Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

556 lines
17 KiB

/*++
Copyright (c) 1991 Microsoft Corporation
Module Name:
ntsetup.c
Abstract:
This module is the tail-end of the OS loader program. It performs all
IA64 specific allocations and initialize. The OS loader invokes this
this routine immediately before calling the loaded kernel image.
Author:
Allen Kay (akay) 19-May-1999
based on MIPS version by John Vert (jvert) 20-Jun-1991
Environment:
Kernel mode
Revision History:
--*/
#include "bldr.h"
#include "stdio.h"
#include "bootia64.h"
#include "sal.h"
#include "efi.h"
#include "fpswa.h"
#include "extern.h"
//
// Define macro to round structure size to next 16-byte boundary
//
#undef ROUND_UP
#define ROUND_UP(x) ((sizeof(x) + 15) & (~15))
#define MIN(_a,_b) (((_a) <= (_b)) ? (_a) : (_b))
#define MAX(_a,_b) (((_a) <= (_b)) ? (_b) : (_a))
//
// Configuration Data Header
// The following structure is copied from fw\mips\oli2msft.h
// NOTE shielint - Somehow, this structure got incorporated into
// firmware EISA configuration data. We need to know the size of the
// header and remove it before writing eisa configuration data to
// registry.
//
typedef struct _CONFIGURATION_DATA_HEADER {
USHORT Version;
USHORT Revision;
PCHAR Type;
PCHAR Vendor;
PCHAR ProductName;
PCHAR SerialNumber;
} CONFIGURATION_DATA_HEADER;
#define CONFIGURATION_DATA_HEADER_SIZE sizeof(CONFIGURATION_DATA_HEADER)
//
// Global Definition: This structure value is setup in sumain.c
//
TR_INFO ItrInfo[8], DtrInfo[8];
extern ULONGLONG MemoryMapKey;
//
// Internal function references
//
VOID
BlQueryImplementationAndRevision (
OUT PULONG ProcessorId,
OUT PULONG FloatingId
);
VOID
BlTrCleanUp (
);
ARC_STATUS
BlSetupForNt(
IN PLOADER_PARAMETER_BLOCK BlLoaderBlock
)
/*++
Routine Description:
This function initializes the IA64 specific kernel data structures
required by the NT system.
Arguments:
BlLoaderBlock - Supplies the address of the loader parameter block.
Return Value:
ESUCCESS is returned if the setup is successfully complete. Otherwise,
an unsuccessful status is returned.
--*/
{
PCONFIGURATION_COMPONENT_DATA ConfigEntry;
ULONG FloatingId;
CHAR Identifier[256];
ULONG KernelPage;
ULONG LinesPerBlock;
ULONG LineSize;
PCHAR NewIdentifier;
ULONGLONG PrcbPage;
ULONG ProcessorId;
ARC_STATUS Status;
ULONG i;
PULONG KernelStructureBase;
PHARDWARE_PTE SelfMapPde;
PHARDWARE_PTE Pde;
PHARDWARE_PTE HalPT;
PLIST_ENTRY NextMd;
PMEMORY_ALLOCATION_DESCRIPTOR MemoryDescriptor;
EFI_MEMORY_DESCRIPTOR * MemoryMap = NULL;
ULONGLONG MemoryMapSize = 0;
ULONGLONG MapKey;
ULONGLONG DescriptorSize;
ULONG DescriptorVersion;
EFI_STATUS EfiStatus;
EFI_GUID FpswaId = EFI_INTEL_FPSWA;
EFI_HANDLE FpswaImage;
FPSWA_INTERFACE *FpswaInterface;
ULONGLONG BufferSize;
BOOLEAN FpswaFound = FALSE;
//
// Allocate DPC stack pages for the boot processor.
//
Status = BlAllocateDescriptor(LoaderStartupDpcStack,
0,
(KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT,
&KernelPage);
if (Status != ESUCCESS) {
return(Status);
}
BlLoaderBlock->u.Ia64.InterruptStack =
(KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE;
//
// Allocate kernel stack pages for the boot processor idle thread.
//
Status = BlAllocateDescriptor(LoaderStartupKernelStack,
0,
(KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT,
&KernelPage);
if (Status != ESUCCESS) {
return(Status);
}
BlLoaderBlock->KernelStack =
(KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE;
//
// Allocate panic stack pages for the boot processor.
//
Status = BlAllocateDescriptor(LoaderStartupPanicStack,
0,
(KERNEL_BSTORE_SIZE + KERNEL_STACK_SIZE) >> PAGE_SHIFT,
&KernelPage);
if (Status != ESUCCESS) {
return(Status);
}
BlLoaderBlock->u.Ia64.PanicStack =
(KSEG0_BASE | (KernelPage << PAGE_SHIFT)) + KERNEL_STACK_SIZE;
//
// Allocate and zero two pages for the PCR.
//
Status = BlAllocateDescriptor(LoaderStartupPcrPage,
0,
2,
(PULONG) &BlLoaderBlock->u.Ia64.PcrPage);
if (Status != ESUCCESS) {
return(Status);
}
BlLoaderBlock->u.Ia64.PcrPage2 = BlLoaderBlock->u.Ia64.PcrPage + 1;
RtlZeroMemory((PVOID)(KSEG0_BASE | (BlLoaderBlock->u.Ia64.PcrPage << PAGE_SHIFT)),
PAGE_SIZE * 2);
//
// Allocate and zero four pages for the PDR and one page of memory for
// the initial processor block, idle process, and idle thread structures.
//
Status = BlAllocateDescriptor(LoaderStartupPdrPage,
0,
3,
(PULONG) &BlLoaderBlock->u.Ia64.PdrPage);
if (Status != ESUCCESS) {
return(Status);
}
RtlZeroMemory((PVOID)(KSEG0_BASE | (BlLoaderBlock->u.Ia64.PdrPage << PAGE_SHIFT)),
PAGE_SIZE * 3);
//
// The storage for processor control block, the idle thread object, and
// the idle thread process object are allocated from the third page of the
// PDR allocation. The addresses of these data structures are computed
// and stored in the loader parameter block and the memory is zeroed.
//
PrcbPage = BlLoaderBlock->u.Ia64.PdrPage + 1;
if ((PAGE_SIZE * 2) >= (ROUND_UP(KPRCB) + ROUND_UP(EPROCESS) + ROUND_UP(ETHREAD))) {
BlLoaderBlock->Prcb = KSEG0_BASE | (PrcbPage << PAGE_SHIFT);
BlLoaderBlock->Process = BlLoaderBlock->Prcb + ROUND_UP(KPRCB);
BlLoaderBlock->Thread = BlLoaderBlock->Process + ROUND_UP(EPROCESS);
} else {
return(ENOMEM);
}
Status = BlAllocateDescriptor(LoaderStartupPdrPage,
0,
1,
&KernelPage);
if (Status != ESUCCESS) {
return(Status);
}
RtlZeroMemory((PVOID)(KSEG0_BASE | ((ULONGLONG) KernelPage << PAGE_SHIFT)),
PAGE_SIZE * 1);
//
// Setup last two entries in the page directory table for HAL and
// allocate page tables for them.
//
Pde = (PHARDWARE_PTE) (ULONG_PTR)( (BlLoaderBlock->u.Ia64.PdrPage) << PAGE_SHIFT);
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].PageFrameNumber = (ULONG) KernelPage;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Valid = 1;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Cache = 0;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Accessed = 1;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Dirty = 1;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Execute = 1;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].Write = 1;
Pde[(KIPCR & 0xffffffff) >> PDI_SHIFT].CopyOnWrite = 1;
//
// 0xFFC00000 is the starting virtual address of Pde[2046].
//
HalPT = (PHARDWARE_PTE)((ULONG_PTR) KernelPage << PAGE_SHIFT);
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].PageFrameNumber = BlLoaderBlock->u.Ia64.PcrPage2;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Valid = 1;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Cache = 0;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Accessed = 1;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Dirty = 1;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Execute = 1;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].Write = 1;
HalPT[GetPteOffset(KI_USER_SHARED_DATA)].CopyOnWrite = 1;
//
// Fill in the rest of the loader block fields.
//
BlLoaderBlock->u.Ia64.AcpiRsdt = (ULONG_PTR) AcpiTable;
//
// Fill the ItrInfo and DtrInfo fields
//
BlLoaderBlock->u.Ia64.EfiSystemTable = (ULONG_PTR) EfiST;
BlLoaderBlock->u.Ia64.PalProcVirtual = (ULONG_PTR) PalProcVirtual;
//
// Fill in ItrInfo and DtrInfo for DRIVER0
//
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].Index = ITR_DRIVER0_INDEX;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].VirtualAddress = KSEG0_BASE + BL_16M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER0_INDEX].PhysicalAddress = BL_16M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].Index = DTR_DRIVER0_INDEX;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].VirtualAddress = KSEG0_BASE + BL_16M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER0_INDEX].PhysicalAddress = BL_16M;
//
// Fill in ItrInfo and DtrInfo for DRIVER1
//
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].Index = ITR_DRIVER1_INDEX;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].VirtualAddress = KSEG0_BASE + BL_32M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_DRIVER1_INDEX].PhysicalAddress = BL_32M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].Index = DTR_DRIVER1_INDEX;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].VirtualAddress = KSEG0_BASE + BL_32M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_DRIVER1_INDEX].PhysicalAddress = BL_32M;
//
// Fill in ItrInfo and DtrInfo for KERNEL
//
BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].Index = ITR_KERNEL_INDEX;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].VirtualAddress = KSEG0_BASE + BL_48M;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_KERNEL_INDEX].PhysicalAddress = BL_48M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].Index = DTR_KERNEL_INDEX;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].PageSize = PS_16M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].VirtualAddress = KSEG0_BASE + BL_48M;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_KERNEL_INDEX].PhysicalAddress = BL_48M;
//
// Fill in ItrInfo and DtrInfo for PAL
//
BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].Index = ITR_PAL_INDEX;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].PageSize = (ULONG) PalTrPs;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].VirtualAddress = VIRTUAL_PAL_BASE;
BlLoaderBlock->u.Ia64.ItrInfo[ITR_PAL_INDEX].PhysicalAddress = PalPhysicalBase;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].Index = DTR_PAL_INDEX;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].PageSize = (ULONG) PalTrPs;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].VirtualAddress = VIRTUAL_PAL_BASE;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_PAL_INDEX].PhysicalAddress = PalPhysicalBase;
//
// Fill in ItrInfo and DtrInfo for IO port
//
BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].Index = DTR_IO_PORT_INDEX;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].PageSize = (ULONG) IoPortTrPs;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].VirtualAddress = VIRTUAL_IO_BASE;
BlLoaderBlock->u.Ia64.DtrInfo[DTR_IO_PORT_INDEX].PhysicalAddress = IoPortPhysicalBase;
//
// Flush all caches.
//
if (SYSTEM_BLOCK->FirmwareVectorLength > (sizeof(PVOID) * FlushAllCachesRoutine)) {
ArcFlushAllCaches();
}
//
// make memory map by TR's unavailable for kernel use.
//
NextMd = BlLoaderBlock->MemoryDescriptorListHead.Flink;
while (NextMd != &BlLoaderBlock->MemoryDescriptorListHead) {
MemoryDescriptor = CONTAINING_RECORD(NextMd,
MEMORY_ALLOCATION_DESCRIPTOR,
ListEntry);
//
// lock down pages we don't want the kernel to use.
// NB. The only reason we need to lock down LoaderLoadedProgram because
// there is static data in the loader image that the kernel uses.
//
if ((MemoryDescriptor->MemoryType == LoaderLoadedProgram) ||
(MemoryDescriptor->MemoryType == LoaderOsloaderStack)) {
MemoryDescriptor->MemoryType = LoaderFirmwarePermanent;
}
//
// we've marked lots of memory as off limits to trick our allocator
// into allocating memory at a specific location (which is necessary to
// get hte kernel loaded at the right location, etc.). We do this by
// marking the page type as LoaderSystemBlock. Now that we're done
// allocating memory, we can restore all of the LoaderSystemBlock pages
// to LoaderFree, so that the kernel can use this memory.
//
if (MemoryDescriptor->MemoryType == LoaderSystemBlock) {
MemoryDescriptor->MemoryType = LoaderFree;
}
NextMd = MemoryDescriptor->ListEntry.Flink;
}
//
// Go to physical mode before making EFI calls.
//
FlipToPhysical();
//
// Get processor configuration information
//
ReadProcessorConfigInfo( &BlLoaderBlock->u.Ia64.ProcessorConfigInfo );
//
// Get FP assist handle
//
BufferSize = sizeof(FpswaImage);
EfiStatus = EfiBS->LocateHandle(ByProtocol,
&FpswaId,
NULL,
&BufferSize,
&FpswaImage
);
if (!EFI_ERROR(EfiStatus)) {
//
// Get FP assist protocol interface.
//
EfiStatus = EfiBS->HandleProtocol(FpswaImage, &FpswaId, &FpswaInterface);
if (EFI_ERROR(EfiStatus)) {
EfiST->ConOut->OutputString(
EfiST->ConOut,
L"BlSetupForNt: Could not get FP assist entry point\n"
);
EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0);
}
FpswaFound = TRUE;
}
#if 1
//
// The following code must be fixed to handle ExitBootServices() failing
// because the memory map has changed in between calls to GetMemoryMap and
// the call to ExitBootServices(). We should also walk the EFI memory map
// and correlate it against the MemoryDescriptorList to ensure that all of
// the memory is properly accounted for.
//
//
// Get memory map info from EFI firmware
//
EfiStatus = EfiBS->GetMemoryMap (
&MemoryMapSize,
MemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
if (EfiStatus != EFI_BUFFER_TOO_SMALL) {
EfiST->ConOut->OutputString(EfiST->ConOut,
L"BlSetupForNt: GetMemoryMap failed\r\n");
EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0);
}
FlipToVirtual();
#if DBG
DbgPrint( "About to call BlAllocateAlignedDescriptor for %x\r\n",
MAX((MemoryMapSize >> 16), 1));
#endif
Status = BlAllocateAlignedDescriptor(
LoaderOsloaderHeap,
0,
(ULONG)(MAX((MemoryMapSize >> 16), 1)),
0,
&KernelPage);
if (Status != ESUCCESS) {
return(Status);
}
FlipToPhysical();
//
// We need a physical address for EFI, and the hal expects a physical
// address as well.
//
MemoryMap = (PVOID)(ULONGLONG)((ULONGLONG)KernelPage << PAGE_SHIFT);
EfiStatus = EfiBS->GetMemoryMap (
&MemoryMapSize,
MemoryMap,
&MapKey,
&DescriptorSize,
&DescriptorVersion
);
if (EFI_ERROR(EfiStatus)) {
EfiST->ConOut->OutputString(EfiST->ConOut,
L"BlSetupForNt: GetMemoryMap failed\r\n");
EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0);
}
//
// Call EFI exit boot services. No more Efi calls to boot services
// API's will be called beyond this point.
//
EfiStatus = EfiBS->ExitBootServices (
EfiImageHandle,
MapKey
);
if (EFI_ERROR(EfiStatus)) {
EfiST->ConOut->OutputString(EfiST->ConOut,
L"BlSetupForNt: ExitBootServices failed\r\n");
EfiBS->Exit(EfiImageHandle, EfiStatus, 0, 0);
}
#endif
//
// Go back to virtual mode.
//
FlipToVirtual();
//
// Pass EFI memory descriptor Parameters to kernel through OS
// loader block.
//
BlLoaderBlock->u.Ia64.EfiMemMapParam.MemoryMapSize = MemoryMapSize;
BlLoaderBlock->u.Ia64.EfiMemMapParam.MemoryMap = (PUCHAR) MemoryMap;
BlLoaderBlock->u.Ia64.EfiMemMapParam.MapKey = MapKey;
BlLoaderBlock->u.Ia64.EfiMemMapParam.DescriptorSize = DescriptorSize;
BlLoaderBlock->u.Ia64.EfiMemMapParam.DescriptorVersion = DescriptorVersion;
if (FpswaFound) {
BlLoaderBlock->u.Ia64.FpswaInterface = (ULONG_PTR) FpswaInterface;
} else {
BlLoaderBlock->u.Ia64.FpswaInterface = (ULONG_PTR) NULL;
}
//
// Clean up TR's used by boot loader but not needed by ntoskrnl.
//
BlTrCleanUp();
//
// Flush the memory range where kernel, hal, and the drivers are
// loaded into.
//
PioICacheFlush(KSEG0_BASE+BL_16M, BL_48M);
return(ESUCCESS);
}