Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

647 lines
18 KiB

/*++
Copyright (c) 1995-1998 Microsoft Corporation
Module Name:
fpur10.c
Abstract:
Floating point 10-byte real support
Author:
06-Oct-1995 BarryBo
Revision History:
--*/
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#include "wx86.h"
#include "cpuassrt.h"
#include "fragp.h"
#include "fpufragp.h"
ASSERTNAME;
//
// Forward declarations
//
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_VALID);
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_ZERO);
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_SPECIAL);
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_EMPTY);
NPXPUTINTELR10(PutIntelR10_VALID);
NPXPUTINTELR10(PutIntelR10_ZERO);
NPXPUTINTELR10(PutIntelR10_SPECIAL);
NPXPUTINTELR10(PutIntelR10_EMPTY);
//
// Jump tables
//
const NpxLoadIntelR10ToR8 LoadIntelR10ToR8Table[TAG_MAX] = {
LoadIntelR10ToR8_VALID,
LoadIntelR10ToR8_ZERO,
LoadIntelR10ToR8_SPECIAL,
LoadIntelR10ToR8_EMPTY
};
const NpxPutIntelR10 PutIntelR10Table[TAG_MAX] = {
PutIntelR10_VALID,
PutIntelR10_ZERO,
PutIntelR10_SPECIAL,
PutIntelR10_EMPTY
};
VOID
ComputeR10Tag(
USHORT *r10,
PFPREG FpReg
)
/*++
Routine Description:
Computes the TAG value for an R10, classifying it so conversion to R8
is simpler.
Arguments:
r10 - pointer to R10 value to classify.
FpReg - OUT FP register to set Tag and TagSpecial fields in
Return Value:
Tag value which classifies the R10.
--*/
{
USHORT Exponent;
/* On average, the value will be zero or a valid real, so those cases
* have the fastest code paths. NANs tend to be less frequent and are
* slower to calculate.
*/
Exponent = r10[4] & 0x7fff;
if (Exponent == 0x7fff) {
// exponent is all 1's - NAN or INFINITY of some sort
FpReg->Tag = TAG_SPECIAL;
if (r10[0] == 0 && r10[1] == 0 && r10[2] == 0) {
// Low 6 bytes of mantissa are 0.
if (r10[3] & 0x4000) {
// 2nd bit of mantissa set - INDEF or QNAN
if (r10[3] == 0xc000 && r10[4] == 0xffff) {
// INDEF - negative and only top 2 bits of mantissa set
FpReg->TagSpecial = TAG_SPECIAL_INDEF;
} else {
// QNAN - positive or more than 2 top bits set
FpReg->TagSpecial = TAG_SPECIAL_QNAN;
}
} else if (r10[3] & 0x3fff) {
// SNAN - Only top 1 bit of mantissa is set
FpReg->TagSpecial = TAG_SPECIAL_SNAN;
} else {
FpReg->TagSpecial = TAG_SPECIAL_INFINITY;
}
} else {
// Some bit is set in the low 6 bytes - SNAN or QNAN
if (r10[3] & 0x4000) {
// QNAN - Top 2 bits of mantissa set
FpReg->TagSpecial = TAG_SPECIAL_QNAN;
} else {
// SNAN - 2nd bit of mantissa clear
FpReg->TagSpecial = TAG_SPECIAL_SNAN;
}
}
} else if (Exponent == 0) {
// exponent is 0 - DENORMAL or ZERO
if (r10[0] == 0 && r10[1] == 0 && r10[2] == 0 && r10[3] == 0) {
// mantissa is all zeroes - ZERO
FpReg->Tag = TAG_ZERO;
} else {
FpReg->Tag = TAG_SPECIAL;
FpReg->TagSpecial = TAG_SPECIAL_DENORM;
}
} else {
// Exponent is not all 1's and not all 0's - a VALID
FpReg->Tag = TAG_VALID;
}
}
VOID
ChopR10ToR8(
PBYTE r10,
PFPREG FpReg,
USHORT R10Exponent
)
/*++
Routine Description:
Chops a 10-byte real to fit into an FPREG's r64 field. The FPREG's Tag
value is not set.
Arguments:
r10 - 10-byte real to load
FpReg - Destination FP register
R10Exponent - Biased exponent from the R10 value
Return Value:
None
--*/
{
short Exponent;
PBYTE r8 = (PBYTE)&FpReg->r64;
if (FpReg->Tag == TAG_SPECIAL && FpReg->TagSpecial != TAG_SPECIAL_DENORM) {
//
// The caller must handle all other special values itself.
//
CPUASSERT(FpReg->TagSpecial == TAG_SPECIAL_QNAN || FpReg->TagSpecial == TAG_SPECIAL_SNAN);
//
// The R10 is a QNAN or an SNAN - ignore its exponent (fifteen 1's)
// and set Exponent to be the correct number of 1 bits for an R8
// (11 ones, in the correct location within a SHORT)
//
Exponent = (short)0x7ff0;
} else {
//
// The R10 is a valid number. Convert the R10 exponent to an
// R8 exponent by changing the bias.
//
Exponent = (short)R10Exponent - 16383;
if (Exponent < -1022) {
//
// Exponent is too small - silently convert the R10 to an
// R8 +/-DBL_MIN
//
if (r8[7] & 0x80) {
FpReg->r64 = -DBL_MIN;
} else {
FpReg->r64 = DBL_MIN;
}
return;
} else if (Exponent > 1023) {
//
// Exponent is too big - silently convert the R10 to an
// R8 +/-DBL_MAX
//
if (r8[7] & 0x80) {
FpReg->r64 = -DBL_MAX;
} else {
FpReg->r64 = DBL_MAX;
}
return;
}
//
// Bias the exponent and shift it to the correct location for an R8
//
Exponent = ((USHORT)(Exponent + 1023) & 0x7ff) << 4;
}
// Copy in the top 7 bits of the exponent along with the sign bit
r8[7] = (r10[9] & 0x80) | ((USHORT)Exponent >> 8);
// Copy in the remaining 4 bits of the exponent, along with bits 1-4 of
// the R10's mantissa (bit 0 is always 1 in R10s).
r8[6] = (Exponent & 0xf0) | ((r10[7] >> 3) & 0x0f);
// Copy bits 6-13 from the R10's mantissa
r8[5] = (r10[7] << 5) | ((r10[6] >> 3) & 0x1f); // bits 5-12 from the R10
r8[4] = (r10[6] << 5) | ((r10[5] >> 3) & 0x1f); // bits 14-20 from the R10
r8[3] = (r10[5] << 5) | ((r10[4] >> 3) & 0x1f); // bits 21-28 from the R10
r8[2] = (r10[4] << 5) | ((r10[3] >> 3) & 0x1f); // bits 29-36 from the R10
r8[1] = (r10[3] << 5) | ((r10[2] >> 3) & 0x1f); // bits 37-44 from the R10
r8[0] = (r10[2] << 5) | ((r10[1] >> 3) & 0x1f); // bits 45-52 from the R10
//
// Bits 53-64 from the R10 are ignored. The caller may examine them
// and round the resulting R8 accordingly.
//
}
VOID
NextValue(
PFPREG Fp,
BOOLEAN RoundingUp
)
/*++
Routine Description:
Replaces a floating-point value with either its higher- or lower-
valued neighbour.
Arguments:
Fp - floating-point value to adjust (tag must be set to one of:
TAG_VALID, TAG_ZERO or TAG_SPECIAL/TAG_SPECIAL_DENORM)
RoundingUp - TRUE if the next value is to be the higher-valued neighbour.
FALSE to return the lower-valued neighbour.
Return Value:
None. Value in FP and the Tag may have changed.
--*/
{
DWORD OldExp;
DWORD NewExp;
DWORD Sign;
if (Fp->Tag == TAG_ZERO) {
//
// Neighbour of 0.0 is +/- DBL_MIN.
//
Fp->Tag = TAG_VALID;
if (RoundingUp) {
Fp->r64 = DBL_MIN;
} else {
Fp->r64 = -DBL_MIN;
}
return;
}
//
// Remember the original sign and exponent
//
Sign = Fp->rdw[1] & 0x80000000;
OldExp = Fp->rdw[1] & 0x7ff00000;
//
// Treat x as a 64-bit integer then add or subtract 1.
//
if ((Sign && RoundingUp) || (!Sign && !RoundingUp)) {
//
// x is negative. Subtract 1.
//
Fp->rdw[0]--;
if (Fp->rdw[0] == 0xffffffff) {
//
// need to borrow from the high dword
//
Fp->rdw[1]--;
}
} else {
//
// x is positive. Add 1.
//
Fp->rdw[0]++;
if (Fp->rdw[0] == 0) {
//
// propagate carry to the high dword
//
Fp->rdw[1]++;
}
}
//
// Get the new value of the exponent
//
NewExp = Fp->rdw[1] & 0x7ff00000;
if (NewExp != OldExp) {
//
// A borrow or a carry caused the exponent to change.
//
if (NewExp == 0x7ff00000) {
//
// Got an overflow. Return the largest double value.
//
Fp->Tag = TAG_VALID;
if (Sign) {
Fp->r64 = -DBL_MAX;
} else {
Fp->r64 = DBL_MAX;
}
} else if (OldExp && !NewExp) {
//
// The original value was a normal number, but the result is a
// denormal. Convert the underflow to a 0 with the correct sign.
//
Fp->Tag = TAG_ZERO;
Fp->rdw[0] = 0;
Fp->rdw[1] = Sign;
}
}
}
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_VALID)
{
USHORT R10Exponent = (*(USHORT *)&r10[8]) & 0x7fff;
// Copy the value in, chopping exponent and mantissa to fit
ChopR10ToR8(r10, Fp, R10Exponent);
if (r10[0] != 0 || (r10[1]&0x7) != 0) {
// The value can't fit without rounding. DO NOT REPORT THIS
// AS AN OVERFLOW EXCEPTION - THIS ONLY OCCURS BECAUSE THE
// FPU EMULATOR IS USING R8 ARITHMETIC INTERNALLY. Because of
// this, the roundoff should be performed silently. The default
// behavior when a masked overflow exception is performed is to
// store +/-infinity. We don't want hand-coded R10's loading as
// infinity as many instructions thow Invalid Operation exceptions
// when they detect an infinity.
switch (cpu->FpControlRounding) {
case 0: // round to nearest or even
{
FPREG a, c;
double ba, cb;
a = *Fp;
NextValue(&a, FALSE); // a is lower neighbour
// b = Fp->r64.
c = *Fp;
NextValue(&c, TRUE); // c is higher neighbour
ba = Fp->r64 - a.r64;
cb = c.r64 - Fp->r64;
if (ba == cb) {
// a and c are equally close to b - select the even
// number (LSB==0)
if ( ((*(PBYTE)&a) & 1) == 0) {
*Fp = a;
} else {
*Fp = c;
}
} else if (ba < cb) {
// a is closer to b than c is. Choose a
*Fp = a;
} else {
// c is closer to b than a is. Choose c
*Fp = c;
}
}
break;
case 1: // round down (towards -infinity)
NextValue(Fp, FALSE);
break;
case 2: // round up (towards +infinity)
NextValue(Fp, TRUE);
break;
case 3: // chop (truncate toward zero)
if (Fp->rdw[0] == 0 && (Fp->rdw[1] & 0x7fffffff) == 0) {
//
// Truncated value is 0.0. Reclassify.
//
Fp->Tag = TAG_ZERO;
}
break;
}
}
}
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_ZERO)
{
// write in zeroes
Fp->r64 = 0.0;
// copy in the sign bit
Fp->rb[7] = r10[9] & 0x80;
}
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_SPECIAL)
{
switch (Fp->TagSpecial) {
case TAG_SPECIAL_INFINITY:
Fp->rdw[0] = 0; // low 32 bits of mantissa are zero
Fp->rdw[1] = 0x7ff00000; // mantissa=0, exponent=1s
Fp->rb[7] |= r10[9] & 0x80; // copy in the sign bit
break;
case TAG_SPECIAL_INDEF:
#if NATIVE_NAN_IS_INTEL_FORMAT
Fp->rdw[0] = 0;
Fp->rdw[1] = 0xfff80000;
#else
Fp->rdw[0] = 0xffffffff;
Fp->rdw[1] = 0x7ff7ffff;
#endif
break;
case TAG_SPECIAL_SNAN:
case TAG_SPECIAL_QNAN:
ChopR10ToR8(r10, Fp, (USHORT)((*(USHORT *)&r10[8]) & 0x7fff));
#if !NATIVE_NAN_IS_INTEL_FORMAT
Fp->rb[6] ^= 0x08; // invert the top bit of the mantissa
#endif
break;
case TAG_SPECIAL_DENORM:
LoadIntelR10ToR8_VALID(cpu, r10, Fp);
break;
}
}
NPXLOADINTELR10TOR8(LoadIntelR10ToR8_EMPTY)
{
CPUASSERT(FALSE);
}
VOID
LoadIntelR10ToR8(
PCPUDATA cpu,
PBYTE r10,
PFPREG FpReg
)
/*++
Routine Description:
Converts an Intel 10-byte real to an FPREG (Tag and 64-byte real).
According to emload.asm, this is not an arithmetic operation,
so SNANs do not throw exceptions.
Arguments:
cpu - per-thread data
r10 - 10-byte real to load
FpReg - destination FP register.
Return Value:
None
--*/
{
// Classify the R10 and store its tag into the FP register
ComputeR10Tag( (USHORT*)r10, FpReg );
// Perform the coersion based on the classification
(*LoadIntelR10ToR8Table[FpReg->Tag])(cpu, r10, FpReg);
}
FRAG1(FLD80, BYTE) // FLD m80real
{
PFPREG ST0;
FpArithDataPreamble(cpu, pop1);
cpu->FpStatusC1 = 0; // assume no error
PUSHFLT(ST0);
if (ST0->Tag != TAG_EMPTY) {
HandleStackFull(cpu, ST0);
} else {
LoadIntelR10ToR8(cpu, pop1, ST0);
if (ST0->Tag == TAG_SPECIAL && ST0->TagSpecial == TAG_SPECIAL_DENORM) {
if (!(cpu->FpControlMask & FPCONTROL_DM)) {
cpu->FpStatusES = 1; // Unmasked exception
}
cpu->FpStatusExceptions |= FPCONTROL_DM;
}
}
}
NPXPUTINTELR10(PutIntelR10_VALID)
{
USHORT Exponent;
FPREG FpReg;
//
// Ugly compatibility hack here. If the app sets the Tag word so all
// registers are VALID, but the registers actually contain ZERO, detect
// and correct that so we write the correct value back to memory.
//
FpReg.r64 = Fp->r64;
SetTag(&FpReg);
if (FpReg.Tag != TAG_VALID &&
!(FpReg.Tag == TAG_SPECIAL && FpReg.TagSpecial == TAG_SPECIAL_DENORM)) {
//
// The app lied to us. The tag word does not match the value in the
// tag field. Write the value according to its actual tag, not
// according to the tag the app tried to foist on us.
//
PutIntelR10(r10, &FpReg);
return;
}
// Grab the 11-bit SIGNED exponent and sign-extend it to 15 bits
Exponent = (short)((FpReg.rdw[1] >> 20) & 0x7ff) - 1023 + 16383;
// Drop in the sign bit
if (FpReg.rb[7] >= 0x80) {
Exponent |= 0x8000;
}
// Write the sign and exponent into the r10
r10[9] = (Exponent >> 8) & 0xff;
r10[8] = Exponent & 0xff;
// Bit 0 of the mantissa is always 1 for R10 values, so write that
// in, along with the first 7 bits of the FpReg.rb mantissa.
r10[7] = 0x80 | ((FpReg.rb[6] & 0x0f) << 3) | (FpReg.rb[5] >> 5);
// Copy in the remaining bits of the FpReg.rb mantissa
r10[6] = (FpReg.rb[5] << 3) | (FpReg.rb[4] >> 5); // copy bits 7-14 from the FpReg.rb
r10[5] = (FpReg.rb[4] << 3) | (FpReg.rb[3] >> 5); // copy bits 15-22
r10[4] = (FpReg.rb[3] << 3) | (FpReg.rb[2] >> 5); // copy bits 23-30
r10[3] = (FpReg.rb[2] << 3) | (FpReg.rb[1] >> 5); // copy bits 31-38
r10[2] = (FpReg.rb[1] << 3) | (FpReg.rb[0] >> 5); // copy bits 39-46
r10[1] = FpReg.rb[0] << 3; // copy bits 46-52, then fill the remaining bits
r10[0] = 0; // of the R10 mantissa with 0s
}
NPXPUTINTELR10(PutIntelR10_ZERO)
{
r10[9] = Fp->rb[7]; // copy in sign plus 7 bits of exponent
memset(r10, 0, 9); // remainder is all zeroes
}
NPXPUTINTELR10(PutIntelR10_SPECIAL)
{
switch (Fp->TagSpecial) {
case TAG_SPECIAL_INDEF:
r10[9] = 0xff; // sign=1, exponent = 7 1s
r10[8] = 0xff; // exponent = 8 1s
r10[7] = 0xc0; // mantissa = 1100.00
memset(r10, 0, 7); // store rest of mantissa
break;
case TAG_SPECIAL_INFINITY:
r10[9] = Fp->rb[7]; // copy in sign plus 7 bits of exponent
r10[8] = 0xff; // remainder of exponent is all 1s
r10[7] = 0x80; // top bit of mantissa is 1, rest is 0s
memset(r10, 0, 7); // remainder is all zeroes
break;
case TAG_SPECIAL_QNAN:
case TAG_SPECIAL_SNAN:
r10[9] = Fp->rb[7]; // copy in sign plus 7 1 bits of exponent
r10[8] = 0xff; // remainder of exponent is all 1s
// Bit 0 of the mantissa is always 1 for R10 values, so write that
// in, along with the first 7 bits of the R8 mantissa.
r10[7] = 0x80 | ((Fp->rb[6] & 0x0f) << 3) | (Fp->rb[5] >> 5);
#if !NATIVE_NAN_IS_INTEL_FORMAT
r10[7] ^= 0x40; // switch the meaning of the NAN
#endif
r10[6] = (Fp->rb[5] << 3) | (Fp->rb[4] >> 5); // copy bits 7-14 from the R8
r10[5] = (Fp->rb[4] << 3) | (Fp->rb[3] >> 5); // copy bits 15-22
r10[4] = (Fp->rb[3] << 3) | (Fp->rb[2] >> 5); // copy bits 23-30
r10[3] = (Fp->rb[2] << 3) | (Fp->rb[1] >> 5); // copy bits 31-38
r10[2] = (Fp->rb[1] << 3) | (Fp->rb[0] >> 5); // copy bits 39-46
r10[1] = Fp->rb[0] << 3; // copy bits 46-52, then fill the remaining bits
r10[0] = 0; // of the R10 mantissa with 0s
break;
default:
CPUASSERT(FALSE); // fall through in free builds
case TAG_SPECIAL_DENORM:
PutIntelR10_VALID(r10, Fp);
break;
}
}
NPXPUTINTELR10(PutIntelR10_EMPTY)
{
CPUASSERT(FALSE); // Callers must handle TAG_EMPTY on their own.
}
FRAG1(FSTP80, BYTE) // FSTP m80real
{
PFPREG ST0;
FpArithDataPreamble(cpu, pop1);
cpu->FpStatusC1 = 0; // assume no error
ST0 = cpu->FpST0;
if (ST0->Tag == TAG_EMPTY && HandleStackEmpty(cpu, ST0)) {
return;
}
PutIntelR10(pop1, ST0);
POPFLT;
}