Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

422 lines
11 KiB

// TITLE("Miscellaneous Kernel Functions")
//++
//
// Copyright (c) 1990 Microsoft Corporation
//
// Module Name:
//
// miscs.s
//
// Abstract:
//
// This module implements machine dependent miscellaneous kernel functions.
// Functions are provided to request a software interrupt, continue thread
// execution, and perform last chance exception processing.
//
// Author:
//
// David N. Cutler (davec) 31-Mar-1990
//
// Environment:
//
// Kernel mode only.
//
// Revision History:
//
// Thomas Van Baak (tvb) 29-Jul-1992
//
// Adapted for Alpha AXP.
//
//--
#include "ksalpha.h"
SBTTL("Request Software Interrupt")
//++
//
// VOID
// KiRequestSoftwareInterrupt (
// KIRQL RequestIrql
// )
//
// Routine Description:
//
// This function requests a software interrupt at the specified IRQL
// level.
//
// Arguments:
//
// RequestIrql (a0) - Supplies the requested IRQL value.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiRequestSoftwareInterrupt)
//
// If an interrupt routine is active, do not request an interrupt from the
// PAL. Indicate the interrupt has been requested in the PRCB. The interrupt
// exit code will dispatch the software interrupt directly.
//
GET_PROCESSOR_CONTROL_BLOCK_BASE // get current prcb address
LDP t0, PbInterruptTrapFrame(v0) // get interrupt trap frame
beq t0, 10f // if eq, no interrupt active
blbs a0, 10f // if lbs, APC interrupt requested
stl a0, PbSoftwareInterrupts(v0) // set interrupt request bit in PRCB
ret zero, (ra) //
//
// Request software interrupt.
//
10: REQUEST_SOFTWARE_INTERRUPT // request software interrupt
ret zero, (ra) // return
.end KiRequestSoftwareInterrupt
SBTTL("Continue Execution System Service")
//++
//
// NTSTATUS
// NtContinue (
// IN PCONTEXT ContextRecord,
// IN BOOLEAN TestAlert
// )
//
// Routine Description:
//
// This routine is called as a system service to continue execution after
// an exception has occurred. Its function is to transfer information from
// the specified context record into the trap frame that was built when the
// system service was executed, and then exit the system as if an exception
// had occurred.
//
// Arguments:
//
// ContextRecord (a0) - Supplies a pointer to a context record.
//
// TestAlert (a1) - Supplies a boolean value that specifies whether alert
// should be tested for the previous processor mode.
//
// N.B. Register fp is assumed to contain the address of a trap frame.
//
// Return Value:
//
// Normally there is no return from this routine. However, if the specified
// context record is misaligned or is not accessible, then the appropriate
// status code is returned.
//
//--
NESTED_ENTRY(NtContinue, ExceptionFrameLength, zero)
lda sp, -ExceptionFrameLength(sp) // allocate exception frame
stq ra, ExIntRa(sp) // save return address
PROLOGUE_END
//
// Save the nonvolatile machine state so that it can be restored by exception
// exit if it is not overwritten by the specified context record.
//
stq s0, ExIntS0(sp) // save nonvolatile integer state
stq s1, ExIntS1(sp) //
stq s2, ExIntS2(sp) //
stq s3, ExIntS3(sp) //
stq s4, ExIntS4(sp) //
stq s5, ExIntS5(sp) //
stt f2, ExFltF2(sp) // save nonvolatile floating state
stt f3, ExFltF3(sp) //
stt f4, ExFltF4(sp) //
stt f5, ExFltF5(sp) //
stt f6, ExFltF6(sp) //
stt f7, ExFltF7(sp) //
stt f8, ExFltF8(sp) //
stt f9, ExFltF9(sp) //
//
// Transfer information from the context frame to the exception and trap
// frames.
//
mov a1, s0 // preserve test alert argument in s0
mov sp, a1 // set address of exception frame
mov fp, a2 // set address of trap frame
bsr ra, KiContinue // transfer context to kernel frames
//
// If the kernel continuation routine returns success, then exit via the
// exception exit code. Otherwise return to the system service dispatcher.
//
bne v0, 20f // if ne, transfer failed
//
// Check to determine if alert should be tested for the previous processor
// mode and restore the previous mode in the thread object.
//
GET_CURRENT_THREAD // get current thread address
LDP t3, TrTrapFrame(fp) // get old trap frame address
ldl t2, TrPreviousMode(fp) // get old previous mode
LoadByte(a0, ThPreviousMode(v0)) // get current previous mode
STP t3, ThTrapFrame(v0) // restore old trap frame address
StoreByte(t2, ThPreviousMode(v0)) // restore old previous mode
beq s0, 10f // if eq, don't test for alert
bsr ra, KeTestAlertThread // test alert for current thread
//
// Exit the system via exception exit which will restore the nonvolatile
// machine state.
//
10: br zero, KiExceptionExit // finish in exception exit
//
// Context record is misaligned or not accessible.
//
20: ldq ra, ExIntRa(sp) // restore return address
lda sp, ExceptionFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
.end NtContinue
SBTTL("Raise Exception System Service")
//++
//
// NTSTATUS
// NtRaiseException (
// IN PEXCEPTION_RECORD ExceptionRecord,
// IN PCONTEXT ContextRecord,
// IN BOOLEAN FirstChance
// )
//
// Routine Description:
//
// This routine is called as a system service to raise an exception.
// The exception can be raised as a first or second chance exception.
//
// Arguments:
//
// ExceptionRecord (a0) - Supplies a pointer to an exception record.
//
// ContextRecord (a1) - Supplies a pointer to a context record.
//
// FirstChance (a2) - Supplies a boolean value that determines whether
// this is the first (TRUE) or second (FALSE) chance for dispatching
// the exception.
//
// N.B. Register fp is assumed to contain the address of a trap frame.
//
// Return Value:
//
// Normally there is no return from this routine. However, if the specified
// context record or exception record is misaligned or is not accessible,
// then the appropriate status code is returned.
//
//--
NESTED_ENTRY(NtRaiseException, ExceptionFrameLength, zero)
lda sp, -ExceptionFrameLength(sp) // allocate exception frame
stq ra, ExIntRa(sp) // save return address
stq s0, ExIntS0(sp) // save S0 and S1 in the prologue
stq s1, ExIntS1(sp) // so that Get/SetContext can find
// the right ones.
PROLOGUE_END
//
// Save the nonvolatile machine state so that it can be restored by exception
// exit if it is not overwritten by the specified context record.
//
stq s2, ExIntS2(sp) //
stq s3, ExIntS3(sp) //
stq s4, ExIntS4(sp) //
stq s5, ExIntS5(sp) //
stt f2, ExFltF2(sp) // save nonvolatile floating state
stt f3, ExFltF3(sp) //
stt f4, ExFltF4(sp) //
stt f5, ExFltF5(sp) //
stt f6, ExFltF6(sp) //
stt f7, ExFltF7(sp) //
stt f8, ExFltF8(sp) //
stt f9, ExFltF9(sp) //
//
// Call the raise exception kernel routine which will marshall the arguments
// and then call the exception dispatcher.
//
// KiRaiseException requires five arguments: the first two are the same as
// the first two of this function and the other three are set here.
//
mov a2, a4 // set first chance argument
mov sp, a2 // set address of exception frame
mov fp, a3 // set address of trap frame
bsr ra, KiRaiseException // call raise exception routine
//
// If the raise exception routine returns success, then exit via the exception
// exit code. Otherwise return to the system service dispatcher.
//
bis v0, zero, t0 // save return status
LDP t1, TrTrapFrame(fp) // get old trap frame address
GET_CURRENT_THREAD // get current thread address
bne t0, 10f // if ne, dispatch not successful
STP t1, ThTrapFrame(v0) // restore old trap frame address
//
// Exit the system via exception exit which will restore the nonvolatile
// machine state.
//
br zero, KiExceptionExit // finish in exception exit
//
// The context or exception record is misaligned or not accessible, or the
// exception was not handled.
//
10: ldq ra, ExIntRa(sp) // restore return address
lda sp, ExceptionFrameLength(sp) // deallocate stack frame
ret zero, (ra) // return
.end NtRaiseException
SBTTL("Instruction Memory Barrier")
//++
//
// VOID
// KiImb (
// VOID
// )
//
// Routine Description:
//
// This routine is called to flush the instruction cache on the
// current processor.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiImb)
IMB // flush the icache via PALcode
ret zero, (ra) // return
.end KiImb
SBTTL("Memory Barrier")
//++
//
// VOID
// KiImb (
// VOID
// )
//
// Routine Description:
//
// This routine is called to issue a memory barrier on the current
// processor.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiMb)
mb // memory barrier
ret zero, (ra) // return
.end KiMb
//++
//
// VOID
// KiEnablePALAlignmentFixups(
// VOID
// )
//
// Routine Description:
//
// Enable PAL fixups and PAL counting of alignment faults.
//
// Arguments:
//
// None
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiEnablePALAlignmentFixups)
ENABLE_ALIGNMENT_FIXUPS // enable alignment fixups
ret zero, (ra) // return
.end KiEnablePALAlignmentFixups
//++
//
// VOID
// KiDisablePALAlignmentFixups(
// VOID
// )
//
// Routine Description:
//
// Disable PAL fixups and force all alignment faults to
// the kernel.
//
// Arguments:
//
// None
//
// Return Value:
//
// None.
//
//--
LEAF_ENTRY(KiDisablePALAlignmentFixups)
DISABLE_ALIGNMENT_FIXUPS // disable alignment fixups
ret zero, (ra) // return
.end KiDisablePALAlignmentFixups