Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1153 lines
23 KiB

/*++
Copyright (c) 1989 Microsoft Corporation
Module Name:
ki.h
Abstract:
This module contains the private (internal) header file for the
kernel.
Author:
David N. Cutler (davec) 28-Feb-1989
Revision History:
--*/
#ifndef _KI_
#define _KI_
#include "ntos.h"
#include "stdio.h"
#include "stdlib.h"
#include "zwapi.h"
//
// Private (internal) constant definitions.
//
// Priority increment value definitions
//
#define ALERT_INCREMENT 2 // Alerted unwait priority increment
#define BALANCE_INCREMENT 10 // Balance set priority increment
#define RESUME_INCREMENT 0 // Resume thread priority increment
#define TIMER_EXPIRE_INCREMENT 0 // Timer expiration priority increment
//
// Define time critical priority class base.
//
#define TIME_CRITICAL_PRIORITY_BOUND 14
//
// Define NIL pointer value.
//
#define NIL (PVOID)NULL // Null pointer to void
//
// Define macros which are used in the kernel only
//
// Clear member in set
//
#define ClearMember(Member, Set) \
Set = Set & (~(1 << (Member)))
//
// Set member in set
//
#define SetMember(Member, Set) \
Set = Set | (1 << (Member))
//
// Lock and unlock context swap lock.
//
#define KiLockContextSwap(OldIrql) \
*(OldIrql) = KeAcquireQueuedSpinLockRaiseToSynch(LockQueueContextSwapLock)
#define KiUnlockContextSwap(OldIrql) \
KeReleaseQueuedSpinLock(LockQueueContextSwapLock, OldIrql)
VOID
FASTCALL
KiUnlockDispatcherDatabase (
IN KIRQL OldIrql
);
// VOID
// KiBoostPriorityThread (
// IN PKTHREAD Thread,
// IN KPRIORITY Increment
// )
//
//*++
//
// Routine Description:
//
// This function boosts the priority of the specified thread using
// the same algorithm used when a thread gets a boost from a wait
// operation.
//
// Arguments:
//
// Thread - Supplies a pointer to a dispatcher object of type thread.
//
// Increment - Supplies the priority increment that is to be applied to
// the thread's priority.
//
// Return Value:
//
// None.
//
//--*
#define KiBoostPriorityThread(Thread, Increment) { \
KPRIORITY NewPriority; \
PKPROCESS Process; \
\
if ((Thread)->Priority < LOW_REALTIME_PRIORITY) { \
if ((Thread)->PriorityDecrement == 0) { \
NewPriority = (Thread)->BasePriority + (Increment); \
if (NewPriority > (Thread)->Priority) { \
if (NewPriority >= LOW_REALTIME_PRIORITY) { \
NewPriority = LOW_REALTIME_PRIORITY - 1; \
} \
\
Process = (Thread)->ApcState.Process; \
(Thread)->Quantum = Process->ThreadQuantum; \
KiSetPriorityThread((Thread), NewPriority); \
} \
} \
} \
}
FORCEINLINE
LOGICAL
KiIsKernelStackSwappable (
IN KPROCESSOR_MODE WaitMode,
IN PKTHREAD Thread
)
/*++
Routine Description:
This function determines whether the kernel stack is swappabel for the
the specified thread in a wait operation.
Arguments:
WaitMode - Supplies the processor mode of the wait operation.
Thread - Supplies a pointer to a dispatcher object of type thread.
Return Value:
If the kernel stack for the specified thread is swappable, then TRUE is
returned. Otherwise, FALSE is returned.
--*/
{
return ((WaitMode != KernelMode) &&
(Thread->EnableStackSwap != FALSE) &&
(Thread->Priority < (LOW_REALTIME_PRIORITY + 9)));
}
//
// Private (internal) structure definitions.
//
// APC Parameter structure.
//
typedef struct _KAPC_RECORD {
PKNORMAL_ROUTINE NormalRoutine;
PVOID NormalContext;
PVOID SystemArgument1;
PVOID SystemArgument2;
} KAPC_RECORD, *PKAPC_RECORD;
//
// Executive initialization.
//
VOID
ExpInitializeExecutive (
IN ULONG Number,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
);
//
// Interprocessor interrupt function definitions.
//
// Define immediate interprocessor commands.
//
#define IPI_APC 1 // APC interrupt request
#define IPI_DPC 2 // DPC interrupt request
#define IPI_FREEZE 4 // freeze execution request
#define IPI_PACKET_READY 8 // packet ready request
#define IPI_SYNCH_REQUEST 16 // reverse stall packet request
//
// Define interprocess interrupt types.
//
typedef ULONG KIPI_REQUEST;
typedef
ULONG_PTR
(*PKIPI_BROADCAST_WORKER)(
IN ULONG_PTR Argument
);
#if NT_INST
#define IPI_INSTRUMENT_COUNT(a,b) KiIpiCounts[a].b++;
#else
#define IPI_INSTRUMENT_COUNT(a,b)
#endif
//
// Define interprocessor interrupt function prototypes.
//
ULONG_PTR
KiIpiGenericCall (
IN PKIPI_BROADCAST_WORKER BroadcastFunction,
IN ULONG_PTR Context
);
#if defined(_AMD64_) || defined(_IA64_)
ULONG
KiIpiProcessRequests (
VOID
);
#endif // defined(_AMD64_) || defined(_IA64_)
VOID
FASTCALL
KiIpiSend (
IN KAFFINITY TargetProcessors,
IN KIPI_REQUEST Request
);
VOID
KiIpiSendPacket (
IN KAFFINITY TargetProcessors,
IN PKIPI_WORKER WorkerFunction,
IN PVOID Parameter1,
IN PVOID Parameter2,
IN PVOID Parameter3
);
VOID
FASTCALL
KiIpiSignalPacketDone (
IN PKIPI_CONTEXT SignalDone
);
VOID
KiIpiStallOnPacketTargets (
KAFFINITY TargetSet
);
//
// Private (internal) function definitions.
//
VOID
FASTCALL
KiActivateWaiterQueue (
IN PKQUEUE Queue
);
BOOLEAN
KiAdjustInterruptTime (
IN LONGLONG TimeDelta
);
VOID
KiAllProcessorsStarted (
VOID
);
VOID
KiApcInterrupt (
VOID
);
NTSTATUS
KiCallUserMode (
IN PVOID *OutputBuffer,
IN PULONG OutputLength
);
typedef struct {
ULONGLONG Adjustment;
LARGE_INTEGER NewCount;
volatile LONG KiNumber;
volatile LONG HalNumber;
volatile LONG Barrier;
} ADJUST_INTERRUPT_TIME_CONTEXT, *PADJUST_INTERRUPT_TIME_CONTEXT;
VOID
KiCalibrateTimeAdjustment (
PADJUST_INTERRUPT_TIME_CONTEXT Adjust
);
VOID
KiChainedDispatch (
VOID
);
#if DBG
VOID
KiCheckTimerTable (
IN ULARGE_INTEGER SystemTime
);
#endif
LARGE_INTEGER
KiComputeReciprocal (
IN LONG Divisor,
OUT PCCHAR Shift
);
ULONG
KiComputeTimerTableIndex (
IN LARGE_INTEGER Interval,
IN LARGE_INTEGER CurrentCount,
IN PKTIMER Timer
);
PLARGE_INTEGER
FASTCALL
KiComputeWaitInterval (
IN PLARGE_INTEGER OriginalTime,
IN PLARGE_INTEGER DueTime,
IN OUT PLARGE_INTEGER NewTime
);
NTSTATUS
KiContinue (
IN PCONTEXT ContextRecord,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame
);
VOID
KiDeliverApc (
IN KPROCESSOR_MODE PreviousMode,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame
);
VOID
KiDispatchException (
IN PEXCEPTION_RECORD ExceptionRecord,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame,
IN KPROCESSOR_MODE PreviousMode,
IN BOOLEAN FirstChance
);
KCONTINUE_STATUS
KiSetDebugProcessor (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN KPROCESSOR_MODE PreviousMode
);
ULONG
KiCopyInformation (
IN OUT PEXCEPTION_RECORD ExceptionRecord1,
IN PEXCEPTION_RECORD ExceptionRecord2
);
VOID
KiDispatchInterrupt (
VOID
);
PKTHREAD
FASTCALL
KiFindReadyThread (
IN ULONG Processor,
KPRIORITY LowPriority
);
VOID
KiFloatingDispatch (
VOID
);
#if !defined(_IA64_) && !defined(_AMD64_)
VOID
FASTCALL
KiFlushSingleTb (
IN BOOLEAN Invalid,
IN PVOID Virtual
);
#endif // !_IA64_ && !_AMD64_
VOID
KiFlushMultipleTb (
IN BOOLEAN Invalid,
IN PVOID *Virtual,
IN ULONG Count
);
//
// VOID
// KiSetTbFlushTimeStampBusy (
// VOID
// )
//
//*++
//
// Routine Description:
//
// This function sets the TB flush time stamp busy by setting the high
// order bit of the TB flush time stamp. All readers of the time stamp
// value will spin until the bit is cleared.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--*
__inline
VOID
KiSetTbFlushTimeStampBusy (
VOID
)
{
LONG Value;
//
// While the TB flush time stamp counter is being updated the high
// order bit of the time stamp value is set. Otherwise, the bit is
// clear.
//
do {
do {
} while ((Value = KiTbFlushTimeStamp) < 0);
//
// Attempt to set the high order bit.
//
} while (InterlockedCompareExchange((PLONG)&KiTbFlushTimeStamp,
Value | 0x80000000,
Value) != Value);
return;
}
// VOID
// KiClearTbFlushTimeStampBusy (
// VOID
// )
//
//*++
//
// Routine Description:
//
// This function ckears the TB flush time stamp busy by clearing the high
// order bit of the TB flush time stamp and incrementing the low 32-bit
// value.
//
// N.B. It is assumed that the high order bit of the time stamp value
// is set on entry to this routine.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--*
__inline
VOID
KiClearTbFlushTimeStampBusy (
VOID
)
{
LONG Value;
//
// Get the current TB flush time stamp value, compute the next value,
// and store the result clearing the busy bit.
//
Value = (KiTbFlushTimeStamp + 1) & 0x7fffffff;
InterlockedExchange((PLONG)&KiTbFlushTimeStamp, Value);
return;
}
PULONG
KiGetUserModeStackAddress (
VOID
);
VOID
KiInitializeContextThread (
IN PKTHREAD Thread,
IN PKSYSTEM_ROUTINE SystemRoutine,
IN PKSTART_ROUTINE StartRoutine OPTIONAL,
IN PVOID StartContext OPTIONAL,
IN PCONTEXT ContextFrame OPTIONAL
);
VOID
KiInitializeKernel (
IN PKPROCESS Process,
IN PKTHREAD Thread,
IN PVOID IdleStack,
IN PKPRCB Prcb,
IN CCHAR Number,
IN PLOADER_PARAMETER_BLOCK LoaderBlock
);
VOID
KiInitQueuedSpinLocks (
PKPRCB Prcb,
ULONG Number
);
VOID
KiInitSystem (
VOID
);
BOOLEAN
KiInitMachineDependent (
VOID
);
VOID
KiInitializeUserApc (
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame,
IN PKNORMAL_ROUTINE NormalRoutine,
IN PVOID NormalContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
LONG
FASTCALL
KiInsertQueue (
IN PKQUEUE Queue,
IN PLIST_ENTRY Entry,
IN BOOLEAN Head
);
BOOLEAN
FASTCALL
KiInsertQueueApc (
IN PKAPC Apc,
IN KPRIORITY Increment
);
LOGICAL
FASTCALL
KiInsertTreeTimer (
IN PKTIMER Timer,
IN LARGE_INTEGER Interval
);
VOID
KiInterruptDispatch (
VOID
);
VOID
KiInterruptDispatchRaise (
IN PKINTERRUPT Interrupt
);
VOID
KiInterruptDispatchSame (
IN PKINTERRUPT Interrupt
);
VOID
KiPassiveRelease (
VOID
);
PKTHREAD
KiQuantumEnd (
VOID
);
NTSTATUS
KiRaiseException (
IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextRecord,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame,
IN BOOLEAN FirstChance
);
VOID
FASTCALL
KiReadyThread (
IN PKTHREAD Thread
);
LOGICAL
FASTCALL
KiReinsertTreeTimer (
IN PKTIMER Timer,
IN ULARGE_INTEGER DueTime
);
#if DBG
#define KiRemoveTreeTimer(Timer) \
(Timer)->Header.Inserted = FALSE; \
RemoveEntryList(&(Timer)->TimerListEntry); \
(Timer)->TimerListEntry.Flink = NULL; \
(Timer)->TimerListEntry.Blink = NULL
#else
#define KiRemoveTreeTimer(Timer) \
(Timer)->Header.Inserted = FALSE; \
RemoveEntryList(&(Timer)->TimerListEntry)
#endif
#if defined(NT_UP)
#define KiRequestApcInterrupt(Processor) KiRequestSoftwareInterrupt(APC_LEVEL)
#else
#define KiRequestApcInterrupt(Processor) \
if (KeGetCurrentPrcb()->Number == (CCHAR)Processor) { \
KiRequestSoftwareInterrupt(APC_LEVEL); \
} else { \
KiIpiSend(AFFINITY_MASK(Processor), IPI_APC); \
}
#endif
#if defined(NT_UP)
#define KiRequestDispatchInterrupt(Processor)
#else
#define KiRequestDispatchInterrupt(Processor) \
if (KeGetCurrentPrcb()->Number != (CCHAR)Processor) { \
KiIpiSend(AFFINITY_MASK(Processor), IPI_DPC); \
}
#endif
PKTHREAD
FASTCALL
KiSelectNextThread (
IN ULONG Processor
);
KAFFINITY
FASTCALL
KiSetAffinityThread (
IN PKTHREAD Thread,
IN KAFFINITY Affinity
);
VOID
KiSetSystemTime (
IN PLARGE_INTEGER NewTime,
OUT PLARGE_INTEGER OldTime
);
VOID
KiSuspendNop (
IN struct _KAPC *Apc,
IN OUT PKNORMAL_ROUTINE *NormalRoutine,
IN OUT PVOID *NormalContext,
IN OUT PVOID *SystemArgument1,
IN OUT PVOID *SystemArgument2
);
VOID
KiSuspendRundown (
IN PKAPC Apc
);
VOID
KiSuspendThread (
IN PVOID NormalContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
BOOLEAN
KiSwapProcess (
IN PKPROCESS NewProcess,
IN PKPROCESS OldProcess
);
LONG_PTR
FASTCALL
KiSwapThread (
VOID
);
VOID
KiThreadStartup (
IN PVOID StartContext
);
VOID
KiTimerExpiration (
IN PKDPC Dpc,
IN PVOID DeferredContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2
);
VOID
FASTCALL
KiTimerListExpire (
IN PLIST_ENTRY ExpiredListHead,
IN KIRQL OldIrql
);
VOID
KiUnexpectedInterrupt (
VOID
);
VOID
FASTCALL
KiUnlinkThread (
IN PKTHREAD Thread,
IN LONG_PTR WaitStatus
);
VOID
FASTCALL
KiUnwaitThread (
IN PKTHREAD Thread,
IN LONG_PTR WaitStatus,
IN KPRIORITY Increment,
IN PLIST_ENTRY ThreadList OPTIONAL
);
VOID
KiUserApcDispatcher (
IN PVOID NormalContext,
IN PVOID SystemArgument1,
IN PVOID SystemArgument2,
IN PKNORMAL_ROUTINE NormalRoutine
);
VOID
KiUserExceptionDispatcher (
IN PEXCEPTION_RECORD ExceptionRecord,
IN PCONTEXT ContextFrame
);
BOOLEAN
FASTCALL
KiSwapContext (
IN PKTHREAD Thread
);
VOID
FASTCALL
KiWaitSatisfyAll (
IN PKWAIT_BLOCK WaitBlock
);
//
// VOID
// FASTCALL
// KiWaitSatisfyAny (
// IN PKMUTANT Object,
// IN PKTHREAD Thread
// )
//
//
// Routine Description:
//
// This function satisfies a wait for any type of object and performs
// any side effects that are necessary.
//
// Arguments:
//
// Object - Supplies a pointer to a dispatcher object.
//
// Thread - Supplies a pointer to a dispatcher object of type thread.
//
// Return Value:
//
// None.
//
#define KiWaitSatisfyAny(_Object_, _Thread_) { \
if (((_Object_)->Header.Type & DISPATCHER_OBJECT_TYPE_MASK) == EventSynchronizationObject) { \
(_Object_)->Header.SignalState = 0; \
\
} else if ((_Object_)->Header.Type == SemaphoreObject) { \
(_Object_)->Header.SignalState -= 1; \
\
} else if ((_Object_)->Header.Type == MutantObject) { \
(_Object_)->Header.SignalState -= 1; \
if ((_Object_)->Header.SignalState == 0) { \
(_Thread_)->KernelApcDisable -= (_Object_)->ApcDisable; \
(_Object_)->OwnerThread = (_Thread_); \
if ((_Object_)->Abandoned == TRUE) { \
(_Object_)->Abandoned = FALSE; \
(_Thread_)->WaitStatus = STATUS_ABANDONED; \
} \
\
InsertHeadList((_Thread_)->MutantListHead.Blink, \
&(_Object_)->MutantListEntry); \
} \
} \
}
//
// VOID
// FASTCALL
// KiWaitSatisfyMutant (
// IN PKMUTANT Object,
// IN PKTHREAD Thread
// )
//
//
// Routine Description:
//
// This function satisfies a wait for a mutant object.
//
// Arguments:
//
// Object - Supplies a pointer to a dispatcher object.
//
// Thread - Supplies a pointer to a dispatcher object of type thread.
//
// Return Value:
//
// None.
//
#define KiWaitSatisfyMutant(_Object_, _Thread_) { \
(_Object_)->Header.SignalState -= 1; \
if ((_Object_)->Header.SignalState == 0) { \
(_Thread_)->KernelApcDisable -= (_Object_)->ApcDisable; \
(_Object_)->OwnerThread = (_Thread_); \
if ((_Object_)->Abandoned == TRUE) { \
(_Object_)->Abandoned = FALSE; \
(_Thread_)->WaitStatus = STATUS_ABANDONED; \
} \
\
InsertHeadList((_Thread_)->MutantListHead.Blink, \
&(_Object_)->MutantListEntry); \
} \
}
//
// VOID
// FASTCALL
// KiWaitSatisfyOther (
// IN PKMUTANT Object
// )
//
//
// Routine Description:
//
// This function satisfies a wait for any type of object except a mutant
// and performs any side effects that are necessary.
//
// Arguments:
//
// Object - Supplies a pointer to a dispatcher object.
//
// Return Value:
//
// None.
//
#define KiWaitSatisfyOther(_Object_) { \
if (((_Object_)->Header.Type & DISPATCHER_OBJECT_TYPE_MASK) == EventSynchronizationObject) { \
(_Object_)->Header.SignalState = 0; \
\
} else if ((_Object_)->Header.Type == SemaphoreObject) { \
(_Object_)->Header.SignalState -= 1; \
\
} \
}
VOID
FASTCALL
KiWaitTest (
IN PVOID Object,
IN KPRIORITY Increment
);
VOID
KiFreezeTargetExecution (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame
);
VOID
KiPollFreezeExecution (
VOID
);
VOID
KiSaveProcessorState (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame
);
VOID
KiSaveProcessorControlState (
IN PKPROCESSOR_STATE ProcessorState
);
VOID
KiRestoreProcessorState (
IN PKTRAP_FRAME TrapFrame,
IN PKEXCEPTION_FRAME ExceptionFrame
);
VOID
KiRestoreProcessorControlState (
IN PKPROCESSOR_STATE ProcessorState
);
#define KiEnableAlignmentExceptions()
#define KiDisableAlignmentExceptions()
BOOLEAN
KiHandleAlignmentFault(
IN PEXCEPTION_RECORD ExceptionRecord,
IN PKEXCEPTION_FRAME ExceptionFrame,
IN PKTRAP_FRAME TrapFrame,
IN KPROCESSOR_MODE PreviousMode,
IN BOOLEAN FirstChance,
OUT BOOLEAN *ExceptionForwarded
);
//
// External references to private kernel data structures
//
extern PMESSAGE_RESOURCE_DATA KiBugCodeMessages;
extern ULONG KiDmaIoCoherency;
extern ULONG KiMaximumDpcQueueDepth;
extern ULONG KiMinimumDpcRate;
extern ULONG KiAdjustDpcThreshold;
extern PKDEBUG_ROUTINE KiDebugRoutine;
extern PKDEBUG_SWITCH_ROUTINE KiDebugSwitchRoutine;
extern LIST_ENTRY KiDispatcherReadyListHead[MAXIMUM_PRIORITY];
extern const CCHAR KiFindFirstSetLeft[256];
extern CALL_PERFORMANCE_DATA KiFlushSingleCallData;
extern ULONG_PTR KiHardwareTrigger;
extern KAFFINITY KiIdleSummary;
extern KAFFINITY KiIdleSMTSummary;
extern KEVENT KiSwapEvent;
extern PKTHREAD KiSwappingThread;
extern KNODE KiNode0;
extern KNODE KiNodeInit[];
extern SINGLE_LIST_ENTRY KiProcessInSwapListHead;
extern SINGLE_LIST_ENTRY KiProcessOutSwapListHead;
extern SINGLE_LIST_ENTRY KiStackInSwapListHead;
extern LIST_ENTRY KiProfileSourceListHead;
extern BOOLEAN KiProfileAlignmentFixup;
extern ULONG KiProfileAlignmentFixupInterval;
extern ULONG KiProfileAlignmentFixupCount;
#if defined(_IA64_)
// KiProfileInterval value should be replaced by a call:
// HalQuerySystemInformation(HalProfileSourceInformation)
#else // !_IA64_
extern ULONG KiProfileInterval;
#endif // !_IA64_
extern LIST_ENTRY KiProfileListHead;
extern KSPIN_LOCK KiProfileLock;
extern ULONG KiReadySummary;
extern UCHAR KiArgumentTable[];
extern ULONG KiServiceLimit;
extern ULONG_PTR KiServiceTable[];
extern CALL_PERFORMANCE_DATA KiSetEventCallData;
extern ULONG KiTickOffset;
extern LARGE_INTEGER KiTimeIncrementReciprocal;
extern CCHAR KiTimeIncrementShiftCount;
extern LIST_ENTRY KiTimerTableListHead[TIMER_TABLE_SIZE];
extern KAFFINITY KiTimeProcessor;
extern KDPC KiTimerExpireDpc;
extern KSPIN_LOCK KiFreezeExecutionLock;
extern BOOLEAN KiSlavesStartExecution;
extern PTIME_UPDATE_NOTIFY_ROUTINE KiTimeUpdateNotifyRoutine;
extern LIST_ENTRY KiWaitListHead;
extern CALL_PERFORMANCE_DATA KiWaitSingleCallData;
extern ULONG KiEnableTimerWatchdog;
#if defined(_IA64_)
extern ULONG KiMasterRid;
extern ULONGLONG KiMasterSequence;
extern ULONG KiIdealDpcRate;
#if !defined(UP_NT)
extern KSPIN_LOCK KiMasterRidLock;
#endif
VOID
KiSaveEmDebugContext (
IN OUT PCONTEXT Context
);
VOID
KiLoadEmDebugContext (
IN PCONTEXT Context
);
VOID
KiFlushRse (
VOID
);
VOID
KiInvalidateStackedRegisters (
VOID
);
NTSTATUS
Ki386CheckDivideByZeroTrap(
IN PKTRAP_FRAME Frame
);
#endif // defined(_IA64_)
#if defined(_IA64_)
extern KINTERRUPT KxUnexpectedInterrupt;
#endif
#if NT_INST
extern KIPI_COUNTS KiIpiCounts[MAXIMUM_PROCESSORS];
#endif
extern KSPIN_LOCK KiFreezeLockBackup;
extern ULONG KiFreezeFlag;
extern volatile ULONG KiSuspendState;
#if DBG
extern ULONG KiMaximumSearchCount;
#endif
// VOID
// KiSetSwapEvent (
// VOID
// )
//
//*++
//
// Routine Description:
//
// This function sets the swap event or unwaits the swap thread.
//
// N.B. The dispatcher lock must be held to call this routine.
//
// Arguments:
//
// None.
//
// Return Value:
//
// None.
//
//--*
__inline
VOID
KiSetSwapEvent (
VOID
)
{
PLIST_ENTRY WaitEntry;
//
// If the swap event wait queue is not empty, then unwait the swap
// thread (there is only one swap thread). Otherwise, set the swap
// event.
//
WaitEntry = KiSwapEvent.Header.WaitListHead.Flink;
if (WaitEntry != &KiSwapEvent.Header.WaitListHead) {
KiUnwaitThread(KiSwappingThread, 0, BALANCE_INCREMENT, NULL);
} else {
KiSwapEvent.Header.SignalState = 1;
}
return;
}
//
// Include platform specific internal kernel header file.
//
#if defined(_AMD64_)
#include "amd64\kiamd64.h"
#elif defined(_X86_)
#include "i386\kix86.h"
#endif // defined(_AMD64_)
#endif // defined(_KI_)