Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

485 lines
12 KiB

/*++
Copyright (c) 1995-1998 Microsoft Corporation
Module Name:
fpufprem.c
Abstract:
Floating point remainder fragments (FPREM, FPREM1)
Author:
04-Oct-1995 BarryBo
Revision History:
--*/
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <float.h>
#include <math.h>
#include <errno.h>
#include <stdio.h>
#include "wx86.h"
#include "fragp.h"
#include "fpufrags.h"
#include "fpufragp.h"
//
// Forward references
//
NPXFUNC2(FPREM_VALID_VALID);
NPXFUNC2(FPREM_VALID_ZERO);
NPXFUNC2(FPREM_VALID_SPECIAL);
NPXFUNC2(FPREM_ZERO_VALIDORZERO);
NPXFUNC2(FPREM_ZERO_SPECIAL);
NPXFUNC2(FPREM_SPECIAL_VALIDORZERO);
NPXFUNC2(FPREM_SPECIAL_SPECIAL);
NPXFUNC2(FPREM_EMPTY_ANY);
NPXFUNC2(FPREM_ANY_EMPTY);
NPXFUNC2(FPREM1_VALID_VALID);
//NPXFUNC2(FPREM1_VALID_ZERO); // same as FPREM_VALID_ZERO
NPXFUNC2(FPREM1_VALID_SPECIAL);
//NPXFUNC2(FPREM1_ZERO_VALIDORZERO); // same as FPREM_ZERO_VALIDORZERO
NPXFUNC2(FPREM1_ZERO_SPECIAL);
NPXFUNC2(FPREM1_SPECIAL_VALIDORZERO);
NPXFUNC2(FPREM1_SPECIAL_SPECIAL);
NPXFUNC2(FPREM1_EMPTY_ANY);
NPXFUNC2(FPREM1_ANY_EMPTY);
//
// Jump tables
//
const NpxFunc2 FPREMTable[TAG_MAX][TAG_MAX] = {
// left is TAG_VALID, right is ...
{ FPREM_VALID_VALID, FPREM_VALID_ZERO, FPREM_VALID_SPECIAL, FPREM_ANY_EMPTY },
// left is TAG_ZERO, right is ...
{ FPREM_ZERO_VALIDORZERO, FPREM_ZERO_VALIDORZERO, FPREM_ZERO_SPECIAL, FPREM_ANY_EMPTY },
// left is TAG_SPECIAL, right is ...
{ FPREM_SPECIAL_VALIDORZERO, FPREM_SPECIAL_VALIDORZERO, FPREM_SPECIAL_SPECIAL, FPREM_ANY_EMPTY },
// left is TAG_EMPTY, right is ...
{ FPREM_EMPTY_ANY, FPREM_EMPTY_ANY, FPREM_EMPTY_ANY, FPREM_EMPTY_ANY }
};
const NpxFunc2 FPREM1Table[TAG_MAX][TAG_MAX] = {
// left is TAG_VALID, right is ...
{ FPREM1_VALID_VALID, FPREM_VALID_ZERO, FPREM1_VALID_SPECIAL, FPREM1_ANY_EMPTY },
// left is TAG_ZERO, right is ...
{ FPREM_ZERO_VALIDORZERO, FPREM_ZERO_VALIDORZERO, FPREM1_ZERO_SPECIAL, FPREM1_ANY_EMPTY },
// left is TAG_SPECIAL, right is ...
{ FPREM1_SPECIAL_VALIDORZERO, FPREM1_SPECIAL_VALIDORZERO, FPREM1_SPECIAL_SPECIAL, FPREM1_ANY_EMPTY },
// left is TAG_EMPTY, right is ...
{ FPREM1_EMPTY_ANY, FPREM1_EMPTY_ANY, FPREM1_EMPTY_ANY, FPREM1_EMPTY_ANY }
};
NPXFUNC2(FPREM_VALID_VALID)
{
int ExpL;
int ExpR;
int ExpDiff;
LONG Q;
double DQ;
ExpL = (int)((l->rdw[1] >> 20) & 0x7ff) - 1023;
ExpR = (int)((r->rdw[1] >> 20) & 0x7ff) - 1023;
ExpDiff = abs(ExpL-ExpR);
if (ExpDiff < 64) {
// Do the division and chop the integer result towards zero
DQ = r->r64 / l->r64;
if (DQ < 0) {
Q = (long)ceil(DQ);
} else {
Q = (long)floor(DQ);
}
// Store the remainder
r->r64 -= (DOUBLE)Q * l->r64;
SetTag(r);
// Store the status bits
if (Q < 0) {
//
// Take the absolute value of Q before returning the low 3 bits
// of the quotient.
//
Q = -Q;
}
cpu->FpStatusC2 = 0; // indicate the final remainder is ready
cpu->FpStatusC0 = (Q>>2) & 1;
cpu->FpStatusC3 = (Q>>1) & 1;
cpu->FpStatusC1 = Q & 1;
} else {
DOUBLE PowerOfTwo;
cpu->FpStatusC2 = 1; // indicate the app must loop more
PowerOfTwo = ldexp(1.0, ExpDiff-32); // get 2^(ExpDiff-32)
// get Q by chopping towards zero
DQ = (r->r64/PowerOfTwo) / (l->r64/PowerOfTwo);
if (DQ < 0) {
Q = (long)ceil(DQ);
} else {
Q = (long)floor(DQ);
}
r->r64 -= (DOUBLE)Q * l->r64 * PowerOfTwo;
SetTag(r);
}
}
NPXFUNC2(FPREM_VALID_ZERO)
{
// l is a number, but r is zero - return ST(0) unchanged
cpu->FpStatusC2 = 0; // indicate the final remainder is ready
// Q is 0, so store low 3 bits in the status word
cpu->FpStatusC0 = 0;
cpu->FpStatusC1 = 0;
cpu->FpStatusC3 = 0;
}
NPXFUNC2(FPREM_VALID_SPECIAL)
{
switch (l->TagSpecial) {
case TAG_SPECIAL_DENORM:
FPREM_VALID_VALID(cpu, l, r);
break;
case TAG_SPECIAL_INFINITY:
// Dividing infinity.
SetIndefinite(r);
break;
case TAG_SPECIAL_SNAN:
if (HandleSnan(cpu, r)) {
return;
}
// else fall into QNAN case
case TAG_SPECIAL_QNAN:
case TAG_SPECIAL_INDEF:
// r is the destination and it is a QNAN, while l is a VALID. Return
// the QNAN as the result of the operation
// x86 emulator leaves condition flags alone
break;
}
}
NPXFUNC2(FPREM_ZERO_VALIDORZERO)
{
// l is zero, and r is a number or zero - return INDEFINITE due to the
// division by zero.
if (!HandleInvalidOp(cpu)) {
SetIndefinite(r);
}
}
NPXFUNC2(FPREM_ZERO_SPECIAL)
{
if (r->TagSpecial == TAG_SPECIAL_INFINITY) {
SetIndefinite(r);
} else {
FPREM_VALID_SPECIAL(cpu, l, r);
}
}
NPXFUNC2(FPREM_SPECIAL_VALIDORZERO)
{
switch (l->TagSpecial) {
case TAG_SPECIAL_DENORM:
FPREM_VALID_VALID(cpu, l, r);
break;
case TAG_SPECIAL_INFINITY:
// number / infinity - quotient == 0
cpu->FpStatusC2 = 0;
cpu->FpStatusC0 = 0;
cpu->FpStatusC1 = 0;
cpu->FpStatusC3 = 0;
break;
case TAG_SPECIAL_SNAN:
if (HandleSnan(cpu, l)) {
return;
}
// else fall into QNAN case
case TAG_SPECIAL_QNAN:
case TAG_SPECIAL_INDEF:
// r is the destination and it is a VALID, while l is a NAN. Return
// the NAN as the result of the operation
r->r64 = l->r64;
r->Tag = l->Tag;
r->TagSpecial = l->TagSpecial;
// x86 emulator leaves condition flags alone
break;
}
}
NPXFUNC2(FPREM_SPECIAL_SPECIAL)
{
if (l->TagSpecial == TAG_SPECIAL_DENORM) {
FPREM_VALID_SPECIAL(cpu, l, r);
return;
}
if (r->TagSpecial == TAG_SPECIAL_DENORM) {
FPREM_SPECIAL_VALIDORZERO(cpu, l, r);
}
if (l->TagSpecial == TAG_SPECIAL_SNAN && HandleSnan(cpu, l)) {
return;
}
if (r->TagSpecial == TAG_SPECIAL_SNAN && HandleSnan(cpu, r)) {
return;
}
if (l->TagSpecial == TAG_SPECIAL_INFINITY) {
if (r->TagSpecial == TAG_SPECIAL_INFINITY) {
SetIndefinite(r);
}
//
// r is a NAN of some sort, and l is infinity - return the NAN
// which is already in r.
//
} else {
//
// l is a NAN, and r is either a NAN or INFINITY. Have the native
// FPU return the largest NAN, and re-tag it as appropriate.
//
r->r64 = l->r64 + r->r64;
SetTag(r);
}
}
NPXFUNC2(FPREM_EMPTY_ANY)
{
if (HandleStackEmpty(cpu, l)) {
return;
}
(*FPREMTable[l->Tag][r->Tag])(cpu, l, r);
}
NPXFUNC2(FPREM_ANY_EMPTY)
{
if (HandleStackEmpty(cpu, l)) {
return;
}
(*FPREMTable[l->Tag][r->Tag])(cpu, l, r);
}
FRAG0(FPREM)
{
// get remainder of r/l
PFPREG l = &cpu->FpStack[ST(1)];
PFPREG r = cpu->FpST0;
FpArithPreamble(cpu);
(*FPREMTable[l->Tag][r->Tag])(cpu, l, r);
}
NPXFUNC2(FPREM1_VALID_VALID)
{
int ExpL;
int ExpR;
int ExpDiff;
LONG Q;
double DQ;
double FloorQ, CeilQ;
ExpL = (int)((l->rdw[1] >> 20) & 0x7ff) - 1023;
ExpR = (int)((r->rdw[1] >> 20) & 0x7ff) - 1023;
ExpDiff = abs(ExpL-ExpR);
if (ExpDiff < 64) {
// Do the division and get the integer nearest to the value
DQ = r->r64 / l->r64;
FloorQ = floor(DQ);
CeilQ = ceil(DQ);
if (DQ-FloorQ >= CeilQ-DQ) {
// CeilQ is closer - use it
Q = (long)CeilQ;
} else {
// FloorQ is closer - use it
Q = (long)FloorQ;
}
// Store the remainder
r->r64 -= (DOUBLE)Q * l->r64;
SetTag(r);
// Store the status bits
if (Q < 0) {
//
// Take the absolute value of Q before returning the low 3 bits
// of the quotient.
//
Q = -Q;
}
cpu->FpStatusC2 = 0; // indicate the final remainder is ready
cpu->FpStatusC0 = (Q>>2) & 1;
cpu->FpStatusC3 = (Q>>1) & 1;
cpu->FpStatusC1 = Q & 1;
} else {
DOUBLE PowerOfTwo;
cpu->FpStatusC2 = 1; // indicate the app must loop more
PowerOfTwo = ldexp(1.0, ExpDiff-32); // get 2^(ExpDiff-32)
// get Q by finding the integer nearest to the value
DQ = (r->r64/PowerOfTwo) / (l->r64/PowerOfTwo);
FloorQ = floor(DQ);
CeilQ = ceil(DQ);
if (DQ-FloorQ >= CeilQ-DQ) {
// CeilQ is closer - use it
Q = (long)CeilQ;
} else {
// FloorQ is closer - use it
Q = (long)FloorQ;
}
r->r64 -= (DOUBLE)Q * l->r64 * PowerOfTwo;
SetTag(r);
}
}
NPXFUNC2(FPREM1_VALID_SPECIAL)
{
switch (l->TagSpecial) {
case TAG_SPECIAL_DENORM:
FPREM1_VALID_VALID(cpu, l, r);
break;
case TAG_SPECIAL_INFINITY:
// dividing infinity
SetIndefinite(r);
break;
case TAG_SPECIAL_SNAN:
if (HandleSnan(cpu, r)) {
return;
}
// else fall into QNAN case
case TAG_SPECIAL_QNAN:
case TAG_SPECIAL_INDEF:
// r is the destination and it is a QNAN, while l is a VALID. Return
// the QNAN as the result of the operation
// x86 emulator leaves condition flags alone
break;
}
}
NPXFUNC2(FPREM1_ZERO_SPECIAL)
{
if (r->TagSpecial == TAG_SPECIAL_INFINITY) {
SetIndefinite(r);
} else {
FPREM1_VALID_SPECIAL(cpu, l, r);
}
}
NPXFUNC2(FPREM1_SPECIAL_VALIDORZERO)
{
switch (l->TagSpecial) {
case TAG_SPECIAL_DENORM:
FPREM1_VALID_VALID(cpu, l, r);
break;
case TAG_SPECIAL_INFINITY:
// number / infinity - quotient == 0
cpu->FpStatusC2 = 0;
cpu->FpStatusC0 = 0;
cpu->FpStatusC1 = 0;
cpu->FpStatusC3 = 0;
break;
case TAG_SPECIAL_SNAN:
if (HandleSnan(cpu, l)) {
return;
}
// else fall into QNAN case
case TAG_SPECIAL_QNAN:
case TAG_SPECIAL_INDEF:
// r is the destination and it is a VALID, while l is a NAN. Return
// the NAN as the result of the operation
r->r64 = l->r64;
r->Tag = l->Tag;
r->TagSpecial = l->TagSpecial;
break;
}
}
NPXFUNC2(FPREM1_SPECIAL_SPECIAL)
{
if (l->TagSpecial == TAG_SPECIAL_DENORM) {
FPREM1_VALID_SPECIAL(cpu, l, r);
return;
}
if (r->TagSpecial == TAG_SPECIAL_DENORM) {
FPREM1_SPECIAL_VALIDORZERO(cpu, l, r);
}
if (l->TagSpecial == TAG_SPECIAL_SNAN && HandleSnan(cpu, l)) {
return;
}
if (r->TagSpecial == TAG_SPECIAL_SNAN && HandleSnan(cpu, r)) {
return;
}
if (l->TagSpecial == TAG_SPECIAL_INFINITY) {
if (r->TagSpecial == TAG_SPECIAL_INFINITY) {
SetIndefinite(r);
}
//
// r is a NAN of some sort, and l is infinity - return the NAN
// which is already in r.
//
} else {
//
// l is a NAN, and r is either a NAN or INFINITY. Have the native
// FPU return the largest NAN, and re-tag it as appropriate.
//
r->r64 = l->r64 + r->r64;
SetTag(r);
}
}
NPXFUNC2(FPREM1_EMPTY_ANY)
{
if (HandleStackEmpty(cpu, l)) {
return;
}
(*FPREM1Table[l->Tag][r->Tag])(cpu, l, r);
}
NPXFUNC2(FPREM1_ANY_EMPTY)
{
if (HandleStackEmpty(cpu, l)) {
return;
}
(*FPREM1Table[l->Tag][r->Tag])(cpu, l, r);
}
FRAG0(FPREM1)
{
// get remainder of r/l
PFPREG l = &cpu->FpStack[ST(1)];
PFPREG r = cpu->FpST0;
FpArithPreamble(cpu);
(*FPREM1Table[l->Tag][r->Tag])(cpu, l, r);
}