for translation
* (0 means no translation at all, which will speed things up
* for the decoder).
*/
if (context->enc_first_time_this_group)
{
context->enc_first_time_this_group = false;
/*
* Recreate trees when we reach this many literals
*/
context->enc_next_tree_create = 10000;
if (context->enc_file_size_for_translation)
{
output_bits(context, 1, 1); /* translation */
output_bits(context, 16, context->enc_file_size_for_translation >> 16);
output_bits(context, 16, context->enc_file_size_for_translation & 65535);
}
else
{
output_bits(context, 1, 0); /* no translation */
}
}
else
{
/*
* If this is our second or later time in here, then add in the
* strings we removed last time.
*
* We have to be careful here, though, because end_pos is
* equal to our current BufPos - window_size, not
* BufPos - i - window_size; we don't have that much history
* around.
*/
for (i = BREAK_LENGTH; i > 0; i--)
quick_insert_bsearch_findmatch(
context,
BufPos - (long) i,
BufPos - context->enc_window_size+4
);
}
while (1)
{
top_of_main_loop:
/*
* While we haven't reached the end of the data
*/
while (BufPos < BufPosEnd)
{
/*
* Search for matches of all different possible lengths, at BufPos
*/
EncMatchLength = binary_search_findmatch(context, BufPos);
if (EncMatchLength < MIN_MATCH)
{
output_literal:
/*
* No match longer than 1 character exists in the history
* window, so output the character at BufPos as a symbol.
*/
OUT_CHAR(context->enc_MemWindow[BufPos]);
BufPos++;
/*
* Check for exceeding literal buffer
*/
if (context->enc_literals >= (MAX_LITERAL_ITEMS-8))
block_end(context, BufPos);
continue;
}
/*
* Found a match.
*
* Make sure it cannot exceed the end of the buffer.
*/
if ((ulong) EncMatchLength + BufPos > BufPosEnd)
{
EncMatchLength = BufPosEnd - BufPos;
/*
* Oops, not enough for even a small match, so we
* have to output a literal
*/
if (EncMatchLength < MIN_MATCH)
goto output_literal;
}
VERIFY_MATCH(context, BufPos, EncMatchLength);
if (EncMatchLength < FAST_DECISION_THRESHOLD)
{
/*
* A match has been found that is between MIN_MATCH and
* FAST_DECISION_THRESHOLD bytes in length. The following
* algorithm is the optimal encoder that will determine the
* most efficient order of matches and unmatched characters
* over a span area defined by LOOK.
*
* The code is essentially a shortest path determination
* algorithm. A stream of data can be encoded in a vast number
* of different ways depending on the match lengths and offsets
* chosen. The key to good compression ratios is to chose the
* least expensive path.
*/
ulong span;
ulong epos, bpos, NextPrevPos, MatchPos;
decision_node *decision_node_ptr;
long iterations;
/*
* Points to the end of the area covered by this match; the span
* will continually be extended whenever we find more matches
* later on. It will stop being extended when we reach a spot
* where there are no matches, which is when we decide which
* path to take to output the matches.
*/
span = BufPos + EncMatchLength;
/*
* The furthest position into which we will do our lookahead parsing
*/
epos = BufPos + LOOK;
/*
* Temporary BufPos variable
*/
bpos = BufPos;
/*
* Calculate the path to the next character if we output
* an unmatched symbol.
*/
/* bits required to get here */
context->enc_decision_node[1].numbits = CHAR_EST(context->enc_MemWindow[BufPos]);
/* where we came from */
context->enc_decision_node[1].path = BufPos;
/*
* For the match found, estimate the cost of encoding the match
* for each possible match length, shortest offset combination.
*
* The cost, path and offset is stored at BufPos + Length.
*/
for (i = MIN_MATCH; i <= (ulong) EncMatchLength; i++)
{
/*
* Get estimation of match cost given match length = i,
* match position = context->enc_matchpos_table[i], and store
* the result in context->enc_numbits[i]
*/
MATCH_EST(i, context->enc_matchpos_table[i], context->enc_decision_node[i].numbits);
/*
* Where we came from
*/
context->enc_decision_node[i].path = BufPos;
/*
* Associated match position with this path
*/
context->enc_decision_node[i].link = context->enc_matchpos_table[i];
}
/*
* Set bit counter to zero at the start
*/
context->enc_decision_node[0].numbits = 0;
/*
* Initialise relative match position tables
*
* Really context->enc_repeated_offset_table[BufPos-bpos][x], but here
* BufPos == bpos
*/
context->enc_decision_node[0].repeated_offset[0] = context->enc_last_matchpos_offset[0];
context->enc_decision_node[0].repeated_offset[1] = context->enc_last_matchpos_offset[1];
context->enc_decision_node[0].repeated_offset[2] = context->enc_last_matchpos_offset[2];
decision_node_ptr = &context->enc_decision_node[-(long) bpos];
#define rpt_offset_ptr(where,which_offset) decision_node_ptr[(where)].repeated_offset[(which_offset)]
while (1)
{
numbits_t est, cum_numbits;
BufPos++;
/*
* Set the proper repeated offset locations depending on the
* shortest path to the location prior to searching for a
* match.
*/
/*
* If this is a match (i.e. path skips over more
* than one character).
*/
if (decision_node_ptr[BufPos].path != (ulong) (BufPos-1))
{
ulong LastPos = decision_node_ptr[BufPos].path;
/*
* link_ptr[BufPos] is the match position for this
* location
*/
if (decision_node_ptr[BufPos].link >= NUM_REPEATED_OFFSETS)
{
context->enc_last_matchpos_offset[0] = decision_node_ptr[BufPos].link-(NUM_REPEATED_OFFSETS-1);
context->enc_last_matchpos_offset[1] = rpt_offset_ptr(LastPos,0);
context->enc_last_matchpos_offset[2] = rpt_offset_ptr(LastPos,1);
}
else if (decision_node_ptr[BufPos].link == 0)
{
context->enc_last_matchpos_offset[0] = rpt_offset_ptr(LastPos,0);
context->enc_last_matchpos_offset[1] = rpt_offset_ptr(LastPos,1);
context->enc_last_matchpos_offset[2] = rpt_offset_ptr(LastPos,2);
}
else if (decision_node_ptr[BufPos].link == 1)
{
context->enc_last_matchpos_offset[0] = rpt_offset_ptr(LastPos,1);
context->enc_last_matchpos_offset[1] = rpt_offset_ptr(LastPos,0);
context->enc_last_matchpos_offset[2] = rpt_offset_ptr(LastPos,2);
}
else /* == 2 */
{
context->enc_last_matchpos_offset[0] = rpt_offset_ptr(LastPos,2);
context->enc_last_matchpos_offset[1] = rpt_offset_ptr(LastPos,1);
context->enc_last_matchpos_offset[2] = rpt_offset_ptr(LastPos,0);
}
}
rpt_offset_ptr(BufPos,0) = context->enc_last_matchpos_offset[0];
rpt_offset_ptr(BufPos,1) = context->enc_last_matchpos_offset[1];
rpt_offset_ptr(BufPos,2) = context->enc_last_matchpos_offset[2];
/*
* The following is one of the two possible break points from
* the inner encoding loop. This break will exit the loop if
* a point is reached that no match can incorporate; i.e. a
* character that does not match back to anything is a point
* where all possible paths will converge and the longest one
* can be chosen.
*/
if (span == BufPos)
break;
/*
* Search for matches at BufPos
*/
EncMatchLength = binary_search_findmatch(context, BufPos);
/*
* Make sure that the match does not exceed the stop point
*/
if ((ulong) EncMatchLength + BufPos > BufPosEnd)
{
EncMatchLength = BufPosEnd - BufPos;
if (EncMatchLength < MIN_MATCH)
EncMatchLength = 0;
}
VERIFY_MATCH(context, BufPos, EncMatchLength);
/*
* If the match is very long or it exceeds epos (either
* surpassing the LOOK area, or exceeding past the end of the
* input buffer), then break the loop and output the path.
*/
if (EncMatchLength > FAST_DECISION_THRESHOLD ||
BufPos + (ulong) EncMatchLength >= epos)
{
MatchPos = context->enc_matchpos_table[EncMatchLength];
decision_node_ptr[BufPos+EncMatchLength].link = MatchPos;
decision_node_ptr[BufPos+EncMatchLength].path = BufPos;
/*
* Quickly insert data into the search tree without
* returning match positions/lengths
*/
#ifndef INSERT_NEAR_LONG_MATCHES
if (MatchPos == 3 && EncMatchLength > 16)
{
/*
* If we found a match 1 character away and it's
* length 16 or more, it's probably a string of
* zeroes, so don't insert that into the search
* engine, since doing so can slow things down
* significantly!
*/
quick_insert_bsearch_findmatch(
context,
BufPos + 1,
BufPos - context->enc_window_size + (1 + 4) /* bp+1 -(ws-4) */
);
}
else
{
#endif
for (i = 1; i < (ulong) EncMatchLength; i++)
quick_insert_bsearch_findmatch(
context,
BufPos + i,
BufPos + i - context->enc_window_size + 4
);
}
BufPos += EncMatchLength;
/*
* Update the relative match positions
*/
if (MatchPos >= NUM_REPEATED_OFFSETS)
{
context->enc_last_matchpos_offset[2] = context->enc_last_matchpos_offset[1];
context->enc_last_matchpos_offset[1] = context->enc_last_matchpos_offset[0];
context->enc_last_matchpos_offset[0] = MatchPos-(NUM_REPEATED_OFFSETS-1);
}
else if (MatchPos)
{
ulong t = context->enc_last_matchpos_offset[0];
context->enc_last_matchpos_offset[0] = context->enc_last_matchpos_offset[MatchPos];
context->enc_last_matchpos_offset[MatchPos] = t;
}
break;
}
/*
* The following code will extend the area spanned by the
* set of matches if the current match surpasses the end of
* the span. A match of length two that is far is not
* accepted, since it would normally be encoded as characters,
* thus allowing the paths to converge.
*/
if (EncMatchLength > 2 ||
(EncMatchLength == 2 && context->enc_matchpos_table[2] < BREAK_MAX_LENGTH_TWO_OFFSET))
{
if (span < (ulong) (BufPos + EncMatchLength))
{
long end;
long i;
end = (((BufPos+EncMatchLength-bpos) < (LOOK-1)) ? (BufPos+EncMatchLength-bpos) : (LOOK-1));
/*
* These new positions are undefined for now, since we haven't
* gone there yet, so put in the costliest value
*/
for (i = span-bpos+1; i <= end; i++)
context->enc_decision_node[i].numbits = (numbits_t) -1;
span = BufPos + EncMatchLength;
}
}
/*
* The following code will iterate through all combinations
* of match lengths for the current match. It will estimate
* the cost of the path from the beginning of LOOK to
* BufPos and to every locations spanned by the current
* match. If the path through BufPos with the found matches
* is estimated to take fewer number of bits to encode than
* the previously found match, then the path to the location
* is altered.
*
* The code relies on accurate estimation of the cost of
* encoding a character or a match. Furthermore, it requires
* a search engine that will store the smallest match offset
* of each possible match length.
*
* A match of length one is simply treated as an unmatched
* character.
*/
/*
* Get the estimated number of bits required to encode the
* path leading up to BufPos.
*/
cum_numbits = decision_node_ptr[BufPos].numbits;
/*
* Calculate the estimated cost of outputting the path through
* BufPos and outputting the next character as an unmatched byte
*/
est = cum_numbits + CHAR_EST(context->enc_MemWindow[BufPos]);
/*
* Check if it is more efficient to encode the next character
* as an unmatched character rather than the previously found
* match. If so, then update the cheapest path to BufPos + 1.
*
* What happens if est == numbits[BufPos-bpos+1]; i.e. it
* works out as well to output a character as to output a
* match? It's a tough call; however, we will push the
* encoder to use matches where possible.
*/
if (est < decision_node_ptr[BufPos+1].numbits)
{
decision_node_ptr[BufPos+1].numbits = est;
decision_node_ptr[BufPos+1].path = BufPos;
}
/*
* Now, iterate through the remaining match lengths and
* compare the new path to the existing. Change the path
* if it is found to be more cost effective to go through
* BufPos.
*/
for (i = MIN_MATCH; i <= (ulong) EncMatchLength; i++)
{
MATCH_EST(i, context->enc_matchpos_table[i], est);
est += cum_numbits;
/*
* If est == numbits[BufPos+i] we want to leave things
* alone, since this will tend to force the matches
* to be smaller in size, which is beneficial for most
* data.
*/
if (est < decision_node_ptr[BufPos+i].numbits)
{
decision_node_ptr[BufPos+i].numbits = est;
decision_node_ptr[BufPos+i].path = BufPos;
decision_node_ptr[BufPos+i].link = context->enc_matchpos_table[i];
}
}
} /* continue to loop through span of matches */
/*
* Here BufPos == span, ie. a non-matchable character found. The
* following code will output the path properly.
*/
/*
* Unfortunately the path is stored in reverse; how to get from
* where we are now, to get back to where it all started.
*
* Traverse the path back to the original starting position
* of the LOOK span. Invert the path pointers in order to be
* able to traverse back to the current position from the start.
*/
/*
* Count the number of iterations we did, so when we go forwards
* we'll do the same amount
*/
iterations = 0;
NextPrevPos = decision_node_ptr[BufPos].path;
do
{
ulong PrevPos;
PrevPos = NextPrevPos;
NextPrevPos = decision_node_ptr[PrevPos].path;
decision_node_ptr[PrevPos].path = BufPos;
BufPos = PrevPos;
iterations++;
} while (BufPos != bpos);
if (context->enc_literals + iterations >= (MAX_LITERAL_ITEMS-8) ||
context->enc_distances + iterations >= (MAX_DIST_ITEMS-8))
{
block_end(context, BufPos);
}
/*
* Traverse from the beginning of the LOOK span to the end of
* the span along the stored path, outputting matches and
* characters appropriately.
*/
do
{
if (decision_node_ptr[BufPos].path > BufPos+1)
{
/*
* Path skips over more than 1 character; therefore it's a match
*/
OUT_MATCH(
decision_node_ptr[BufPos].path - BufPos,
decision_node_ptr[ decision_node_ptr[BufPos].path ].link
);
BufPos = decision_node_ptr[BufPos].path;
}
else
{
/*
* Path goes to the next character; therefore it's a symbol
*/
OUT_CHAR(context->enc_MemWindow[BufPos]);
BufPos++;
}
} while (--iterations != 0);
TREE_CREATE_CHECK();
/*
* If we're filling up, and are close to outputting a block,
* and it's the first block, then recompress the first N
* literals using our accumulated stats.
*/
if (context->enc_first_block &&
(context->enc_literals >= (MAX_LITERAL_ITEMS-512)
|| context->enc_distances >= (MAX_DIST_ITEMS-512)))
{
if (redo_first_block(context, &BufPos))
goto top_of_main_loop;
/*
* Unable to redo, so output the block
*/
block_end(context, BufPos);
}
}
else /* EncMatchLength >= FAST_DECISION_THRESHOLD */
{
/*
* This code reflects a speed optimization that will always take
* a match of length >= FAST_DECISION_THRESHOLD characters.
*/
/*
* The position associated with the match we found
*/
MatchPos = context->enc_matchpos_table[EncMatchLength];
/*
* Quickly insert match substrings into search tree
* (don't look for new matches; just insert the strings)
*/
#ifndef INSERT_NEAR_LONG_MATCHES
if (MatchPos == 3 && EncMatchLength > 16)
{
quick_insert_bsearch_findmatch(
context,
BufPos + 1,
BufPos - context->enc_window_size + 5 /* bp+1 -(ws-4) */
);
}
else
#endif
{
for (i = 1; i < (ulong) EncMatchLength; i++)
quick_insert_bsearch_findmatch(
context,
BufPos + i,
BufPos + i - context->enc_window_size + 4
);
}
/*
* Advance our position in the window
*/
BufPos += EncMatchLength;
/*
* Output the match
*/
OUT_MATCH(EncMatchLength, MatchPos);
if (MatchPos >= NUM_REPEATED_OFFSETS)
{
context->enc_last_matchpos_offset[2] = context->enc_last_matchpos_offset[1];
context->enc_last_matchpos_offset[1] = context->enc_last_matchpos_offset[0];
context->enc_last_matchpos_offset[0] = MatchPos-(NUM_REPEATED_OFFSETS-1);
}
else if (MatchPos)
{
ulong t = context->enc_last_matchpos_offset[0];
context->enc_last_matchpos_offset[0] = context->enc_last_matchpos_offset[MatchPos];
context->enc_last_matchpos_offset[MatchPos] = t;
}
/*
* Check to see if we're close to overflowing our output arrays, and
* output a block if this is the case
*/
if (context->enc_literals >= (MAX_LITERAL_ITEMS-8) ||
context->enc_distances >= (MAX_DIST_ITEMS-8))
block_end(context, BufPos);
} /* EncMatchLength >= FAST_DECISION_THRESHOLD */
} /* end while ... BufPos <= BufPosEnd */
/*
* Value of BufPos corresponding to earliest window data
*/
context->enc_earliest_window_data_remaining = BufPos - context->enc_window_size;
/*
* We didn't read 32K, so we know for sure that
* this was our last block of data.
*/
if (BytesRead < CHUNK_SIZE)
{
/*
* If we have never output a block, and we haven't
* recalculated the stats already, then recalculate
* the stats and recompress.
*/
if (context->enc_first_block)
{
if (redo_first_block(context, &BufPos))
goto top_of_main_loop;
}
break;
}
/*
* Remove the last BREAK_LENGTH nodes from the binary search tree,
* since we have been inserting strings which contain undefined
* data at the end.
*/
end_pos = BufPos - (context->enc_window_size-4-BREAK_LENGTH);
for (i = 1; (i <= BREAK_LENGTH); i++)
binary_search_remove_node(context, BufPos-i, end_pos);
/*
* If we're still in the first window_size + second partition size
* bytes in the file then we don't need to copymem() yet.
*
* RealBufPos is the real position in the file.
*/
RealBufPos = (long)(BufPos - (context->enc_RealMemWindow - context->enc_MemWindow));
if (RealBufPos < context->enc_window_size + context->enc_encoder_second_partition_size)
break;
/*
* We're about to trash a whole bunch of history with our copymem,
* so we'd better redo the first block now if we are ever going to.
*/
if (context->enc_first_block)
{
if (redo_first_block(context, &BufPos))
goto top_of_main_loop;
}
/*
* We're about to remove a large number of symbols from the window.
* Test to see whether, if we were to output a block now, our compressed
* output size would be larger than our uncompressed data. If so, then
* we will output an uncompressed block.
*
* The reason we have to do this check here, is that data in the
* window is about to be destroyed. We can't simply put this check in
* the block outputting code, since there is no guarantee that the
* memory window contents corresponding to everything in that block,
* are still around - all we'd have would be a set of literals and
* distances, when we need all the uncompressed literals to output
* an uncompressed block.
*/
/*
* What value of bufpos corresponds to the oldest data we have in the
* buffer?
*
* After the memory copy, that will be the current buffer position,
* minus window_size.
*/
/*
* The end of the data buffer is reached, more data needs to be read
* and the existing data must be shifted into the history window.
*
* MSVC 4.x generates code which does REP MOVSD so no need to
* write this in assembly.
*/
copymem(
&context->enc_RealMemWindow[context->enc_encoder_second_partition_size],
&context->enc_RealMemWindow[0],
context->enc_window_size
);
copymem(
&context->enc_RealLeft[context->enc_encoder_second_partition_size],
&context->enc_RealLeft[0],
sizeof(ulong)*context->enc_window_size
);
copymem(
&context->enc_RealRight[context->enc_encoder_second_partition_size],
&context->enc_RealRight[0],
sizeof(ulong)*context->enc_window_size
);
context->enc_earliest_window_data_remaining = BufPos - context->enc_window_size;
/*
* The following bit of code is CRUCIAL yet unorthodox in function
* and serves as a speed and syntax optimization and makes the code
* easier to understand once grasped.
*
* The three main buffers, context->enc_MemWindow, context->enc_Left and context->enc_Right,
* are referensed by BufPos and SearchPos relative to the current
* compression window locations. When the encoder reaches the end
* of its block of input memory, the data in the input buffer is
* shifted into the compression history window and the new input
* stream is loaded. Typically the BufPos pointer would be reduced
* to signify the replaced data. However, this code reduces the
* base pointers to reflect the shift of data, and leaves the BufPos
* pointer in its current state. Therefore, the BufPos pointer is
* an absolute pointer reflecting the position in the input stream,
* and NOT the position in the buffer. The base pointers will point
* to invalid memory locations with addresses smaller than the
* actual array base pointers. However, when the two pointers are
* added together, &(context->enc_MemWindow+BufPos), it will point to the
* correct and valid position in the buffer.
*/
context->enc_MemWindow -= context->enc_encoder_second_partition_size;
context->enc_Left -= context->enc_encoder_second_partition_size;
context->enc_Right -= context->enc_encoder_second_partition_size;
break;
}
/*
* Store BufPos in global variable
*/
context->enc_BufPos = BufPos;
}
static void block_end(t_encoder_context *context, long BufPos)
{
context->enc_first_block = false;
context->enc_need_to_recalc_stats = true;
output_block(context);
if (context->enc_literals < TREE_CREATE_INTERVAL)
{
context->enc_next_tree_create = TREE_CREATE_INTERVAL;
}
else
{
context->enc_next_tree_create = context->enc_literals + TREE_CREATE_INTERVAL; /* recreate right away */
}
context->enc_bufpos_last_output_block = BufPos;
}
static bool redo_first_block(t_encoder_context *context, long *bufpos_ptr)
{
long start_at;
long earliest_can_start_at;
long pos_in_file;
long history_needed;
long history_avail;
long BufPos;
long split_at_literal;
context->enc_first_block = false;
BufPos = *bufpos_ptr;
/*
* For the first context->enc_window size bytes in the file, we don't
* need to have context->enc_window size bytes around.
*
* For anything after that, though, we do need to have window_size
* previous bytes to look into.
*/
/*
* How many bytes are we into the file?
*/
pos_in_file = BufPos - context->enc_window_size;
/*
* First let's figure out the total history required from
* BufPos backwards. For starters, we need all the bytes
* we're going to recompress. We get that by seeing the
* last time we output a block.
*/
history_needed = BufPos - context->enc_bufpos_last_output_block;
/*
* Plus we will need window_size bytes before that (for matching
* into) unless we're looking within the first window_size
* bytes of the file.
*/
if (context->enc_bufpos_last_output_block-context->enc_window_size < context->enc_window_size)
history_needed += context->enc_bufpos_last_output_block - context->enc_window_size;
else
history_needed += context->enc_window_size;
history_avail = (long) (&context->enc_MemWindow[BufPos] - &context->enc_RealMemWindow[0]);
if (history_needed <= history_avail)
{
earliest_can_start_at = context->enc_bufpos_last_output_block;
}
else
{
/*
* Not enough history available
*/
return false;
}
start_at = earliest_can_start_at;
(void) split_block(
context,
0,
context->enc_literals,
context->enc_distances,
&split_at_literal,
NULL /* don't need # distances returned */
);
get_block_stats(
context,
0,
0,
split_at_literal
);
create_trees(context, false); /* don't generate codes */
fix_tree_cost_estimates(context);
#ifdef MULTIPLE_SEARCH_TREES
/*
* Now set all the tree root pointers to NULL
* (don't need to reset the left/right pointers).
*/
memset(context->enc_tree_root, 0, NUM_SEARCH_TREES * sizeof(ulong));
#else
context->enc_single_tree_root = 0;
#endif
/*
* Clear item array and reset literal and distance
* counters
*/
memset(context->enc_ItemType, 0, (MAX_LITERAL_ITEMS/8));
/*
* Reset encoder state
*/
context->enc_last_matchpos_offset[0] = 1;
context->enc_last_matchpos_offset[1] = 1;
context->enc_last_matchpos_offset[2] = 1;
context->enc_repeated_offset_at_literal_zero[0] = 1;
context->enc_repeated_offset_at_literal_zero[1] = 1;
context->enc_repeated_offset_at_literal_zero[2] = 1;
context->enc_input_running_total = 0;
context->enc_literals = 0;
context->enc_distances = 0;
context->enc_need_to_recalc_stats = true;
context->enc_next_tree_create = split_at_literal;
*bufpos_ptr = start_at;
return true;
}