Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

773 lines
20 KiB

#ifndef Array_hxx
#define Array_hxx
// File: Array.hxx
// Description: Template Class definitions for dynamic array class.
// Notes: Array class has the following features:
// 1. The array can grow dynamically
// 2. The class T must have = operator. When the = operator
// of class T is invoked, it is guaranteed that the memory
// pointed to by the lvalue of the assignment statement is
// cleared to 0. Further, << operator is required for printing
// the list and == operator is required locating or removing
// the objects of class T.
// History: Gopal (08/26/95) -- Creation.
#include <string.h>
#include <iostream.h>
#define AFLAG_OUTOFMEMORY 1
#define AFLAG_ISDIRTY 2
#define ALLOCATED 0
#define RESERVED -1
#define NOFREEITEM -2
typedef int BOOL;
#define TRUE 1
#define FALSE 0
template <class T>
class CArray
{
public:
// Static constructor
static CArray* CreateArray(const unsigned long ulStep=5,
const unsigned long ulSlots=0) {
return(new CArray(ulStep, ulSlots));
}
// Copy constructor
CArray(const CArray& a);
// Reference counting functions
unsigned long AddRef() {
return(++m_refs);
}
unsigned long Release();
// New and Delete operators
void* operator new(size_t size) {
return PrivMemAlloc(size);
};
void operator delete(void *pv){
PrivMemFree(pv);
return;
};
// Functionality functions
unsigned long Length() {
return(m_ulLength);
}
void SetStepSize(unsigned long ulStep) {
m_ulStepSize = ulStep;
return;
}
unsigned long Reserve(const unsigned long ulSlots) {
if(m_ulCurSize)
return(0);
m_ulResSlots = ulSlots;
return(ulSlots);
}
unsigned long Locate(const T& givenitem);
BOOL AddReservedItem(const T& item, const unsigned long ulSlot);
unsigned long AddItem(const T& item);
T* GetItem(const unsigned long index);
BOOL DeleteItem(const unsigned long index);
void DeleteAllItems(void);
BOOL ShiftToEnd(unsigned long ulNode);
void Reset(unsigned long& index, BOOL fEnumResSlots=TRUE) {
if(fEnumResSlots)
index = 0;
else
index = m_ulResSlots;
return;
}
T* GetNext(unsigned long& ulIndex);
T* GetPrev(unsigned long& ulIndex);
BOOL IsOutOfMemory() {
return(m_ulFlags | AFLAG_OUTOFMEMORY);
}
BOOL IsDirty() {
return(m_ulFlags | AFLAG_ISDIRTY);
}
CArray& operator=(const CArray& a);
friend ostream& operator<<(ostream& os, CArray<T>& l);
void Dump();
private:
// Private data type
struct ArrayNode {
// Member variables
T item;
unsigned long next;
unsigned long prev;
};
// Private constructor
CArray(const unsigned long ulStep, const unsigned long ulSlots);
// Private destructor
~CArray();
// Private member variables
unsigned long m_refs;
unsigned long m_ulFlags;
unsigned long m_ulStepSize;
unsigned long m_ulCurSize;
unsigned long m_ulLength;
unsigned long m_ulResSlots;
unsigned long m_ulHeadNode;
unsigned long m_ulTailNode;
int m_iFree;
int* m_piAllocList;
ArrayNode* m_pBuffer;
void MakeCopy(const CArray& a);
};
template <class T>
CArray<T>::CArray(const unsigned long ulStep, const unsigned long ulSlots)
{
m_refs = 1;
m_ulFlags = 0;
m_ulStepSize = ulStep;
if(m_ulStepSize<1)
m_ulStepSize = 1;
m_ulCurSize = 0;
m_ulLength = 0;
m_ulResSlots = ulSlots;
m_ulHeadNode = 0;
m_ulTailNode = 0;
m_iFree = NOFREEITEM;
m_piAllocList = 0;
m_pBuffer = 0;
}
template <class T>
void CArray<T>::MakeCopy(const CArray<T>& a)
{
// Copy the StepSize
m_ulStepSize = a.m_ulStepSize;
m_ulResSlots = a.m_ulResSlots;
// Allocate the memory for buffer and Allocation list
if(a.m_ulLength>0) {
m_pBuffer = (struct ArrayNode *) PrivMemAlloc(sizeof(ArrayNode)*a.m_ulCurSize);
if(m_pBuffer) {
m_piAllocList = (int *) PrivMemAlloc(sizeof(int)*a.m_ulCurSize);
if(m_piAllocList) {
// Memory allocation succeded.
m_ulFlags = a.m_ulFlags;
m_ulFlags &= ~AFLAG_OUTOFMEMORY;
m_ulCurSize = a.m_ulCurSize;
m_ulLength = 0;
m_ulHeadNode = a.m_ulHeadNode;
m_ulTailNode = a.m_ulTailNode;
m_iFree = a.m_iFree;
memset(m_pBuffer, 0, sizeof(ArrayNode)*m_ulCurSize);
// Now copy the allocation list and the buffer
for(int i=0; i<m_ulCurSize;i++) {
m_piAllocList[i] = a.p_iAllocList[i];
if(m_piAllocList[i]==ALLOCATED) {
// Allocated buffer item. So, copy it
m_pBuffer[i].item = a.m_pBuffer[i].item;
m_pBuffer[i].next = a.m_pBuffer[i].next;
m_pBuffer[i].prev = a.m_pBuffer[i].prev;
m_ulLength++;
}
}
Win4Assert(m_ulLength==a.m_ulLength);
return;
}
// Memory allocation failure
// Free the buffer allocated earlier
PrivMemFree(m_pBuffer);
}
// Set m_Flags to indicate memory allocation failure
// so that we will not try another allocation in future
m_ulFlags = AFLAG_OUTOFMEMORY;
}
m_refs = 1;
m_ulCurSize = 0;
m_ulLength = 0;
m_ulHeadNode = 0;
m_ulTailNode = 0;
m_iFree = NOFREEITEM;
m_piAllocList = 0;
m_pBuffer = 0;
return;
}
template <class T>
CArray<T>::CArray(const CArray<T>& a)
{
// Make a copy
MakeCopy(a);
return;
}
template <class T>
CArray<T>::~CArray()
{
// Call the destructor for valid objects in the buffer
if(m_pBuffer) {
for(unsigned long i=0;i<m_ulCurSize;i++)
if(m_piAllocList[i]==ALLOCATED)
m_pBuffer[i].item.~T();
// Free the allocated memory
PrivMemFree(m_pBuffer);
PrivMemFree(m_piAllocList);
}
return;
}
template <class T>
unsigned long CArray<T>::Release()
{
if(--m_refs==0) {
delete this;
return(0);
}
return(m_refs);
}
template <class T>
unsigned long CArray<T>::Locate(const T& GivenItem)
{
unsigned long i;
if (m_pBuffer == NULL)
return 0;
// Search all the reserved and allocated items in the buffer
for(i=0;i<m_ulResSlots;i++)
if(m_piAllocList[i]==ALLOCATED && m_pBuffer[i].item==GivenItem)
return(i+1);
// Search rest of the nodes
if(m_ulHeadNode) {
i = m_ulHeadNode;
while(i) {
Win4Assert(m_piAllocList[i-1]==ALLOCATED);
if(m_pBuffer[i-1].item==GivenItem)
return(i);
else
i = m_pBuffer[i-1].next;
}
}
return(0);
}
template <class T>
BOOL CArray<T>::AddReservedItem(const T& item, const unsigned long ulSlot)
{
// Sanity check
if(ulSlot<1 || ulSlot>m_ulResSlots)
return(FALSE);
// Check if buffer has been allocated
if(!m_pBuffer && !(m_ulFlags & AFLAG_OUTOFMEMORY)) {
unsigned long i, ulNewSize;
ArrayNode* pNewBuffer;
int* piNewAllocList;
// Compute the new size
ulNewSize = m_ulResSlots + m_ulStepSize;
// Expand the buffer
pNewBuffer = (ArrayNode *) PrivMemAlloc(sizeof(ArrayNode)*(ulNewSize));
if(pNewBuffer) {
piNewAllocList = (int *) PrivMemAlloc(sizeof(int)*(ulNewSize));
if(piNewAllocList) {
// Make the m_pBuffer and m_piAllocList point to the new
// buffer and allocation list
m_pBuffer = pNewBuffer;
m_piAllocList = piNewAllocList;
// Clear the memory in the buffer that is allocated now
memset(&m_pBuffer[0], 0, sizeof(ArrayNode)*ulNewSize);
// Reserve the desiresd number of slots
for(i=0;i<m_ulResSlots;i++)
m_piAllocList[i] = RESERVED;
// Generate the free list
for(i=m_ulResSlots;i<ulNewSize-1;i++)
m_piAllocList[i] = i+2;
m_piAllocList[ulNewSize-1] = NOFREEITEM;
// Make m_iFree point to the first free item in the new buffer
m_iFree = m_ulResSlots+1;
// Update m_ulCurSize
m_ulCurSize = ulNewSize;
}
else {
PrivMemFree(pNewBuffer);
m_ulFlags |= AFLAG_OUTOFMEMORY;
}
}
else
m_ulFlags |= AFLAG_OUTOFMEMORY;
// If we could not expand the buffer, return FALSE
if((m_ulFlags & AFLAG_OUTOFMEMORY))
return(FALSE);
}
// If the reserved slot is occupied, delete the object
if(m_piAllocList[ulSlot-1]==ALLOCATED) {
m_pBuffer[ulSlot-1].item.~T();
memset(&m_pBuffer[ulSlot-1], 0, sizeof(ArrayNode));
}
// Copy the item at the reserved
m_pBuffer[ulSlot-1].item = item;
// Update the allocation list and length
if(m_piAllocList[ulSlot-1]==RESERVED) {
m_piAllocList[ulSlot-1] = ALLOCATED;
++m_ulLength;
}
// Set the dirty Flag
m_ulFlags |= AFLAG_ISDIRTY;
return(TRUE);
}
template <class T>
unsigned long CArray<T>::AddItem(const T& item)
{
unsigned long i;
// Check if we have free item in the buffer
if(m_iFree==NOFREEITEM && !(m_ulFlags & AFLAG_OUTOFMEMORY)) {
// No free item in the buffer
unsigned long ulNewSize;
ArrayNode* pNewBuffer;
int* piNewAllocList;
// Compute the new size
if(m_pBuffer)
ulNewSize = m_ulCurSize + m_ulStepSize;
else
ulNewSize = m_ulResSlots + m_ulStepSize;
// Expand the buffer
pNewBuffer = (ArrayNode *) PrivMemAlloc(sizeof(ArrayNode)*(ulNewSize));
if(pNewBuffer) {
piNewAllocList = (int *) PrivMemAlloc(sizeof(int)*(ulNewSize));
if(piNewAllocList) {
if(m_pBuffer) {
// Copy the existing buffer and allocation list
memcpy(pNewBuffer, m_pBuffer, sizeof(ArrayNode)*m_ulCurSize);
memcpy(piNewAllocList, m_piAllocList, sizeof(int)*m_ulCurSize);
PrivMemFree(m_pBuffer);
PrivMemFree(m_piAllocList);
}
else {
// Reserve the desiresd number of slots
for(i=0;i<m_ulResSlots;i++)
piNewAllocList[i] = RESERVED;
// Clear the memory in the reserved slots of the buffer
memset(&pNewBuffer[0], 0, sizeof(ArrayNode)*m_ulResSlots);
// Set current size to the number of reserved slots
m_ulCurSize = m_ulResSlots;
}
// Make the m_pBuffer and m_piAllocList point to the new
// buffer and allocation list
m_pBuffer = pNewBuffer;
m_piAllocList = piNewAllocList;
// Clear the memory in the buffer that is allocated now
memset(&m_pBuffer[m_ulCurSize], 0, sizeof(ArrayNode)*m_ulStepSize);
// Generate the free list
for(i=m_ulCurSize;i<ulNewSize-1;i++)
m_piAllocList[i] = i+2;
m_piAllocList[ulNewSize-1] = NOFREEITEM;
// Make m_iFree point to the first free item in the new buffer
m_iFree = m_ulCurSize+1;
// Update m_ulCurSize
m_ulCurSize = ulNewSize;
}
else {
PrivMemFree(pNewBuffer);
m_ulFlags |= AFLAG_OUTOFMEMORY;
}
}
else
m_ulFlags |= AFLAG_OUTOFMEMORY;
}
// If we could not expand the buffer, return 0
if(m_iFree==NOFREEITEM)
return 0;
// Copy the item at the place pointed to by m_iFree
m_pBuffer[m_iFree-1].item = item;
m_pBuffer[m_iFree-1].next = 0;
m_pBuffer[m_iFree-1].prev = m_ulTailNode;
if(m_ulTailNode)
m_pBuffer[m_ulTailNode-1].next = m_iFree;
++m_ulLength;
// Update the m_ulHeadNode, m_ulTailNode, m_iFree and the allocation list
if(!m_ulHeadNode)
m_ulHeadNode = m_iFree;
m_ulTailNode = m_iFree;
i = m_iFree;
m_iFree = m_piAllocList[i-1];
m_piAllocList[i-1] = ALLOCATED;
// Set the dirty Flag
m_ulFlags |= AFLAG_ISDIRTY;
return(i);
}
template <class T>
T* CArray<T>::GetItem(const unsigned long index)
{
// Sanity checks
if(index>m_ulCurSize || index<1)
return(0);
if(m_piAllocList[index-1]!=ALLOCATED)
return(0);
return(&m_pBuffer[index-1].item);
}
template <class T>
BOOL CArray<T>::DeleteItem(const unsigned long index)
{
// Sanity checks
if(index>m_ulCurSize || index<1)
return(FALSE);
if(m_piAllocList[index-1]!=ALLOCATED)
return(FALSE);
// Delete the object in the buffer
m_pBuffer[index-1].item.~T();
// Relink if index points to a normal item
if(index>m_ulResSlots) {
if(m_pBuffer[index-1].prev)
m_pBuffer[m_pBuffer[index-1].prev-1].next = m_pBuffer[index-1].next;
else {
Win4Assert(m_ulHeadNode==index);
m_ulHeadNode = m_pBuffer[index-1].next;
}
if(m_pBuffer[index-1].next)
m_pBuffer[m_pBuffer[index-1].next-1].prev = m_pBuffer[index-1].prev;
else {
Win4Assert(m_ulTailNode==index);
m_ulTailNode = m_pBuffer[index-1].prev;
}
}
// Clear memory
memset(&m_pBuffer[index-1], 0, sizeof(ArrayNode));
--m_ulLength;
if(index>m_ulResSlots) {
// Update the free list
m_piAllocList[index-1] = m_iFree;
m_iFree = index;
}
else {
// Revert slot to reserved
m_piAllocList[index-1] = RESERVED;
}
return(TRUE);
}
template <class T>
void CArray<T>::DeleteAllItems(void)
{
unsigned long i;
// If we haven't even allocated a buffer yet,
// just return.
if (NULL == m_pBuffer)
return;
// Delete all objects in the buffer
for(i=0;i<m_ulCurSize;i++)
if(m_piAllocList[i]==ALLOCATED)
m_pBuffer[i].item.~T();
// Clear the memory in the buffer
memset(&m_pBuffer[0], 0, sizeof(ArrayNode)*m_ulCurSize);
// Update allocation list
for(i=0;i<m_ulResSlots;i++)
m_piAllocList[i] = RESERVED;
// Update free list
for(i=m_ulResSlots;i<m_ulCurSize-1;i++)
m_piAllocList[i] = i+2;
m_piAllocList[m_ulCurSize-1] = NOFREEITEM;
m_iFree = m_ulResSlots+1;
return;
}
template <class T>
BOOL CArray<T>::ShiftToEnd(unsigned long ulNode)
{
// Sanity check
if(ulNode<=m_ulResSlots || m_piAllocList[ulNode-1]!=ALLOCATED)
return(FALSE);
// Degenerate case
if(!m_pBuffer[ulNode-1].next) {
Win4Assert(ulNode==m_ulTailNode);
return(TRUE);
}
// Fix link info
m_pBuffer[m_ulTailNode-1].next = m_ulHeadNode;
m_pBuffer[m_ulHeadNode-1].prev = m_ulTailNode;
m_ulHeadNode = m_pBuffer[ulNode-1].next;
m_pBuffer[m_ulHeadNode-1].prev = 0;
m_ulTailNode = ulNode;
m_pBuffer[m_ulTailNode-1].next = 0;
return(TRUE);
}
template <class T>
T* CArray<T>::GetNext(unsigned long& index)
{
// Sanity check
if(index>m_ulCurSize)
return(0);
// Search for the next valid item in the buffer
unsigned long i=index;
// Search the reserved slots
while(i<m_ulResSlots) {
++i;
if(m_piAllocList[i-1]==ALLOCATED) {
index = i;
return(&m_pBuffer[i-1].item);
}
}
// Skip to the next normal node
if(i==m_ulResSlots)
i = m_ulHeadNode;
else {
Win4Assert(m_piAllocList[i-1]==ALLOCATED);
i = m_pBuffer[i-1].next;
}
if(i) {
Win4Assert(m_piAllocList[i-1]==ALLOCATED);
index = i;
return(&m_pBuffer[i-1].item);
}
return 0;
}
template <class T>
T* CArray<T>::GetPrev(unsigned long& index)
{
// Sanity check
if(index<1)
return 0;
// Search for the previous valid item in the buffer
unsigned long i=index;
// Skip to the previous normal node
if(i>m_ulResSlots) {
Win4Assert(m_piAllocList[i-1]==ALLOCATED);
i = m_pBuffer[i-1].prev;
if(i) {
Win4Assert(m_piAllocList[i-1]==ALLOCATED);
index = i;
return(&m_pBuffer[i-1].item);
}
else
i = m_ulResSlots+1;
}
// Search the reserved slots
while(i>1) {
--i;
if(m_piAllocList[i-1]==ALLOCATED) {
index = i;
return(&m_pBuffer[i-1].item);
}
}
return 0;
}
template <class T>
CArray<T>& CArray<T>::operator=(const CArray<T>& a)
{
// Check to see, if this a=a case
if(this==&a)
return(*this);
// Self destroy
CArray<T>::~CArray();
// Now, make a copy
MakeCopy(a);
return(*this);
}
template <class T>
ostream& operator<<(ostream& os, CArray<T>& a)
{
unsigned long i, index;
a.Reset(index);
os << "Length = " << a.m_ulLength <<
" Current Size = " << a.m_ulCurSize << endl;
if(a.m_ulLength) {
os << '[';
for(i=0;i<a.m_ulLength-1;i++)
os << *(a.GetNext(index)) << ',';
os << *(a.GetNext(index)) << ']' << endl;
}
else
os << "[]" << endl;
return(os);
}
template <class T>
void CArray<T>::Dump()
{
unsigned long i;
cerr << "Current Size = " << m_ulCurSize << endl;
cerr << "HeadNode = " << m_ulHeadNode << endl;
cerr << "TailNode = " << m_ulTailNode << endl;
cerr << "FreeNode = " << m_iFree << endl;
if(m_ulCurSize) {
cerr << '[';
for(i=0;i<m_ulCurSize-1;i++) {
if(m_piAllocList[i]==ALLOCATED)
cerr << '(' << m_pBuffer[i].item << ',' << m_pBuffer[i].prev << ','
<< m_pBuffer[i].next << "),";
else
cerr << '(' << "NULL," << m_pBuffer[i].prev << ','
<< m_pBuffer[i].next << "),";
}
if(m_piAllocList[m_ulCurSize-1]==ALLOCATED)
cerr << '(' << m_pBuffer[m_ulCurSize-1].item << ','
<< m_pBuffer[m_ulCurSize-1].prev << ','
<< m_pBuffer[m_ulCurSize-1].next << ")]" << endl;
else
cerr << '(' << "NULL,"
<< m_pBuffer[m_ulCurSize-1].prev << ','
<< m_pBuffer[m_ulCurSize-1].next << ")]" << endl;
cerr << '[';
for(i=0;i<m_ulCurSize-1;i++)
cerr << m_piAllocList[i] << ',';
cerr << m_piAllocList[m_ulCurSize-1] << ']' << endl;
}
else
cerr << "[]" << endl;
return;
}
template <class T>
class CInterfacePtr
{
public:
// Default Constructor
CInterfacePtr(T* a=NULL) {
m_ptr = a;
}
// Copy constructor
CInterfacePtr(const CInterfacePtr& a) {
m_ptr = a.m_ptr;
if(m_ptr)
m_ptr->AddRef();
}
// Destructor
~CInterfacePtr() {
if(m_ptr)
m_ptr->Release();
}
// New and Delete operators
void* operator new(size_t size) {
return PrivMemAlloc(size);
};
void operator delete(void *pv){
PrivMemFree(pv);
return;
};
// Operators
operator T*() {
return(m_ptr);
}
T* operator->() {
return(m_ptr);
}
T& operator*() {
return(*m_ptr);
}
T& operator[](int i) {
return(m_ptr[i]);
}
T** operator&() {
return(&m_ptr);
}
const CInterfacePtr& operator=(T* a) {
// Check for a=a case
if(this->m_ptr==a)
return(*this);
// Self destroy
CInterfacePtr<T>::~CInterfacePtr();
m_ptr = a;
if(m_ptr)
m_ptr->AddRef();
return(*this);
}
private:
T* m_ptr;
};
#endif // Array_hxx