mirror of https://github.com/tongzx/nt5src
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1521 lines
36 KiB
1521 lines
36 KiB
/*++
|
|
|
|
Copyright (c) 1989 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
ixhwsup.c
|
|
|
|
Abstract:
|
|
|
|
This module contains the IoXxx routines for the NT I/O system that
|
|
are hardware dependent. Were these routines not hardware dependent,
|
|
they would reside in the iosubs.c module.
|
|
|
|
Author:
|
|
|
|
Darryl E. Havens (darrylh) 11-Apr-1990
|
|
|
|
Environment:
|
|
|
|
Kernel mode
|
|
|
|
Revision History:
|
|
|
|
|
|
--*/
|
|
|
|
#include "bootia64.h"
|
|
#include "arc.h"
|
|
#include "ixfwhal.h"
|
|
#include "eisa.h"
|
|
#include "ntconfig.h"
|
|
|
|
#if !defined(NO_LEGACY_DRIVERS)
|
|
//
|
|
// This isn't used under EFI -- the HalPT is only setup immediately
|
|
// before calling ExitBootServices(), and is only necessary if you are
|
|
// using ntbootdd.sys
|
|
//
|
|
extern PHARDWARE_PTE HalPT;
|
|
#endif
|
|
|
|
PVOID HalpEisaControlBase;
|
|
|
|
//
|
|
// Define save area for ESIA adapter objects.
|
|
//
|
|
|
|
PADAPTER_OBJECT HalpEisaAdapter[8];
|
|
|
|
VOID
|
|
HalpCopyBufferMap(
|
|
IN PMDL Mdl,
|
|
IN PTRANSLATION_ENTRY TranslationEntry,
|
|
IN PVOID CurrentVa,
|
|
IN ULONG Length,
|
|
IN BOOLEAN WriteToDevice
|
|
);
|
|
|
|
|
|
|
|
VOID
|
|
HalpCopyBufferMap(
|
|
IN PMDL Mdl,
|
|
IN PTRANSLATION_ENTRY TranslationEntry,
|
|
IN PVOID CurrentVa,
|
|
IN ULONG Length,
|
|
IN BOOLEAN WriteToDevice
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine copies the speicific data between the user's buffer and the
|
|
map register buffer. First a the user buffer is mapped if necessary, then
|
|
the data is copied. Finally the user buffer will be unmapped if
|
|
neccessary.
|
|
|
|
Arguments:
|
|
|
|
Mdl - Pointer to the MDL that describes the pages of memory that are
|
|
being read or written.
|
|
|
|
TranslationEntry - The address of the base map register that has been
|
|
allocated to the device driver for use in mapping the transfer.
|
|
|
|
CurrentVa - Current virtual address in the buffer described by the MDL
|
|
that the transfer is being done to or from.
|
|
|
|
Length - The length of the transfer. This determines the number of map
|
|
registers that need to be written to map the transfer.
|
|
|
|
WriteToDevice - Boolean value that indicates whether this is a write
|
|
to the device from memory (TRUE), or vice versa.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
--*/
|
|
{
|
|
PCCHAR bufferAddress;
|
|
BOOLEAN mapped;
|
|
|
|
//
|
|
// Check to see if the buffer needs to be mapped.
|
|
//
|
|
|
|
|
|
if ((Mdl->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA) == 0) {
|
|
|
|
//
|
|
// Map the buffer into system space.
|
|
//
|
|
|
|
bufferAddress = MmGetMdlVirtualAddress(Mdl);
|
|
mapped = TRUE;
|
|
|
|
} else {
|
|
|
|
bufferAddress = Mdl->MappedSystemVa;
|
|
mapped = FALSE;
|
|
|
|
}
|
|
|
|
//
|
|
// Calculate the actual start of the buffer based on the system VA and
|
|
// the current VA.
|
|
//
|
|
|
|
bufferAddress += (PCCHAR) CurrentVa - (PCCHAR) MmGetMdlVirtualAddress(Mdl);
|
|
|
|
//
|
|
// Copy the data between the user buffer and map buffer
|
|
//
|
|
|
|
if (WriteToDevice) {
|
|
|
|
RtlMoveMemory( TranslationEntry->VirtualAddress, bufferAddress, Length);
|
|
|
|
} else {
|
|
|
|
RtlMoveMemory(bufferAddress, TranslationEntry->VirtualAddress, Length);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
PADAPTER_OBJECT
|
|
HalGetAdapter(
|
|
IN PDEVICE_DESCRIPTION DeviceDescriptor,
|
|
OUT PULONG NumberOfMapRegisters
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function returns the appropriate adapter object for the device defined
|
|
in the device description structure. This code works for Isa and Eisa
|
|
systems.
|
|
|
|
Arguments:
|
|
|
|
DeviceDescriptor - Supplies a description of the deivce.
|
|
|
|
NumberOfMapRegisters - Returns the maximum number of map registers which
|
|
may be allocated by the device driver.
|
|
|
|
Return Value:
|
|
|
|
A pointer to the requested adpater object or NULL if an adapter could not
|
|
be created.
|
|
|
|
--*/
|
|
|
|
{
|
|
PADAPTER_OBJECT adapterObject;
|
|
PVOID adapterBaseVa;
|
|
ULONG channelNumber;
|
|
ULONG controllerNumber;
|
|
DMA_EXTENDED_MODE extendedMode;
|
|
UCHAR adapterMode;
|
|
ULONG numberOfMapRegisters;
|
|
BOOLEAN useChannel;
|
|
ULONG maximumLength;
|
|
|
|
|
|
//
|
|
// Determine if the the channel number is important. Master cards on
|
|
// Eisa and Mca do not use a channel number.
|
|
//
|
|
|
|
if (DeviceDescriptor->InterfaceType != Isa &&
|
|
DeviceDescriptor->Master) {
|
|
|
|
useChannel = FALSE;
|
|
} else {
|
|
|
|
useChannel = TRUE;
|
|
}
|
|
|
|
//
|
|
// Support for ISA local bus machines:
|
|
// If the driver is a Master but really does not want a channel since it
|
|
// is using the local bus DMA, just don't use an ISA channel.
|
|
//
|
|
|
|
if (DeviceDescriptor->InterfaceType == Isa &&
|
|
DeviceDescriptor->DmaChannel > 7) {
|
|
|
|
useChannel = FALSE;
|
|
}
|
|
|
|
//
|
|
// Limit the maximum length to 2 GB this is done so that the BYTES_TO_PAGES
|
|
// macro works correctly.
|
|
//
|
|
|
|
maximumLength = DeviceDescriptor->MaximumLength & 0x7fffffff;
|
|
|
|
//
|
|
// Channel 4 cannot be used since it is used for chaining. Return null if
|
|
// it is requested.
|
|
//
|
|
|
|
if (DeviceDescriptor->DmaChannel == 4 && useChannel &&
|
|
DeviceDescriptor->InterfaceType != MicroChannel) {
|
|
return(NULL);
|
|
}
|
|
|
|
//
|
|
// Determine the number of map registers for this device.
|
|
//
|
|
|
|
if (DeviceDescriptor->ScatterGather && DeviceDescriptor->InterfaceType == Eisa) {
|
|
|
|
//
|
|
// Since the device support scatter/Gather then map registers are not
|
|
// required.
|
|
//
|
|
|
|
numberOfMapRegisters = 0;
|
|
|
|
} else {
|
|
|
|
//
|
|
// Determine the number of map registers required based on the maximum
|
|
// transfer length, up to a maximum number.
|
|
//
|
|
|
|
numberOfMapRegisters = BYTES_TO_PAGES(maximumLength)
|
|
+ 1;
|
|
numberOfMapRegisters = numberOfMapRegisters > MAXIMUM_ISA_MAP_REGISTER ?
|
|
MAXIMUM_ISA_MAP_REGISTER : numberOfMapRegisters;
|
|
|
|
}
|
|
|
|
//
|
|
// Set the channel number number.
|
|
//
|
|
|
|
channelNumber = DeviceDescriptor->DmaChannel & 0x03;
|
|
|
|
//
|
|
// Set the adapter base address to the Base address register and controller
|
|
// number.
|
|
//
|
|
|
|
if (!(DeviceDescriptor->DmaChannel & 0x04)) {
|
|
|
|
controllerNumber = 1;
|
|
adapterBaseVa = (PVOID) &((PEISA_CONTROL) HalpEisaControlBase)->Dma1BasePort;
|
|
|
|
} else {
|
|
|
|
controllerNumber = 2;
|
|
#if defined(NEC_98)
|
|
adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->InDirectAddress;
|
|
#else //NEC_98
|
|
adapterBaseVa = &((PEISA_CONTROL) HalpEisaControlBase)->Dma2BasePort;
|
|
#endif //NEC_98
|
|
|
|
}
|
|
|
|
//
|
|
// Determine if a new adapter object is necessary. If so then allocate it.
|
|
//
|
|
|
|
if (useChannel && HalpEisaAdapter[DeviceDescriptor->DmaChannel] != NULL) {
|
|
|
|
adapterObject = HalpEisaAdapter[DeviceDescriptor->DmaChannel];
|
|
|
|
} else {
|
|
|
|
//
|
|
// Allocate an adapter object.
|
|
//
|
|
|
|
adapterObject = (PADAPTER_OBJECT) IopAllocateAdapter(
|
|
numberOfMapRegisters,
|
|
adapterBaseVa,
|
|
NULL
|
|
);
|
|
|
|
if (adapterObject == NULL) {
|
|
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
if (useChannel) {
|
|
|
|
HalpEisaAdapter[DeviceDescriptor->DmaChannel] = adapterObject;
|
|
|
|
}
|
|
|
|
//
|
|
// We never need map registers.
|
|
//
|
|
|
|
adapterObject->NeedsMapRegisters = FALSE;
|
|
|
|
//
|
|
// Set the maximum number of map registers for this channel bus on
|
|
// the number requested and the type of device.
|
|
//
|
|
|
|
if (numberOfMapRegisters) {
|
|
|
|
//
|
|
// The speicified number of registers are actually allowed to be
|
|
// allocated.
|
|
//
|
|
|
|
adapterObject->MapRegistersPerChannel = numberOfMapRegisters;
|
|
|
|
} else {
|
|
|
|
//
|
|
// No real map registers were allocated. If this is a master
|
|
// device, then the device can have as may registers as it wants.
|
|
//
|
|
|
|
|
|
if (DeviceDescriptor->Master) {
|
|
|
|
adapterObject->MapRegistersPerChannel = BYTES_TO_PAGES(
|
|
maximumLength
|
|
)
|
|
+ 1;
|
|
|
|
} else {
|
|
|
|
//
|
|
// The device only gets one register. It must call
|
|
// IoMapTransfer repeatedly to do a large transfer.
|
|
//
|
|
|
|
adapterObject->MapRegistersPerChannel = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
*NumberOfMapRegisters = adapterObject->MapRegistersPerChannel;
|
|
|
|
//
|
|
// If the channel number is not used then we are finished. The rest of
|
|
// the work deals with channels.
|
|
//
|
|
|
|
if (!useChannel) {
|
|
return(adapterObject);
|
|
}
|
|
|
|
//
|
|
// Setup the pointers to all the random registers.
|
|
//
|
|
|
|
adapterObject->ChannelNumber = (UCHAR) channelNumber;
|
|
|
|
if (controllerNumber == 1) {
|
|
|
|
switch ((UCHAR)channelNumber) {
|
|
|
|
case 0:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel0;
|
|
break;
|
|
|
|
case 1:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel1;
|
|
break;
|
|
|
|
case 2:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel2;
|
|
break;
|
|
|
|
case 3:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel3;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Set the adapter number.
|
|
//
|
|
|
|
adapterObject->AdapterNumber = 1;
|
|
|
|
#if defined(NEC_98)
|
|
#else
|
|
//
|
|
// Save the extended mode register address.
|
|
//
|
|
|
|
adapterBaseVa =
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma1ExtendedModePort;
|
|
#endif // !NEC_98
|
|
|
|
} else {
|
|
|
|
#if defined(NEC_98)
|
|
#else //NEC_98
|
|
switch (channelNumber) {
|
|
case 1:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel5;
|
|
break;
|
|
|
|
case 2:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel6;
|
|
break;
|
|
|
|
case 3:
|
|
adapterObject->PagePort = (PUCHAR) &((PDMA_PAGE) 0)->Channel7;
|
|
break;
|
|
}
|
|
|
|
//
|
|
// Set the adapter number.
|
|
//
|
|
|
|
adapterObject->AdapterNumber = 2;
|
|
|
|
//
|
|
// Save the extended mode register address.
|
|
//
|
|
adapterBaseVa =
|
|
&((PEISA_CONTROL) HalpEisaControlBase)->Dma2ExtendedModePort;
|
|
#endif //NEC_98
|
|
|
|
}
|
|
|
|
adapterObject->Width16Bits = FALSE;
|
|
|
|
if (MachineType == MACHINE_TYPE_EISA) {
|
|
|
|
//
|
|
// Initialzie the extended mode port.
|
|
//
|
|
|
|
*((PUCHAR) &extendedMode) = 0;
|
|
extendedMode.ChannelNumber = (UCHAR)channelNumber;
|
|
|
|
switch (DeviceDescriptor->DmaSpeed) {
|
|
case Compatible:
|
|
extendedMode.TimingMode = COMPATIBLITY_TIMING;
|
|
break;
|
|
|
|
case TypeA:
|
|
extendedMode.TimingMode = TYPE_A_TIMING;
|
|
break;
|
|
|
|
case TypeB:
|
|
extendedMode.TimingMode = TYPE_B_TIMING;
|
|
break;
|
|
|
|
case TypeC:
|
|
extendedMode.TimingMode = BURST_TIMING;
|
|
break;
|
|
|
|
default:
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
switch (DeviceDescriptor->DmaWidth) {
|
|
case Width8Bits:
|
|
extendedMode.TransferSize = BY_BYTE_8_BITS;
|
|
break;
|
|
|
|
case Width16Bits:
|
|
extendedMode.TransferSize = BY_BYTE_16_BITS;
|
|
|
|
//
|
|
// Note Width16bits should not be set here because there is no need
|
|
// to shift the address and the transfer count.
|
|
//
|
|
|
|
break;
|
|
|
|
case Width32Bits:
|
|
extendedMode.TransferSize = BY_BYTE_32_BITS;
|
|
break;
|
|
|
|
default:
|
|
return(NULL);
|
|
|
|
}
|
|
|
|
WRITE_PORT_UCHAR( adapterBaseVa, *((PUCHAR) &extendedMode));
|
|
|
|
} else if (!DeviceDescriptor->Master) {
|
|
|
|
|
|
#if defined(NEC_98)
|
|
#else
|
|
switch (DeviceDescriptor->DmaWidth) {
|
|
case Width8Bits:
|
|
|
|
//
|
|
// The channel must use controller 1.
|
|
//
|
|
|
|
if (controllerNumber != 1) {
|
|
return(NULL);
|
|
}
|
|
|
|
break;
|
|
|
|
case Width16Bits:
|
|
|
|
//
|
|
// The channel must use controller 2.
|
|
//
|
|
|
|
if (controllerNumber != 2) {
|
|
return(NULL);
|
|
}
|
|
|
|
adapterObject->Width16Bits = TRUE;
|
|
break;
|
|
|
|
default:
|
|
return(NULL);
|
|
|
|
}
|
|
#endif //!NEC_98
|
|
}
|
|
|
|
|
|
//
|
|
// Determine if this is an Isa adapter.
|
|
//
|
|
|
|
if (DeviceDescriptor->InterfaceType == Isa) {
|
|
|
|
adapterObject->IsaDevice = TRUE;
|
|
|
|
}
|
|
|
|
//
|
|
// Initialize the adapter mode register value to the correct parameters,
|
|
// and save them in the adapter object.
|
|
//
|
|
|
|
adapterMode = 0;
|
|
((PDMA_EISA_MODE) &adapterMode)->Channel = adapterObject->ChannelNumber;
|
|
|
|
adapterObject->MasterDevice = FALSE;
|
|
|
|
if (DeviceDescriptor->Master) {
|
|
|
|
adapterObject->MasterDevice = TRUE;
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = CASCADE_REQUEST_MODE;
|
|
|
|
//
|
|
// Set the mode, and enable the request.
|
|
//
|
|
|
|
if (adapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = adapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
#if defined(NEC_98)
|
|
#else //NEC_98
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = adapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
//
|
|
// Unmask the DMA channel.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | adapterObject->ChannelNumber)
|
|
);
|
|
#endif //NEC_98
|
|
|
|
}
|
|
|
|
} else if (DeviceDescriptor->DemandMode) {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = DEMAND_REQUEST_MODE;
|
|
|
|
} else {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->RequestMode = SINGLE_REQUEST_MODE;
|
|
|
|
}
|
|
|
|
if (DeviceDescriptor->AutoInitialize) {
|
|
|
|
((PDMA_EISA_MODE) &adapterMode)->AutoInitialize = 1;
|
|
|
|
}
|
|
|
|
adapterObject->AdapterMode = adapterMode;
|
|
|
|
return(adapterObject);
|
|
}
|
|
|
|
NTSTATUS
|
|
IoAllocateAdapterChannel(
|
|
IN PADAPTER_OBJECT AdapterObject,
|
|
IN PDEVICE_OBJECT DeviceObject,
|
|
IN ULONG NumberOfMapRegisters,
|
|
IN PDRIVER_CONTROL ExecutionRoutine,
|
|
IN PVOID Context
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine allocates the adapter channel specified by the adapter object.
|
|
This is accomplished by placing the device object of the driver that wants
|
|
to allocate the adapter on the adapter's queue. If the queue is already
|
|
"busy", then the adapter has already been allocated, so the device object
|
|
is simply placed onto the queue and waits until the adapter becomes free.
|
|
|
|
Once the adapter becomes free (or if it already is), then the driver's
|
|
execution routine is invoked.
|
|
|
|
Also, a number of map registers may be allocated to the driver by specifying
|
|
a non-zero value for NumberOfMapRegisters. If this is the case, then the
|
|
base address of the allocated map registers in the adapter is also passed
|
|
to the driver's execution routine.
|
|
|
|
Arguments:
|
|
|
|
AdapterObject - Pointer to the adapter control object to allocate to the
|
|
driver.
|
|
|
|
DeviceObject - Pointer to the driver's device object that represents the
|
|
device allocating the adapter.
|
|
|
|
NumberOfMapRegisters - The number of map registers that are to be allocated
|
|
from the channel, if any.
|
|
|
|
ExecutionRoutine - The address of the driver's execution routine that is
|
|
invoked once the adapter channel (and possibly map registers) have been
|
|
allocated.
|
|
|
|
Context - An untyped longword context parameter passed to the driver's
|
|
execution routine.
|
|
|
|
Return Value:
|
|
|
|
Returns STATUS_SUCESS unless too many map registers are requested.
|
|
|
|
Notes:
|
|
|
|
Note that this routine MUST be invoked at DISPATCH_LEVEL or above.
|
|
|
|
--*/
|
|
|
|
{
|
|
IO_ALLOCATION_ACTION action;
|
|
|
|
//
|
|
// Make sure the adapter if free.
|
|
//
|
|
|
|
#if defined(ENABLE_LOADER_EBUG)
|
|
if (AdapterObject->AdapterInUse) {
|
|
DbgPrint("IoAllocateAdapterChannel: Called while adapter in use.\n");
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Make sure there are enough map registers.
|
|
//
|
|
|
|
if (NumberOfMapRegisters > AdapterObject->MapRegistersPerChannel) {
|
|
|
|
#if defined(ENABLE_LOADER_EBUG)
|
|
DbgPrint("IoAllocateAdapterChannel: Out of map registers.\n");
|
|
#endif
|
|
return(STATUS_INSUFFICIENT_RESOURCES);
|
|
}
|
|
|
|
action = ExecutionRoutine( DeviceObject,
|
|
DeviceObject->CurrentIrp,
|
|
AdapterObject->MapRegisterBase,
|
|
Context );
|
|
|
|
//
|
|
// If the driver wishes to keep the map registers then
|
|
// increment the current base and decrease the number of existing map
|
|
// registers.
|
|
//
|
|
|
|
if (action == DeallocateObjectKeepRegisters &&
|
|
AdapterObject->MapRegisterBase != NULL) {
|
|
|
|
AdapterObject->MapRegistersPerChannel -= NumberOfMapRegisters;
|
|
(PTRANSLATION_ENTRY) AdapterObject->MapRegisterBase +=
|
|
NumberOfMapRegisters;
|
|
|
|
} else if (action == KeepObject) {
|
|
|
|
AdapterObject->AdapterInUse = TRUE;
|
|
|
|
}
|
|
|
|
return(STATUS_SUCCESS);
|
|
}
|
|
|
|
VOID
|
|
IoFreeAdapterChannel(
|
|
IN PADAPTER_OBJECT AdapterObject
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine is invoked to deallocate the specified adapter object.
|
|
Any map registers that were allocated are also automatically deallocated.
|
|
No checks are made to ensure that the adapter is really allocated to
|
|
a device object. However, if it is not, then kernel will bugcheck.
|
|
|
|
If another device is waiting in the queue to allocate the adapter object
|
|
it will be pulled from the queue and its execution routine will be
|
|
invoked.
|
|
|
|
Arguments:
|
|
|
|
AdapterObject - Pointer to the adapter object to be deallocated.
|
|
|
|
Return Value:
|
|
|
|
None.
|
|
|
|
--*/
|
|
|
|
{
|
|
|
|
AdapterObject->AdapterInUse = FALSE;
|
|
}
|
|
|
|
PHYSICAL_ADDRESS
|
|
IoMapTransfer(
|
|
IN PADAPTER_OBJECT AdapterObject,
|
|
IN PMDL Mdl,
|
|
IN PVOID MapRegisterBase,
|
|
IN PVOID CurrentVa,
|
|
IN OUT PULONG Length,
|
|
IN BOOLEAN WriteToDevice
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine is invoked to set up the map registers in the DMA controller
|
|
to allow a transfer to or from a device.
|
|
|
|
Arguments:
|
|
|
|
AdapterObject - Pointer to the adapter object representing the DMA
|
|
controller channel that has been allocated.
|
|
|
|
Mdl - Pointer to the MDL that describes the pages of memory that are
|
|
being read or written.
|
|
|
|
MapRegisterBase - The address of the base map register that has been
|
|
allocated to the device driver for use in mapping the transfer.
|
|
|
|
CurrentVa - Current virtual address in the buffer described by the MDL
|
|
that the transfer is being done to or from.
|
|
|
|
Length - Supplies the length of the transfer. This determines the
|
|
number of map registers that need to be written to map the transfer.
|
|
Returns the length of the transfer which was actually mapped.
|
|
|
|
WriteToDevice - Boolean value that indicates whether this is a write
|
|
to the device from memory (TRUE), or vice versa.
|
|
|
|
Return Value:
|
|
|
|
Returns the logical address that should be used bus master controllers.
|
|
|
|
--*/
|
|
|
|
{
|
|
BOOLEAN useBuffer;
|
|
ULONG transferLength;
|
|
ULONG logicalAddress;
|
|
PULONG pageFrame;
|
|
PUCHAR bytePointer;
|
|
UCHAR adapterMode;
|
|
UCHAR dataByte;
|
|
PTRANSLATION_ENTRY translationEntry;
|
|
BOOLEAN masterDevice;
|
|
PHYSICAL_ADDRESS ReturnAddress;
|
|
|
|
masterDevice = AdapterObject == NULL || AdapterObject->MasterDevice ?
|
|
TRUE : FALSE;
|
|
|
|
translationEntry = MapRegisterBase;
|
|
transferLength = *Length;
|
|
|
|
//
|
|
// Determine if the data transfer needs to use the map buffer.
|
|
//
|
|
|
|
if (translationEntry && !masterDevice &&
|
|
ADDRESS_AND_SIZE_TO_SPAN_PAGES(CurrentVa, transferLength) > 1) {
|
|
|
|
logicalAddress = translationEntry->PhysicalAddress;
|
|
useBuffer = TRUE;
|
|
|
|
} else {
|
|
|
|
//
|
|
// The transfer can only be done for one page.
|
|
//
|
|
|
|
|
|
|
|
transferLength = PAGE_SIZE - BYTE_OFFSET(CurrentVa);
|
|
pageFrame = (PULONG)(Mdl+1);
|
|
pageFrame += ((ULONG_PTR) CurrentVa - (ULONG_PTR) Mdl->StartVa) / PAGE_SIZE;
|
|
logicalAddress = (*pageFrame << PAGE_SHIFT) + BYTE_OFFSET(CurrentVa);
|
|
|
|
//
|
|
// If the buffer is contigous and does not cross a 64 K bountry then
|
|
// just extend the buffer.
|
|
//
|
|
|
|
while( transferLength < *Length ){
|
|
|
|
if ( (*pageFrame + 1) != *(pageFrame + 1) ||
|
|
(*pageFrame & ~0x0ffff) != (*(pageFrame + 1) & ~0x0ffff)) {
|
|
break;
|
|
}
|
|
|
|
transferLength += PAGE_SIZE;
|
|
pageFrame++;
|
|
|
|
}
|
|
|
|
|
|
transferLength = transferLength > *Length ? *Length : transferLength;
|
|
|
|
useBuffer = FALSE;
|
|
}
|
|
|
|
//
|
|
// Check to see if this device has any map registers allocated. If it
|
|
// does, then it must require memory to be at less than 16 MB. If the
|
|
// logical address is greater than 16MB then map registers must be used
|
|
//
|
|
|
|
if (translationEntry && logicalAddress >= MAXIMUM_PHYSICAL_ADDRESS) {
|
|
|
|
logicalAddress = (translationEntry + translationEntry->Index)->
|
|
PhysicalAddress;
|
|
useBuffer = TRUE;
|
|
|
|
}
|
|
|
|
//
|
|
// Return the length.
|
|
//
|
|
|
|
*Length = transferLength;
|
|
|
|
//
|
|
// Copy the data if necessary.
|
|
//
|
|
|
|
if (useBuffer && WriteToDevice) {
|
|
|
|
HalpCopyBufferMap(
|
|
Mdl,
|
|
translationEntry + translationEntry->Index,
|
|
CurrentVa,
|
|
*Length,
|
|
WriteToDevice
|
|
);
|
|
|
|
}
|
|
|
|
//
|
|
// If there are map registers, then update the index to indicate
|
|
// how many have been used.
|
|
//
|
|
|
|
if (translationEntry) {
|
|
|
|
translationEntry->Index += ADDRESS_AND_SIZE_TO_SPAN_PAGES(
|
|
CurrentVa,
|
|
transferLength
|
|
);
|
|
|
|
}
|
|
|
|
//
|
|
// If no adapter was specificed then there is no more work to do so
|
|
// return.
|
|
//
|
|
|
|
if (masterDevice) {
|
|
|
|
//
|
|
// We only support 32 bits, but the return is 64. Just
|
|
// zero extend
|
|
//
|
|
|
|
ReturnAddress.QuadPart = logicalAddress;
|
|
return(ReturnAddress);
|
|
}
|
|
|
|
//
|
|
// Determine the mode based on the transfer direction.
|
|
//
|
|
|
|
adapterMode = AdapterObject->AdapterMode;
|
|
((PDMA_EISA_MODE) &adapterMode)->TransferType = (UCHAR) (WriteToDevice ?
|
|
WRITE_TRANSFER : READ_TRANSFER);
|
|
|
|
ReturnAddress.QuadPart = logicalAddress;
|
|
bytePointer = (PUCHAR) &logicalAddress;
|
|
|
|
#if defined(NEC_98)
|
|
#else
|
|
if (AdapterObject->Width16Bits) {
|
|
|
|
//
|
|
// If this is a 16 bit transfer then adjust the length and the address
|
|
// for the 16 bit DMA mode.
|
|
//
|
|
|
|
transferLength >>= 1;
|
|
|
|
//
|
|
// In 16 bit DMA mode the low 16 bits are shifted right one and the
|
|
// page register value is unchanged. So save the page register value
|
|
// and shift the logical address then restore the page value.
|
|
//
|
|
|
|
dataByte = bytePointer[2];
|
|
logicalAddress >>= 1;
|
|
bytePointer[2] = dataByte;
|
|
|
|
}
|
|
#endif //NEC_98
|
|
|
|
//
|
|
// Determine the controller number based on the Adapter number.
|
|
//
|
|
|
|
if (AdapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
bytePointer[0]
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
bytePointer[1]
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
|
|
(UCHAR)AdapterObject->PagePort,
|
|
bytePointer[2]
|
|
);
|
|
|
|
#if 0
|
|
//
|
|
// Write the high page register with zero value. This enable a special mode
|
|
// which allows ties the page register and base count into a single 24 bit
|
|
// address register.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
0
|
|
);
|
|
#endif
|
|
|
|
//
|
|
// Notify DMA chip of the length to transfer.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((transferLength - 1) & 0xff)
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((transferLength - 1) >> 8)
|
|
);
|
|
|
|
|
|
//
|
|
// Set the DMA chip to read or write mode; and unmask it.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
#if defined(NEC_98)
|
|
#else //NEC_98
|
|
//
|
|
// This request is for DMA controller 2
|
|
//
|
|
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->ClearBytePointer, 0 );
|
|
|
|
WRITE_PORT_UCHAR( &dmaControl->Mode, adapterMode );
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
bytePointer[0]
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseAddress,
|
|
bytePointer[1]
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageLowPort) +
|
|
(UCHAR)AdapterObject->PagePort,
|
|
bytePointer[2]
|
|
);
|
|
#if 0
|
|
|
|
//
|
|
// Write the high page register with zero value. This enable a special mode
|
|
// which allows ties the page register and base count into a single 24 bit
|
|
// address register.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
((PUCHAR) &((PEISA_CONTROL) HalpEisaControlBase)->DmaPageHighPort) +
|
|
(ULONG)AdapterObject->PagePort,
|
|
0
|
|
);
|
|
|
|
#endif
|
|
//
|
|
// Notify DMA chip of the length to transfer.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((transferLength - 1) & 0xff)
|
|
);
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->DmaAddressCount[AdapterObject->ChannelNumber]
|
|
.DmaBaseCount,
|
|
(UCHAR) ((transferLength - 1) >> 8)
|
|
);
|
|
|
|
|
|
//
|
|
// Set the DMA chip to read or write mode; and unmask it.
|
|
//
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_CLEARMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
#endif //NEC_98
|
|
|
|
}
|
|
|
|
return(ReturnAddress);
|
|
}
|
|
|
|
BOOLEAN
|
|
IoFlushAdapterBuffers(
|
|
IN PADAPTER_OBJECT AdapterObject,
|
|
IN PMDL Mdl,
|
|
IN PVOID MapRegisterBase,
|
|
IN PVOID CurrentVa,
|
|
IN ULONG Length,
|
|
IN BOOLEAN WriteToDevice
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine flushes the DMA adpater object buffers. For the Jazz system
|
|
its clears the enable flag which aborts the dma.
|
|
|
|
Arguments:
|
|
|
|
AdapterObject - Pointer to the adapter object representing the DMA
|
|
controller channel.
|
|
|
|
Mdl - A pointer to a Memory Descriptor List (MDL) that maps the locked-down
|
|
buffer to/from which the I/O occured.
|
|
|
|
MapRegisterBase - A pointer to the base of the map registers in the adapter
|
|
or DMA controller.
|
|
|
|
CurrentVa - The current virtual address in the buffer described the the Mdl
|
|
where the I/O operation occurred.
|
|
|
|
Length - Supplies the length of the transfer.
|
|
|
|
WriteToDevice - Supplies a BOOLEAN value that indicates the direction of
|
|
the data transfer was to the device.
|
|
|
|
Return Value:
|
|
|
|
TRUE - No errors are detected so the transfer must succeed.
|
|
|
|
--*/
|
|
|
|
{
|
|
PTRANSLATION_ENTRY translationEntry;
|
|
PULONG pageFrame;
|
|
ULONG transferLength;
|
|
ULONG partialLength;
|
|
BOOLEAN masterDevice;
|
|
BOOLEAN mapped = FALSE;
|
|
|
|
masterDevice = AdapterObject == NULL || AdapterObject->MasterDevice ?
|
|
TRUE : FALSE;
|
|
|
|
translationEntry = MapRegisterBase;
|
|
|
|
//
|
|
// Clear the index of used buffers.
|
|
//
|
|
|
|
if (translationEntry) {
|
|
|
|
translationEntry->Index = 0;
|
|
}
|
|
|
|
//
|
|
// Determine if the data needs to be copied to the orginal buffer.
|
|
// This only occurs if the data tranfer is from the device, the
|
|
// MapReisterBase is not NULL and the transfer spans a page.
|
|
//
|
|
|
|
if (!WriteToDevice && translationEntry) {
|
|
|
|
//
|
|
// If this is not a master device, then just transfer the buffer.
|
|
//
|
|
|
|
if (ADDRESS_AND_SIZE_TO_SPAN_PAGES(CurrentVa, Length) > 1 &&
|
|
!masterDevice) {
|
|
|
|
HalpCopyBufferMap(
|
|
Mdl,
|
|
translationEntry,
|
|
CurrentVa,
|
|
Length,
|
|
WriteToDevice
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// Cycle through the pages of the transfer to determine if there
|
|
// are any which need to be copied back.
|
|
//
|
|
|
|
transferLength = PAGE_SIZE - BYTE_OFFSET(CurrentVa);
|
|
partialLength = transferLength;
|
|
pageFrame = (PULONG)(Mdl+1);
|
|
pageFrame += ((ULONG_PTR) CurrentVa - (ULONG_PTR) Mdl->StartVa) / PAGE_SIZE;
|
|
|
|
while( transferLength <= Length ){
|
|
|
|
if (*pageFrame >= BYTES_TO_PAGES(MAXIMUM_PHYSICAL_ADDRESS)) {
|
|
|
|
//
|
|
// Check to see that the MDL is mapped in system space.
|
|
// If is not mapped, then map it. This ensures that the
|
|
// buffer will only have to be mapped at most once per I/O.
|
|
//
|
|
|
|
if ((Mdl->MdlFlags & MDL_MAPPED_TO_SYSTEM_VA) == 0) {
|
|
|
|
Mdl->MappedSystemVa = MmGetMdlVirtualAddress(Mdl);
|
|
Mdl->MdlFlags |= MDL_MAPPED_TO_SYSTEM_VA;
|
|
mapped = TRUE;
|
|
|
|
}
|
|
|
|
HalpCopyBufferMap(
|
|
Mdl,
|
|
translationEntry,
|
|
CurrentVa,
|
|
partialLength,
|
|
WriteToDevice
|
|
);
|
|
|
|
}
|
|
|
|
(PCCHAR) CurrentVa += partialLength;
|
|
partialLength = PAGE_SIZE;
|
|
|
|
//
|
|
// Note that transferLength indicates the amount which will be
|
|
// transfered after the next loop; thus, it is updated with the
|
|
// new partial length.
|
|
//
|
|
|
|
transferLength += partialLength;
|
|
pageFrame++;
|
|
translationEntry++;
|
|
}
|
|
|
|
//
|
|
// Process the any remaining residue.
|
|
//
|
|
|
|
partialLength = Length - transferLength + partialLength;
|
|
if (partialLength && *pageFrame >= BYTES_TO_PAGES(MAXIMUM_PHYSICAL_ADDRESS)) {
|
|
|
|
HalpCopyBufferMap(
|
|
Mdl,
|
|
translationEntry,
|
|
CurrentVa,
|
|
partialLength,
|
|
WriteToDevice
|
|
);
|
|
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
//
|
|
// If this is a master device, then there is nothing more to do so return
|
|
// TRUE.
|
|
//
|
|
|
|
if (masterDevice) {
|
|
|
|
return(TRUE);
|
|
|
|
}
|
|
|
|
//
|
|
// Mask the DMA request line so that DMA requests cannot occur.
|
|
//
|
|
|
|
if (AdapterObject->AdapterNumber == 1) {
|
|
|
|
//
|
|
// This request is for DMA controller 1
|
|
//
|
|
|
|
PDMA1_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
|
|
} else {
|
|
|
|
//
|
|
// This request is for DMA controller 2
|
|
//
|
|
|
|
#if defined(NEC_98)
|
|
#else //NEC_98
|
|
PDMA2_CONTROL dmaControl;
|
|
|
|
dmaControl = AdapterObject->AdapterBaseVa;
|
|
|
|
WRITE_PORT_UCHAR(
|
|
&dmaControl->SingleMask,
|
|
(UCHAR) (DMA_SETMASK | AdapterObject->ChannelNumber)
|
|
);
|
|
#endif //NEC_98
|
|
|
|
}
|
|
|
|
return TRUE;
|
|
}
|
|
|
|
VOID
|
|
IoFreeMapRegisters(
|
|
PADAPTER_OBJECT AdapterObject,
|
|
PVOID MapRegisterBase,
|
|
ULONG NumberOfMapRegisters
|
|
)
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This routine deallocates the map registers for the adapter. If there are
|
|
any queued adapter waiting for an attempt is made to allocate the next
|
|
entry.
|
|
|
|
Arguments:
|
|
|
|
AdapterObject - The adapter object to where the map register should be
|
|
returned.
|
|
|
|
MapRegisterBase - The map register base of the registers to be deallocated.
|
|
|
|
NumberOfMapRegisters - The number of registers to be deallocated.
|
|
|
|
Return Value:
|
|
|
|
None
|
|
|
|
--+*/
|
|
{
|
|
PTRANSLATION_ENTRY translationEntry;
|
|
|
|
//
|
|
// Determine if this was the last allocation from the adapter. If is was
|
|
// then free the map registers by restoring the map register base and the
|
|
// channel count; otherwise the registers are lost. This handles the
|
|
// normal case.
|
|
//
|
|
|
|
translationEntry = AdapterObject->MapRegisterBase;
|
|
translationEntry -= NumberOfMapRegisters;
|
|
|
|
if (translationEntry == MapRegisterBase) {
|
|
|
|
//
|
|
// The last allocated registers are being freed.
|
|
//
|
|
|
|
AdapterObject->MapRegisterBase = (PVOID) translationEntry;
|
|
AdapterObject->MapRegistersPerChannel += NumberOfMapRegisters;
|
|
}
|
|
}
|
|
|
|
PHYSICAL_ADDRESS
|
|
MmGetPhysicalAddress (
|
|
IN PVOID BaseAddress
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function returns the corresponding physical address for a
|
|
valid virtual address.
|
|
|
|
Arguments:
|
|
|
|
BaseAddress - Supplies the virtual address for which to return the
|
|
physical address.
|
|
|
|
Return Value:
|
|
|
|
Returns the corresponding physical address.
|
|
|
|
Environment:
|
|
|
|
Kernel mode. Any IRQL level.
|
|
|
|
--*/
|
|
|
|
{
|
|
PHYSICAL_ADDRESS PhysicalAddress;
|
|
ULONG Index;
|
|
|
|
PhysicalAddress.QuadPart = (ULONG_PTR)BaseAddress & ~KSEG0_BASE;
|
|
|
|
#if !defined(NO_LEGACY_DRIVERS)
|
|
//
|
|
// This is not used under EFI -- the HalPT is only setup immediately
|
|
// before calling ExitBootServices(), and this routine is really only
|
|
// necessary if you are using ntbootdd.sys.
|
|
//
|
|
//
|
|
// If the address is in the hal map range, get the physical
|
|
// addressed mapped by the pte
|
|
//
|
|
|
|
if (((ULONG_PTR) BaseAddress) >= 0xe0000000ffc00000) {
|
|
Index = (ULONG) ((PhysicalAddress.QuadPart >> PAGE_SHIFT) & 0x3ff);
|
|
PhysicalAddress.QuadPart = HalPT[Index].PageFrameNumber << PAGE_SHIFT;
|
|
PhysicalAddress.QuadPart |= (ULONG_PTR)BaseAddress & (PAGE_SIZE-1);
|
|
}
|
|
#endif
|
|
|
|
return(PhysicalAddress);
|
|
}
|
|
|
|
PVOID
|
|
MmAllocateNonCachedMemory (
|
|
IN SIZE_T NumberOfBytes
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This function allocates a range of noncached memory in
|
|
the non-paged portion of the system address space.
|
|
|
|
This routine is designed to be used by a driver's initialization
|
|
routine to allocate a noncached block of virtual memory for
|
|
various device specific buffers.
|
|
|
|
Arguments:
|
|
|
|
NumberOfBytes - Supplies the number of bytes to allocate.
|
|
|
|
Return Value:
|
|
|
|
NULL - the specified request could not be satisfied.
|
|
|
|
NON-NULL - Returns a pointer (virtual address in the nonpaged portion
|
|
of the system) to the allocated phyiscally contiguous
|
|
memory.
|
|
|
|
Environment:
|
|
|
|
Kernel mode, IRQL of APC_LEVEL or below.
|
|
|
|
--*/
|
|
|
|
{
|
|
PVOID BaseAddress;
|
|
ULONG bytesToAllocate;
|
|
|
|
bytesToAllocate = (ULONG)NumberOfBytes;
|
|
|
|
//
|
|
// Allocated the memory.
|
|
//
|
|
|
|
BaseAddress = BlAllocateHeap(bytesToAllocate);
|
|
return BaseAddress;
|
|
}
|