Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2130 lines
60 KiB

//+-------------------------------------------------------------------
//
// Microsoft Windows
// Copyright (C) Microsoft Corporation, 1996 - 1996.
//
// File: alsup.cxx
//
// Contents: CAccessList support functions
//
// Classes:
//
// History: 06-Nov-96 MacM Created
//
//--------------------------------------------------------------------
#include <aclpch.hxx>
#pragma hdrstop
#include <alsup.hxx>
#include <netlib.h>
#include <seopaque.h>
#include <sertlp.h>
#include <martaevt.h>
#include <ntprov.hxx>
#include <strings.h>
DWORD
InitializeEvents(void);
//+---------------------------------------------------------------------------
//
// Function: GetOrderTypeForAccessEntry
//
// Synopsis: Determines the "order" type of entry given the node
// information
//
// Arguments: [pwszProperty] -- The property this entry is
// associated with
// [pAE] -- The entry to check
// [SeInfo] -- Type of node this is supposed to
// be
//
// Returns: The type of the node. This is a bitmask flag of the types
// ACCLIST_DENIED through ACCLIST_PROP_ALLOWED
//
// Notes:
//
//----------------------------------------------------------------------------
ULONG GetOrderTypeForAccessEntry(IN PWSTR pwszProperty,
IN PACTRL_ACCESS_ENTRY pAE,
IN SECURITY_INFORMATION SeInfo)
{
ULONG Type = 0;
//
// First, check the simple cases (like audit or invalid)
//
if(FLAG_ON(SeInfo, DACL_SECURITY_INFORMATION))
{
if(FLAG_ON(pAE->fAccessFlags,
ACTRL_AUDIT_SUCCESS | ACTRL_AUDIT_FAILURE))
{
Type = ACCLIST_AUDIT;
}
}
else
{
if(!FLAG_ON(pAE->fAccessFlags,
ACTRL_AUDIT_SUCCESS | ACTRL_AUDIT_FAILURE) &&
FLAG_ON(pAE->fAccessFlags,
ACTRL_ACCESS_ALLOWED | ACTRL_ACCESS_DENIED))
{
Type = ACCLIST_UNKOWN_ENTRY;
}
else
{
Type = ACCLIST_AUDIT;
}
}
if(Type == 0)
{
if(pwszProperty == NULL && pAE->lpInheritProperty == NULL)
{
Type = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
ACCLIST_DENIED :
ACCLIST_ALLOWED;
}
else if(pwszProperty == NULL)
{
Type = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
ACCLIST_OBJ_DENIED :
ACCLIST_PROP_ALLOWED;
}
else
{
Type = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
ACCLIST_OBJ_DENIED :
ACCLIST_OBJ_ALLOWED;
}
//
// See if it's inherited. If it is, and we don't have a level
// flag, assume it's level 1 and mark it as such
//
if(FLAG_ON(pAE->Inheritance, INHERITED_ACCESS_ENTRY) &&
!FLAG_ON(pAE->Inheritance,
INHERITED_PARENT | INHERITED_GRANDPARENT))
{
pAE->Inheritance |= INHERITED_PARENT;
}
}
return(Type);
}
//+---------------------------------------------------------------------------
//
// Function: OrderListBySid
//
// Synopsis: Orders an acclist_cnode list by sid. The order would be:
// Everyone
// Well known groups
// Groups
// Users
// Anyone else
//
// Arguments: [pList] -- List of the nodes to sort
// [iStart] -- Where to start in the list
// [iLen] -- Number of nodes in the list
//
// Returns: ERROR_SUCCESS -- Success
//
// Notes:
//
//----------------------------------------------------------------------------
ULONG OrderListBySid(IN PACCLIST_CNODE pList,
IN ULONG iStart,
IN ULONG iLen)
{
DWORD dwErr = ERROR_SUCCESS;
return(dwErr);
}
//
// Local functions
//
//+---------------------------------------------------------------------------
//
// Function: DelAcclistNode
//
// Synopsis: Deletes an ACCLIST_NODE that's kept in the _AccList. This is
// used by the CSList
//
// Arguments: [IN pvNode] -- Node to delete
//
// Returns: VOID
//
//----------------------------------------------------------------------------
void DelAcclistNode(PVOID pvNode)
{
PACCLIST_NODE pNode = (PACCLIST_NODE)pvNode;
AccFree(pNode->pAccessList);
AccFree(pNode->pAuditList);
AccFree(pNode->pwszProperty);
AccFree(pNode);
}
//+---------------------------------------------------------------------------
//
// Function: DelTrusteeNode
//
// Synopsis: Deletes an TRUSTEE_NODE that's kept in the _TrusteeList.
// This is used by the CSList
//
// Arguments: [IN pvNode] -- Node to delete
//
// Returns: VOID
//
//----------------------------------------------------------------------------
void DelTrusteeNode(PVOID pvNode)
{
acDebugOut((DEB_TRACE_ACC, "IN DelTrusteeNode\n"));
PTRUSTEE_NODE pNode = (PTRUSTEE_NODE)pvNode;
if(FLAG_ON(pNode->fFlags,TRUSTEE_DELETE_SID))
{
AccFree(pNode->pSid);
}
if(FLAG_ON(pNode->fFlags,TRUSTEE_DELETE_NAME))
{
AccFree(pNode->pwszTrusteeName);
AccFree(pNode->pwszDomainName);
}
else if(FLAG_ON(pNode->fFlags, TRUSTEE_DELETE_DOMAIN))
{
AccFree(pNode->pwszDomainName);
}
AccFree(pNode);
acDebugOut((DEB_TRACE_ACC, "Out DelTrusteeNode\n"));
}
//+---------------------------------------------------------------------------
//
// Function: CompInheritProps
//
// Synopsis: Compare the given property name to the PIPROP_IN_BUFF stuct
//
// Arguments: [IN pvTrustee] -- Trustee to look for
// [IN pvNode2] -- 2nd node to compare
//
// Returns: TRUE -- Nodes equal
// FALSE -- Nodes not equal
//
//----------------------------------------------------------------------------
BOOL CompInheritProps(IN PVOID pvInheritProp,
IN PVOID pvNode2)
{
BOOL fRet = FALSE;
PIPROP_IN_BUFF pPIB = (PIPROP_IN_BUFF)pvNode2;
if(pvInheritProp != NULL)
{
if(_wcsicmp((PWSTR)pvInheritProp, (PWSTR)(pPIB->pwszIProp)) == 0)
{
fRet = TRUE;
}
}
return(fRet);
}
//+---------------------------------------------------------------------------
//
// Function: CompTrustees
//
// Synopsis: Compare two TRUSTEE_NODES. Used by _TrusteeList.
//
// Arguments: [IN pvTrustee] -- Trustee to look for
// [IN pvNode2] -- 2nd node to compare
//
// Returns: TRUE -- Nodes equal
// FALSE -- Nodes not equal
//
//----------------------------------------------------------------------------
BOOL CompTrustees(IN PVOID pvTrustee,
IN PVOID pvTrustee2)
{
PTRUSTEE pTrustee = (PTRUSTEE)pvTrustee;
TRUSTEE_NODE TrusteeNode;
BOOL Result = FALSE;
memset( &TrusteeNode, 0, sizeof( TrusteeNode ) );
memcpy( &TrusteeNode.Trustee, pvTrustee2, sizeof( TRUSTEE ) );
Result = CompTrusteeToTrusteeNode(pvTrustee, &TrusteeNode);
if(FLAG_ON(TrusteeNode.fFlags,TRUSTEE_DELETE_SID))
{
AccFree(TrusteeNode.pSid);
}
if(FLAG_ON(TrusteeNode.fFlags,TRUSTEE_DELETE_NAME))
{
AccFree(TrusteeNode.pwszTrusteeName);
AccFree(TrusteeNode.pwszDomainName);
TrusteeNode.pwszDomainName = NULL;
}
if(FLAG_ON(TrusteeNode.fFlags, TRUSTEE_DELETE_DOMAIN))
{
AccFree(TrusteeNode.pwszDomainName);
}
return(Result);
}
//+---------------------------------------------------------------------------
//
// Function: CompTrusteeToTrusteeNode
//
// Synopsis: Compare two trustees for equality
//
// Arguments: [IN pvTrustee] -- Trustee to look for
// [IN pvNode2] -- 2nd node to compare
//
// Returns: TRUE -- Nodes equal
// FALSE -- Nodes not equal
//
//----------------------------------------------------------------------------
BOOL CompTrusteeToTrusteeNode(IN PVOID pvTrustee,
IN PVOID pvNode2)
{
PTRUSTEE pTrustee = (PTRUSTEE)pvTrustee;
PTRUSTEE_NODE pNode2 = (PTRUSTEE_NODE)pvNode2;
DWORD dwErr = ERROR_SUCCESS;
BOOL fMatch = FALSE;
if(pTrustee->MultipleTrusteeOperation ==
pNode2->Trustee.MultipleTrusteeOperation)
{
//
// Ok, first compare the base trustee information...
//
if(pTrustee->TrusteeForm != pNode2->Trustee.TrusteeForm)
{
//
// We don't have matching information, so we'll have to look
// it up.
//
ULONG fOptions = 0;
if(pTrustee->TrusteeForm == TRUSTEE_IS_NAME)
{
fOptions = TRUSTEE_OPT_NAME;
}
else
{
fOptions = TRUSTEE_OPT_SID;
}
dwErr = LookupTrusteeNodeInformation(NULL,
pNode2,
fOptions);
}
//
// Now, do the comparrisons
//
if(dwErr == ERROR_SUCCESS)
{
//
// Now, compare the trustees
//
if(pTrustee->TrusteeForm == TRUSTEE_IS_NAME)
{
if(_wcsicmp(pTrustee->ptstrName,
pNode2->pwszTrusteeName ?
pNode2->pwszTrusteeName :
pNode2->Trustee.ptstrName) == 0)
{
fMatch = TRUE;
}
}
else
{
if(pTrustee->ptstrName == NULL ||
(pNode2->Trustee.ptstrName == NULL && pNode2->pSid == NULL))
{
fMatch = FALSE;
}
else
{
fMatch = RtlEqualSid((PSID)(pTrustee->ptstrName),
(PSID)(pNode2->pSid ?
pNode2->pSid :
pNode2->Trustee.ptstrName));
}
}
}
//
// Now, if that worked, look for the multiple trustee case
//
if(fMatch == TRUE &&
pTrustee->MultipleTrusteeOperation == TRUSTEE_IS_IMPERSONATE)
{
fMatch = CompTrusteeToTrusteeNode(pTrustee->pMultipleTrustee,
pNode2->pImpersonate);
}
}
return(fMatch);
}
//+---------------------------------------------------------------------------
//
// Function: DoPropertiesMatch
//
// Synopsis: Determines if 2 properties are equal. It takes into account
// the possibility of a NULL property.
//
// Arguments: [IN pwszProp1] -- 1st property to compare
// [IN pwszProp2] -- 2nd property to compare
//
// Returns: TRUE -- Properties are equal
// FALSE -- Properties are not equal
//
//----------------------------------------------------------------------------
BOOL DoPropertiesMatch(IN PWSTR pwszProp1,
IN PWSTR pwszProp2)
{
BOOL fReturn = FALSE;
if(pwszProp1 == NULL || pwszProp2 == NULL)
{
if(pwszProp1 == pwszProp2)
{
fReturn = TRUE;
}
}
else
{
if(_wcsicmp(pwszProp1, pwszProp2) == 0)
{
fReturn = TRUE;
}
}
return(fReturn);
}
//+---------------------------------------------------------------------------
//
// Function: CompProps
//
// Synopsis: Compare an ACCLIST_NODE to a property
//
// Arguments: [IN pvProp] -- Property string
// [IN pvNode] -- Node to compare
//
// Returns: TRUE -- Nodes equal
// FALSE -- Nodes not equal
//
//----------------------------------------------------------------------------
BOOL CompProps(IN PVOID pvProp,
IN PVOID pvNode)
{
PACCLIST_NODE pAN = (PACCLIST_NODE)pvNode;
return(DoPropertiesMatch((PWSTR)pvProp, pAN->pwszProperty));
}
//+---------------------------------------------------------------------------
//
// Function: CompGuids
//
// Synopsis: Compare an ACCLIST_ATOACCESS structure to a guid
//
// Arguments: [IN pvGuid] -- Guid
// [IN pvNode] -- Node to compare
//
// Returns: TRUE -- Nodes equal
// FALSE -- Nodes not equal
//
//----------------------------------------------------------------------------
BOOL CompGuids(IN PVOID pvGuid,
IN PVOID pvNode)
{
PACCLIST_ATOACCESS pAA = (PACCLIST_ATOACCESS)pvNode;
GUID *pGuid = (GUID *)pvGuid;
if(pGuid == NULL && pAA->pGuid == NULL)
{
return(TRUE);
}
else if(pGuid == NULL || pAA->pGuid == NULL)
{
return(FALSE);
}
return((BOOL)!memcmp(pGuid, pAA->pGuid, sizeof(GUID)));
}
//+---------------------------------------------------------------------------
//
// Function: LookupTrusteeNodeInformation
//
// Synopsis: Looks up the appropriate trustee information. This involves
// either looking up the trustees sid or name, depending on
// the options
//
// Arguments: [pwszServer] -- Name of server to lookup information on
// [pTrusteeNode] -- Trustee to lookup the information
// for
// [fOptions] -- What information to lookup
//
// Returns: ERROR_SUCCESS -- Success
//
// Notes:
//
//----------------------------------------------------------------------------
DWORD LookupTrusteeNodeInformation(IN PWSTR pwszServer,
IN PTRUSTEE_NODE pTrusteeNode,
IN ULONG fOptions)
{
DWORD dwErr = ERROR_SUCCESS;
SID_NAME_USE SidType = SidTypeUnknown;
//
// Need to make sure we have the SID
//
if(FLAG_ON(fOptions, TRUSTEE_OPT_SID))
{
//
// Make sure we have the sids
//
if(pTrusteeNode->pSid == NULL)
{
dwErr = AccctrlLookupSid(pwszServer,
pTrusteeNode->Trustee.ptstrName,
TRUE,
&(pTrusteeNode->pSid),
&SidType);
if(dwErr == ERROR_SUCCESS)
{
pTrusteeNode->fFlags |= TRUSTEE_DELETE_SID;
}
}
}
//
// Ok, we need to have the name
//
if(dwErr == ERROR_SUCCESS && FLAG_ON(fOptions, TRUSTEE_OPT_NAME))
{
//
// Make sure we have the name
//
if(pTrusteeNode->pwszTrusteeName == NULL)
{
dwErr = AccctrlLookupName(pwszServer,
pTrusteeNode->pSid,
TRUE,
&(pTrusteeNode->pwszTrusteeName),
&SidType);
if(dwErr == ERROR_SUCCESS)
{
pTrusteeNode->fFlags |= TRUSTEE_DELETE_NAME;
}
}
}
//
// Then, take care of our sid type
//
if(dwErr == ERROR_SUCCESS && pTrusteeNode->SidType == SidTypeUnknown)
{
pTrusteeNode->SidType = SidType;
if(SidType == SidTypeUnknown)
{
pTrusteeNode->Trustee.TrusteeType = TRUSTEE_IS_UNKNOWN;
}
else
{
pTrusteeNode->Trustee.TrusteeType = (TRUSTEE_TYPE)(SidType);
}
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: GetATypeForEntry
//
// Synopsis: Determines the type of entry given the node information
//
// Arguments: [pwszProperty] -- The property this entry is
// associated with
// [pAE] -- The entry to check
// [SeInfo] -- Type of node this is supposed to
// be
//
// Returns: The type of the node
//
// Notes:
//
//----------------------------------------------------------------------------
ACC_ACLBLD_TYPE GetATypeForEntry(IN PWSTR pwszProperty,
IN PACTRL_ACCESS_ENTRY pAE,
IN SECURITY_INFORMATION SeInfo)
{
ACC_ACLBLD_TYPE AType = AAT_DENIED;
//
// First, check the simple cases (like audit or invalid)
//
if(FLAG_ON(SeInfo, DACL_SECURITY_INFORMATION))
{
if(FLAG_ON(pAE->fAccessFlags,
ACTRL_AUDIT_SUCCESS | ACTRL_AUDIT_FAILURE))
{
AType = AAT_INVALID;
}
}
else
{
if(!FLAG_ON(pAE->fAccessFlags,
ACTRL_AUDIT_SUCCESS | ACTRL_AUDIT_FAILURE) &&
FLAG_ON(pAE->fAccessFlags,
ACTRL_ACCESS_ALLOWED | ACTRL_ACCESS_DENIED))
{
AType = AAT_INVALID;
}
else
{
AType = AAT_AUDIT;
}
}
if(AType == 0)
{
if(pwszProperty == NULL && pAE->lpInheritProperty == NULL)
{
AType = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
AAT_DENIED :
AAT_ALLOWED;
}
else if(pwszProperty == NULL)
{
AType = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
AAT_OBJ_DENIED :
AAT_PROP_ALLOWED;
}
else
{
AType = pAE->fAccessFlags == ACTRL_ACCESS_DENIED ?
AAT_OBJ_DENIED :
AAT_OBJ_ALLOWED;
}
//
// See if it's inherited
//
if(FLAG_ON(pAE->Inheritance, INHERITED_ACCESS_ENTRY))
{
AType =(ACC_ACLBLD_TYPE)
((ULONG)AType + ((ULONG)AAT_IDENIED - (ULONG)AAT_DENIED));
}
}
return(AType);
}
//+---------------------------------------------------------------------------
//
// Function: CNodeCompare
//
// Synopsis: Used by CSList class. Used to determine if 2 acclist_cnodes are
// identical, based upon the property
//
// Arguments: [pv1] -- 1st node
// [pv2] -- 2nd node
//
// Returns: 0 on equality
// non-0 otherwise
//
// Notes:
//
//----------------------------------------------------------------------------
int __cdecl CNodeCompare(const void *pv1, const void *pv2)
{
PACCLIST_CNODE pCN1 = (PACCLIST_CNODE)pv1;
PACCLIST_CNODE pCN2 = (PACCLIST_CNODE)pv2;
if(pCN1->pONode->pwszProperty == NULL)
{
return(-1);
}
if(pCN2->pONode->pwszProperty == NULL)
{
return(1);
}
return(_wcsicmp(pCN1->pONode->pwszProperty, pCN2->pONode->pwszProperty));
}
//+---------------------------------------------------------------------------
//
// Function: CompAndMarkCompressNode
//
// Synopsis: Used by CSList class. Used to determine if 2 nodes can be
// compressed into one. If so, the first node has its access
// flag marked with a bit signifying it can be compressed. See
// below for the definition of what it means to be compressible
//
// Arguments: [pvAE] -- New node
// [pvNode] -- Node already existing in list
//
// Returns: 0 on equality
// non-0 otherwise
//
// Notes:
//
//----------------------------------------------------------------------------
BOOL CompAndMarkCompressNode(IN PVOID pvAE,
IN PVOID pvNode)
{
PACTRL_ACCESS_ENTRY pAE1 = (PACTRL_ACCESS_ENTRY)pvAE;
PACTRL_ACCESS_ENTRY pAE2 = (PACTRL_ACCESS_ENTRY)pvNode;
//
// We will consider nodes identical iff:
// They match trustee, inheritance, and access flags exactly and the
// inherit property or (along with the rest of the above):
// - Both nodes are inherited and one is marked l1 inherited and the
// other is not marked at all, or neither node is inherited
// and the inheritance is identical or the inheritance is different
// but the access masks are the same
// - fAccessFlags indicates that combining this 2 nodes will still
// yield an audit node.
//
if(CompTrustees(&pAE1->Trustee,&pAE2->Trustee) == TRUE &&
//
// Check the inheritance
//
(pAE1->Inheritance == pAE2->Inheritance ||
(pAE1->Inheritance & ~INHERITED_PARENT) ==
(pAE2->Inheritance & ~INHERITED_PARENT) ||
(!FLAG_ON(pAE1->Inheritance, INHERITED_ACCESS_ENTRY) &&
!FLAG_ON(pAE2->Inheritance, INHERITED_ACCESS_ENTRY)&&
(pAE1->Inheritance != 0 && pAE2->Inheritance != 0) &&
(pAE1->Access) == pAE2->Access)) &&
//
// Check the access
//
(((pAE1->fAccessFlags & ~(ACCLIST_COMPRESS | ~ACCLIST_VALID_TYPE_FLAGS)) ==
( pAE2->fAccessFlags & ~~ACCLIST_VALID_TYPE_FLAGS ) ||
(((((pAE1->fAccessFlags & ~(ACCLIST_COMPRESS | ~ACCLIST_VALID_TYPE_FLAGS)) |
(pAE2->fAccessFlags & ~~ACCLIST_VALID_TYPE_FLAGS)) &
~(ACTRL_AUDIT_SUCCESS | ACTRL_AUDIT_FAILURE)) == 0))) &&
pAE1->Access == pAE2->Access) &&
//
// Check the properties
//
DoPropertiesMatch(pAE1->lpInheritProperty,
pAE2->lpInheritProperty) == TRUE)
{
pAE1->fAccessFlags |= ACCLIST_COMPRESS;
return(TRUE);
}
return(FALSE);
}
//+---------------------------------------------------------------------------
//
// Function: GetNodeForProperty
//
// Synopsis: This function will lookup the existing list node for the given
// property. If the node doesn't exist, it will be created and
// inserted into the list
//
// Arguments: [List] -- List to examine
// [pwszProperty] -- The property to look for
// [ppNode] -- Where the found or inserted node is
// returned
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY A memory allocation failed
//
// Notes:
//
//----------------------------------------------------------------------------
DWORD GetNodeForProperty(CSList& List,
PWSTR pwszProperty,
PACCLIST_NODE *ppNode)
{
DWORD dwErr = ERROR_SUCCESS;
PACCLIST_NODE pAccNode = (PACCLIST_NODE)List.Find(pwszProperty,
CompProps);
if(pAccNode == NULL)
{
//
// Doesn't exist. We'll have to add it...
//
pAccNode = (PACCLIST_NODE)AccAlloc(sizeof(ACCLIST_NODE));
if(pAccNode == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
if(pwszProperty != NULL)
{
ACC_ALLOC_AND_COPY_STRINGW(pwszProperty,
pAccNode->pwszProperty,
dwErr);
}
if(dwErr == ERROR_SUCCESS)
{
dwErr = List.Insert((PVOID)pAccNode);
if(dwErr != ERROR_SUCCESS)
{
AccFree(pAccNode->pwszProperty);
AccFree(pAccNode);
}
}
else
{
AccFree(pAccNode);
pAccNode = 0;
}
}
}
*ppNode = pAccNode;
return(dwErr);
}
VOID
FreeAToAccessStruct(PVOID pv)
{
((PACCLIST_ATOACCESS)pv)->AceList.FreeList((FreeFunc)AccFree);
AccFree(pv);
}
//+---------------------------------------------------------------------------
//
// Function: GetNodeForGuid
//
// Synopsis: Finds the node in the given list based upon the guid. If the
// node doesn't exist, it is inserted
//
// Arguments: [List] -- List to examine
// [pGuid] -- The guid to look for
// [ppNode] -- Where the found or inserted node is
// returned
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY A memory allocation failed
//
// Notes:
//
//----------------------------------------------------------------------------
DWORD GetNodeForGuid(CSList& List,
GUID *pGuid,
PACCLIST_ATOACCESS *ppNode)
{
DWORD dwErr = ERROR_SUCCESS;
List.Init((FreeFunc)FreeAToAccessStruct);
PACCLIST_ATOACCESS pNode = (PACCLIST_ATOACCESS)List.Find(pGuid,
CompGuids);
if(pNode == NULL)
{
//
// Doesn't exist. We'll have to add it...
//
pNode = (PACCLIST_ATOACCESS)AccAlloc(sizeof(ACCLIST_ATOACCESS));
if(pNode == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
pNode->AceList.Init((FreeFunc)AccFree);
if(pGuid != NULL)
{
pNode->pGuid = (GUID *)AccAlloc(sizeof(GUID));
if(pNode->pGuid == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
AccFree(pNode);
pNode = 0;
}
else
{
memcpy(pNode->pGuid,
pGuid,
sizeof(GUID));
}
}
if(dwErr == ERROR_SUCCESS)
{
dwErr = List.Insert((PVOID)pNode);
if(dwErr != ERROR_SUCCESS)
{
AccFree(pNode->pGuid);
AccFree(pNode);
}
}
}
}
*ppNode = pNode;
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: InsertAtoANode
//
// Synopsis: Inserts an access to ace node into the list.
//
// Arguments: [List] -- List to insert in
// [pProperty] -- Property to match
// [pAce] -- Ace to be inserted
// [fInherit] -- Inheritance flags
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY A memory allocation failed
//
// Notes:
//
//----------------------------------------------------------------------------
DWORD InsertAtoANode(CSList& List,
GUID *pProperty,
PACE_HEADER pAce,
ULONG fInherit)
{
DWORD dwErr = ERROR_SUCCESS;
PACCLIST_ATOANODE pAANode =
(PACCLIST_ATOANODE)AccAlloc(sizeof(ACCLIST_ATOANODE));
if(pAANode == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
pAANode->pAce = pAce;
pAANode->fInherit = fInherit;
PACCLIST_ATOACCESS pParent;
dwErr = GetNodeForGuid(List,
pProperty,
&pParent);
if(dwErr == ERROR_SUCCESS)
{
dwErr = pParent->AceList.Insert((PVOID)pAANode);
}
if(dwErr != ERROR_SUCCESS)
{
AccFree(pAANode);
}
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: AceToAccessEntry
//
// Synopsis: Converts an ACE into an access entry
//
// Arguments: [pAce] -- Ace to convert
// [fInheritLevel] -- What inheritance level (effective,
// parent inherit, etc) are we at
// [ObjType] -- Type of object we're dealing with
// [pAE] -- Already existing access entry to
// initialize
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_INVALID_ACL -- A bad ace type was encountered
//
// Notes:
//
//----------------------------------------------------------------------------
DWORD AceToAccessEntry(PACE_HEADER pAce,
ULONG fInheritLevel,
SE_OBJECT_TYPE ObjType,
IN MARTA_KERNEL_TYPE KernelObjectType,
PACTRL_ACCESS_ENTRY pAE)
{
DWORD dwErr = ERROR_SUCCESS;
//
// Go ahead and initialize the node
//
BOOL fIsImpersonate = FALSE;
BOOL fIsExtendedAce = FALSE;
//
// Ok, now lets try to figure out what type of ACE this is, so we can
// do the neccessary mapping into the provider rights
//
switch(pAce->AceType)
{
case ACCESS_ALLOWED_ACE_TYPE:
pAE->fAccessFlags = ACTRL_ACCESS_ALLOWED;
break;
case ACCESS_ALLOWED_OBJECT_ACE_TYPE:
pAE->fAccessFlags = ACTRL_ACCESS_ALLOWED;
fIsExtendedAce = TRUE;
break;
//
// Currently unsupported
//
case ACCESS_ALLOWED_COMPOUND_ACE_TYPE:
pAE->fAccessFlags = ACTRL_ACCESS_ALLOWED;
fIsImpersonate = TRUE;
dwErr = ERROR_INVALID_ACL;
break;
case ACCESS_DENIED_ACE_TYPE:
pAE->fAccessFlags = ACTRL_ACCESS_DENIED;
break;
case ACCESS_DENIED_OBJECT_ACE_TYPE:
pAE->fAccessFlags = ACTRL_ACCESS_DENIED;
fIsExtendedAce = TRUE;
break;
case SYSTEM_AUDIT_OBJECT_ACE_TYPE:
pAE->fAccessFlags = 0;
if(FLAG_ON(pAce->AceFlags,SUCCESSFUL_ACCESS_ACE_FLAG))
{
pAE->fAccessFlags |= ACTRL_AUDIT_SUCCESS;
}
if(FLAG_ON(pAce->AceFlags,FAILED_ACCESS_ACE_FLAG))
{
pAE->fAccessFlags |= ACTRL_AUDIT_FAILURE;
}
fIsExtendedAce = TRUE;
break;
case SYSTEM_AUDIT_ACE_TYPE:
pAE->fAccessFlags = 0;
if(FLAG_ON(pAce->AceFlags,SUCCESSFUL_ACCESS_ACE_FLAG))
{
pAE->fAccessFlags |= ACTRL_AUDIT_SUCCESS;
}
if(FLAG_ON(pAce->AceFlags,FAILED_ACCESS_ACE_FLAG))
{
pAE->fAccessFlags |= ACTRL_AUDIT_FAILURE;
}
break;
default:
dwErr = ERROR_INVALID_ACL;
break;
}
if(dwErr == ERROR_SUCCESS)
{
//
// Pull what we can from the ace header
//
pAE->Inheritance = (INHERIT_FLAGS)( pAce->AceFlags & VALID_INHERIT_FLAGS );
pAE->Inheritance |= fInheritLevel;
PSID pSid = NULL;
ACCESS_MASK AccessMask = 0;
if(fIsImpersonate == FALSE)
{
if(fIsExtendedAce == TRUE)
{
pSid = RtlObjectAceSid(pAce);
AccessMask = ((PKNOWN_OBJECT_ACE)pAce)->Mask;
}
else
{
pSid = &((PKNOWN_ACE)pAce)->SidStart;
AccessMask = ((PKNOWN_ACE)pAce)->Mask;
}
}
else
{
if(fIsExtendedAce == TRUE)
{
dwErr = ERROR_INVALID_ACL;
}
else
{
pSid =
(PSID)Add2Ptr(&((PCOMPOUND_ACCESS_ALLOWED_ACE)pAce)->SidStart,
RtlLengthSid(&((PCOMPOUND_ACCESS_ALLOWED_ACE)pAce)->SidStart));
AccessMask = ((PCOMPOUND_ACCESS_ALLOWED_ACE)pAce)->Mask;
}
}
//
// Build the trustee
//
pAE->Trustee.pMultipleTrustee = NULL;
pAE->Trustee.MultipleTrusteeOperation = NO_MULTIPLE_TRUSTEE;
pAE->Trustee.TrusteeForm = TRUSTEE_IS_SID;
pAE->Trustee.TrusteeType = TRUSTEE_IS_UNKNOWN;
pAE->Trustee.ptstrName = (LPWSTR)pSid;
//
// Convert our access
//
AccConvertAccessMaskToActrlAccess(AccessMask,
ObjType,
KernelObjectType,
pAE);
//
// Deal with the inheritance property...
//
if(fIsExtendedAce == TRUE)
{
PACCESS_ALLOWED_OBJECT_ACE pExAce =
(PACCESS_ALLOWED_OBJECT_ACE)pAce;
if(FLAG_ON(pExAce->Flags,
ACE_INHERITED_OBJECT_TYPE_PRESENT))
{
PWSTR StrUuid;
dwErr = UuidToString(RtlObjectAceInheritedObjectType(pAce),
&StrUuid );
//
// The calling functions expect a buffer allocated with AccAlloc
//
if(dwErr == ERROR_SUCCESS)
{
ACC_ALLOC_AND_COPY_STRINGW(StrUuid, (PWSTR)pAE->lpInheritProperty, dwErr);
RpcStringFree(&StrUuid);
}
}
}
else
{
pAE->lpInheritProperty = NULL;
}
}
if(dwErr != ERROR_SUCCESS)
{
if(pAE->lpInheritProperty != NULL)
{
AccFree((PWSTR)pAE->lpInheritProperty);
}
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: ConvertToAutoInheritSD
//
// Synopsis: Determines the inheritance necessary for the current security
// descriptor given the parent security descriptor
//
// Arguments: [IN pCurrentSD] -- The security descriptor to
// update
// [IN pParentSD] -- The parent security descriptor
// [IN fIsContainer] -- Does the Sec. Desc. refer to
// a container?
// [IN pGenericMapping] -- Generic mapping to apply
// [OUT ppNewSD] -- Where the new SD is returned
//
// Returns: ERROR_SUCCESS -- Success
//
// Notes: The returned security descriptor must be freed via a call to
// DestroyPrivateObjectSecurity
//
//----------------------------------------------------------------------------
DWORD
ConvertToAutoInheritSD(IN PSECURITY_DESCRIPTOR pParentSD,
IN PSECURITY_DESCRIPTOR pCurrentSD,
IN BOOL fIsContainer,
IN PGENERIC_MAPPING pGenericMapping,
OUT PSECURITY_DESCRIPTOR *ppNewSD)
{
DWORD dwErr = ERROR_SUCCESS;
SECURITY_DESCRIPTOR_CONTROL OldControl;
//
// Turn off the inherited bits, so we can always do the
// necessary inheritance checks. This is because we don't know if some
// downlevel process came in and messed with one of our security
// descriptors, and left is in a hosed state
//
OldControl = ((SECURITY_DESCRIPTOR *)pCurrentSD)->Control;
((SECURITY_DESCRIPTOR *)pCurrentSD)->Control &=
~(SE_DACL_AUTO_INHERITED | SE_SACL_AUTO_INHERITED);
#ifdef DBG
if(pParentSD != NULL)
{
ASSERT(IsValidSecurityDescriptor(pParentSD));
DebugDumpSD("CTAIPOS ParentSD", pParentSD);
}
ASSERT(IsValidSecurityDescriptor(pCurrentSD));
DebugDumpSD("CTAIPOS CurrentSD", pCurrentSD);
#endif
if(ConvertToAutoInheritPrivateObjectSecurity(pParentSD,
pCurrentSD,
ppNewSD,
NULL,
fIsContainer != 0,
pGenericMapping) == FALSE)
{
dwErr = GetLastError();
}
#ifdef DBG
else
{
ASSERT(IsValidSecurityDescriptor(*ppNewSD));
DebugDumpSD("CTAIPOS NewSD", *ppNewSD);
}
#endif
((SECURITY_DESCRIPTOR *)pCurrentSD)->Control = OldControl;
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: MakeSDAbsolute
//
// Synopsis: Allocates a new security descriptor and makes an absolute copy
// of the supplied SD
//
// Arguments: [IN pOriginalSD] -- The security descriptor to
// convert
// [IN SeInfo] -- SD components to care about
// [IN *ppNewSD] -- Where the new SD is returned
// [IN pOwnerToAdd] -- OPTIONAL. Owner SID to add to
// absolute SD.
// [IN pGroupToAdd] -- OPTIONAL. Group SID to add to
// absolute SD.
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY -- A memory allocation falied
//
// Notes: The returned security descriptor must be freed via a call to
// AccFree
//
//----------------------------------------------------------------------------
DWORD
MakeSDAbsolute(IN PSECURITY_DESCRIPTOR pOriginalSD,
IN SECURITY_INFORMATION SeInfo,
OUT PSECURITY_DESCRIPTOR *ppNewSD,
IN PSID pOwnerToAdd,
IN PSID pGroupToAdd)
{
DWORD dwErr = ERROR_SUCCESS;
BOOL fDAclPresent = FALSE;
BOOL fSAclPresent = FALSE;
BOOL fDAclDef = FALSE, fSAclDef = FALSE;
BOOL fOwnerDef = FALSE, fGroupDef = FALSE;
PACL pDAcl = NULL, pSAcl = NULL;
PSID pOwner = NULL, pGroup = NULL;
ULONG cSize = 0;
//
// First, get the info out of the current SD
//
if(FLAG_ON(SeInfo, DACL_SECURITY_INFORMATION))
{
if(GetSecurityDescriptorDacl(pOriginalSD, &fDAclPresent, &pDAcl, &fDAclDef) == FALSE)
{
dwErr = GetLastError();
}
else
{
if(pDAcl != NULL)
{
cSize += pDAcl->AclSize;
}
}
}
if(dwErr == ERROR_SUCCESS && FLAG_ON(SeInfo, SACL_SECURITY_INFORMATION))
{
if(GetSecurityDescriptorSacl(pOriginalSD, &fSAclPresent, &pSAcl, &fSAclDef) == FALSE)
{
dwErr = GetLastError();
}
else
{
if(pSAcl != NULL)
{
cSize += pSAcl->AclSize;
}
}
}
if(pOwnerToAdd != NULL)
{
pOwner = pOwnerToAdd;
}
else
{
if(dwErr == ERROR_SUCCESS && FLAG_ON(SeInfo, OWNER_SECURITY_INFORMATION))
{
if(GetSecurityDescriptorOwner(pOriginalSD, &pOwner, &fOwnerDef) == FALSE)
{
dwErr = GetLastError();
}
}
}
if(pGroupToAdd != NULL)
{
pGroup = pGroupToAdd;
}
else
{
if(dwErr == ERROR_SUCCESS && FLAG_ON(SeInfo, GROUP_SECURITY_INFORMATION))
{
if(GetSecurityDescriptorGroup(pOriginalSD, &pGroup, &fGroupDef) == FALSE)
{
dwErr = GetLastError();
}
}
}
if(pOwner != NULL)
{
cSize += RtlLengthSid(pOwner);
}
if(pGroup != NULL)
{
cSize += RtlLengthSid(pGroup);
}
if(dwErr == ERROR_SUCCESS)
{
//
// Allocate the buffer...
//
PBYTE pBuff = (PBYTE)AccAlloc(cSize + sizeof(SECURITY_DESCRIPTOR));
if(pBuff == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
//
// Start copying in the existing items...
//
DWORD cLen;
PBYTE pbEndOBuf = pBuff + cSize + sizeof(SECURITY_DESCRIPTOR);
if(pOwner != NULL)
{
cLen = RtlLengthSid(pOwner);
pbEndOBuf -= cLen;
RtlCopyMemory(pbEndOBuf, pOwner, cLen);
pOwner = (PSID)pbEndOBuf;
}
if(pGroup != NULL)
{
cLen = RtlLengthSid(pGroup);
pbEndOBuf -= cLen;
RtlCopyMemory(pbEndOBuf, pGroup, cLen);
pGroup = (PSID)pbEndOBuf;
}
if(pDAcl != NULL)
{
pbEndOBuf -= pDAcl->AclSize;
RtlCopyMemory(pbEndOBuf, pDAcl, pDAcl->AclSize);
pDAcl = (PACL)pbEndOBuf;
}
if(pSAcl != NULL)
{
pbEndOBuf -= pSAcl->AclSize;
RtlCopyMemory(pbEndOBuf, pSAcl, pSAcl->AclSize);
pSAcl = (PACL)pbEndOBuf;
}
//
// Ok, now build it...
//
*ppNewSD = (PSECURITY_DESCRIPTOR)pBuff;
if(InitializeSecurityDescriptor(*ppNewSD, SECURITY_DESCRIPTOR_REVISION) == FALSE)
{
dwErr = GetLastError();
}
if(dwErr == ERROR_SUCCESS && fDAclPresent == TRUE)
{
if(SetSecurityDescriptorDacl(*ppNewSD, TRUE, pDAcl, fDAclDef) == FALSE)
{
dwErr = GetLastError();
}
}
if(dwErr == ERROR_SUCCESS && fSAclPresent == TRUE)
{
if(SetSecurityDescriptorSacl(*ppNewSD, TRUE, pSAcl, fSAclDef) == FALSE)
{
dwErr = GetLastError();
}
}
if(dwErr == ERROR_SUCCESS && pOwner != NULL)
{
if(SetSecurityDescriptorOwner(*ppNewSD, pOwner, fOwnerDef) == FALSE)
{
dwErr = GetLastError();
}
}
if(dwErr == ERROR_SUCCESS && pGroup != NULL)
{
if(SetSecurityDescriptorGroup(*ppNewSD, pGroup, fGroupDef) == FALSE)
{
dwErr = GetLastError();
}
}
//
// Set the new control bits to look like the old ones (minus the selfrel flag, of
// course...
//
if(dwErr == ERROR_SUCCESS)
{
RtlpPropagateControlBits((PISECURITY_DESCRIPTOR)*ppNewSD,
(PISECURITY_DESCRIPTOR)pOriginalSD,
~SE_SELF_RELATIVE );
}
if(dwErr != ERROR_SUCCESS)
{
AccFree(*ppNewSD);
*ppNewSD = NULL;
}
}
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: EqualSecurityDescriptors
//
// Synopsis: Determines if 2 security descriptors are identical. It does
// this by comparing control fields, owner/group, and sids.
//
// Arguments: [IN pSD1] -- 1st SD to compare
// [IN pSD2] -- 2nd SD to compare
//
// Returns: TRUE -- They are identical
// FALSE -- They are not identical
//
//
//----------------------------------------------------------------------------
BOOL
EqualSecurityDescriptors(IN PSECURITY_DESCRIPTOR pSD1,
IN PSECURITY_DESCRIPTOR pSD2)
{
BOOL fRet = TRUE;
SECURITY_DESCRIPTOR *pS1 = (SECURITY_DESCRIPTOR *)pSD1;
SECURITY_DESCRIPTOR *pS2 = (SECURITY_DESCRIPTOR *)pSD2;
if(pS1->Control != pS2->Control)
{
return(FALSE);
}
PACL pA1, pA2;
//
// Dacl
//
pA1 = RtlpDaclAddrSecurityDescriptor(pS1);
pA2 = RtlpDaclAddrSecurityDescriptor(pS2);
if((pA1 == NULL && pA2 != NULL) || (pA2 == NULL && pA1 != NULL))
{
return(FALSE);
}
if(pA1 != NULL)
{
if(!(pA1->AclSize == pA2->AclSize && memcmp(pA1, pA2, pA1->AclSize)))
{
return(FALSE);
}
}
//
// Sacl
//
pA1 = RtlpSaclAddrSecurityDescriptor(pS1);
pA2 = RtlpSaclAddrSecurityDescriptor(pS2);
if((pA1 == NULL && pA2 != NULL) || (pA2 == NULL && pA1 != NULL))
{
return(FALSE);
}
if(pA1 != NULL)
{
if(!(pA1->AclSize == pA2->AclSize && memcmp(pA1, pA2, pA1->AclSize)))
{
return(FALSE);
}
}
//
// Group
//
PSID pSid1, pSid2;
pSid1 = RtlpGroupAddrSecurityDescriptor(pS1);
pSid2 = RtlpGroupAddrSecurityDescriptor(pS2);
if((pSid1 == NULL && pSid2 != NULL) || (pSid2 == NULL && pSid1 != NULL))
{
return(FALSE);
}
if(pSid1 != NULL)
{
if(!RtlEqualSid(pSid1, pSid2))
{
return(FALSE);
}
}
//
// Owner
//
pSid1 = RtlpOwnerAddrSecurityDescriptor(pS1);
pSid2 = RtlpOwnerAddrSecurityDescriptor(pS2);
if((pSid1 == NULL && pSid2 != NULL) || (pSid2 == NULL && pSid1 != NULL))
{
return(FALSE);
}
if(pSid1 != NULL)
{
if(!RtlEqualSid(pSid1, pSid2))
{
return(FALSE);
}
}
acDebugOut((DEB_TRACE, "Nodes 0x%lx and 0x%lx are equal!\n", pSD1, pSD2));
#ifdef DBG
DebugDumpSD("SD1", pSD1);
DebugDumpSD("SD2", pSD2);
#endif
return(TRUE);
}
//+---------------------------------------------------------------------------
//
// Function: InsertPropagationFailureEntry
//
// Synopsis: Adds a propagation failure entry to the list of items
// to be written to the event log
//
// Arguments: [IN LogList] -- Reference to the log list
// [IN ErrorCode] -- Error of propagation
// [IN Protected] -- Flags determining whether the dacl
// or sacl was protected
// [IN pwszPath] -- Path that expierneced the error
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY -- A memory allocation failed
//
//
//----------------------------------------------------------------------------
DWORD
InsertPropagationFailureEntry( IN CSList& LogList,
IN ULONG ErrorCode,
IN ULONG Protected,
IN PWSTR pwszPath)
{
DWORD dwErr = ERROR_SUCCESS;
PACCESS_PROP_LOG_ENTRY pEntry = NULL;
pEntry = (PACCESS_PROP_LOG_ENTRY)AccAlloc(sizeof(ACCESS_PROP_LOG_ENTRY));
if(pEntry == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
ACC_ALLOC_AND_COPY_STRINGW(pwszPath, pEntry->pwszPath, dwErr );
if(pwszPath == NULL)
{
AccFree(pEntry);
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
pEntry->Protected = Protected;
pEntry->Error = ErrorCode;
dwErr = LogList.Insert(pEntry);
if(dwErr != ERROR_SUCCESS)
{
FreePropagationFailureListEntry(pEntry);
}
}
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: FreePropagationFailureListEntry
//
// Synopsis: Frees the propagation failure list
//
// Arguments: [IN LogList] -- Reference to the log list
//
// Returns: VOID
//
//
//----------------------------------------------------------------------------
VOID
FreePropagationFailureListEntry(IN PVOID Entry)
{
PACCESS_PROP_LOG_ENTRY pLogEntry = (PACCESS_PROP_LOG_ENTRY)Entry;
AccFree(pLogEntry->pwszPath);
AccFree(pLogEntry);
}
//+---------------------------------------------------------------------------
//
// Function: WritePropagationFailureList
//
// Synopsis: Logs the propagation failures to the event log
//
// Arguments: [IN EventType] -- Type of event to log:
// registry or filesystem
// [IN LogList] -- Reference to the log list
// [IN hToken] -- Current process/thread token
//
// Returns: ERROR_SUCCESS -- Success
// ERROR_NOT_ENOUGH_MEMORY -- A memory allocation failed
//
//----------------------------------------------------------------------------
DWORD
WritePropagationFailureList(IN ULONG EventType,
IN CSList& LogList,
IN HANDLE hToken)
{
DWORD dwErr = ERROR_SUCCESS;
HANDLE hEventlog = NULL;
TOKEN_USER *UserInfo;
ULONG InfoSize, StrCount, i;
PSID pSid = NULL;
BYTE Buffer[ 7 * sizeof( ULONG ) + sizeof( TOKEN_USER ) ], *pBuff = NULL;
WCHAR ErrorNumberBuffer[25];
WCHAR wszErrorBuffer[ 256];
PWSTR pwszStringBuffer = NULL, pwszCurrent;
PACCESS_PROP_LOG_ENTRY pLogEntry;
ULONG ProtectedValue;
if(LogList.QueryCount() == 0)
{
return(dwErr);
}
//
// Get the user sid
//
if(GetTokenInformation(hToken,
TokenUser,
(PVOID)&Buffer,
sizeof(Buffer),
&InfoSize ) == FALSE )
{
dwErr = GetLastError();
if(dwErr == ERROR_INSUFFICIENT_BUFFER)
{
pBuff = (PBYTE)AccAlloc( InfoSize );
if(pBuff == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
if(GetTokenInformation(hToken,
TokenUser,
(PVOID)pBuff,
InfoSize,
&InfoSize ) == FALSE )
{
dwErr = GetLastError();
}
else
{
dwErr = ERROR_SUCCESS;
}
}
}
}
else
{
pBuff = Buffer;
}
if(dwErr == ERROR_SUCCESS)
{
UserInfo = ( PTOKEN_USER )pBuff;
pSid = UserInfo->User.Sid;
}
//
// Build the list of paths and associated error codes
// The format of the buffer is [tab][path] [error][cr/lf]
//
if(dwErr == ERROR_SUCCESS)
{
InfoSize = 1;
LogList.Reset();
pLogEntry = (PACCESS_PROP_LOG_ENTRY)LogList.NextData();
for(; pLogEntry;)
{
InfoSize += 1 + wcslen( pLogEntry->pwszPath ) + 5;
//
// Determine the size of the buffer for the error message
//
if(pLogEntry->Protected)
{
switch(pLogEntry->Protected & (SE_DACL_PROTECTED | SE_SACL_PROTECTED))
{
case SE_DACL_PROTECTED | SE_SACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_BOTH_PROTECTED;
break;
case SE_DACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_DACL_PROTECTED;
break;
case SE_SACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_SACL_PROTECTED;
break;
default:
ProtectedValue = 0;
break;
}
if (LoadString(ghDll,
ProtectedValue,
wszErrorBuffer,
sizeof( wszErrorBuffer ) / sizeof( WCHAR )) == 0)
{
dwErr = GetLastError();
break;
}
}
else
{
if( FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
pLogEntry->Error,
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
wszErrorBuffer,
256,
NULL ) == 0 )
{
dwErr = GetLastError();
break;
}
}
InfoSize += wcslen( wszErrorBuffer );
pLogEntry = (PACCESS_PROP_LOG_ENTRY)LogList.NextData();
}
//
// Now, allocate the buffer
//
if(dwErr == ERROR_SUCCESS)
{
pwszStringBuffer = (PWSTR)AccAlloc(( InfoSize + 1 ) * sizeof( WCHAR ));
if(pwszStringBuffer == NULL)
{
dwErr = ERROR_NOT_ENOUGH_MEMORY;
}
else
{
LogList.Reset();
pwszCurrent = pwszStringBuffer;
pLogEntry = (PACCESS_PROP_LOG_ENTRY)LogList.NextData();
for(; pLogEntry;)
{
if(pLogEntry->Protected == 0 )
{
FormatMessage( FORMAT_MESSAGE_FROM_SYSTEM,
NULL,
pLogEntry->Error,
MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US),
wszErrorBuffer,
256,
NULL );
}
else
{
switch( pLogEntry->Protected & (SE_DACL_PROTECTED | SE_SACL_PROTECTED))
{
case SE_DACL_PROTECTED | SE_SACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_BOTH_PROTECTED;
break;
case SE_DACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_DACL_PROTECTED;
break;
case SE_SACL_PROTECTED:
ProtectedValue = ACCPROV_MARTA_SACL_PROTECTED;
break;
default:
ProtectedValue = 0;
break;
}
LoadString(ghDll,
ProtectedValue,
wszErrorBuffer,
sizeof( wszErrorBuffer ) / sizeof( WCHAR ));
}
InfoSize = swprintf( pwszCurrent,
L"\r\n\t%ws\t\t%ws",
pLogEntry->pwszPath,
wszErrorBuffer );
pwszCurrent += InfoSize;
pLogEntry = (PACCESS_PROP_LOG_ENTRY)LogList.NextData();
}
}
}
}
//
// Write to the event log
//
if(dwErr == ERROR_SUCCESS)
{
dwErr = InitializeEvents();
if(dwErr == ERROR_SUCCESS)
{
hEventlog = RegisterEventSource( NULL, L"AclPropagation" );
if(hEventlog == NULL)
{
dwErr = GetLastError();
if(dwErr == RPC_S_UNKNOWN_IF)
{
acDebugOut(( DEB_ERROR, "Eventlog service not started!\n" ));
dwErr = ERROR_SUCCESS;
}
}
else
{
if( ReportEvent(hEventlog,
EVENTLOG_INFORMATION_TYPE,
CATEGORY_NTMARTA,
EventType,
pSid,
1,
0,
(LPCTSTR *)&pwszStringBuffer,
NULL ) == FALSE )
{
dwErr = GetLastError();
}
DeregisterEventSource(hEventlog);
}
}
}
if(pBuff != Buffer)
{
AccFree(pBuff);
}
if ((dwErr != ERROR_SUCCESS) && (pwszStringBuffer != NULL))
{
AccFree(pwszStringBuffer);
}
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: InitializeEvents
//
// Synopsis: Sets the registry values to enable NTMARTA to act as an event source
//
// Arguments: void
//
// Returns: ERROR_SUCCESS -- Success
//
//----------------------------------------------------------------------------
DWORD
InitializeEvents(void)
{
HKEY hKey;
DWORD dwErr, disp;
dwErr = RegCreateKeyEx( HKEY_LOCAL_MACHINE,
TEXT("System\\CurrentControlSet\\Services\\EventLog\\Application\\AclPropagation"),
0,
TEXT(""),
REG_OPTION_NON_VOLATILE,
KEY_WRITE,
NULL,
&hKey,
&disp);
if(dwErr != ERROR_SUCCESS)
{
return(dwErr);
}
if (disp == REG_CREATED_NEW_KEY)
{
RegSetValueEx( hKey,
TEXT("EventMessageFile"),
0,
REG_EXPAND_SZ,
(PBYTE) TEXT("%SystemRoot%\\system32\\ntmarta.dll"),
sizeof(TEXT("%SystemRoot%\\system32\\ntmarta.dll")) );
RegSetValueEx( hKey,
TEXT("CategoryMessageFile"),
0,
REG_EXPAND_SZ,
(PBYTE) TEXT("%SystemRoot%\\system32\\ntmarta.dll"),
sizeof(TEXT("%SystemRoot%\\system32\\ntmarta.dll")) );
disp = EVENTLOG_ERROR_TYPE |
EVENTLOG_WARNING_TYPE |
EVENTLOG_INFORMATION_TYPE ;
RegSetValueEx( hKey,
TEXT("TypesSupported"),
0,
REG_DWORD,
(PBYTE) &disp,
sizeof(DWORD) );
disp = CATEGORY_MAX_CATEGORY - 1;
RegSetValueEx( hKey,
TEXT("CategoryCount"),
0,
REG_DWORD,
(PBYTE) &disp,
sizeof(DWORD) );
}
RegCloseKey(hKey);
return(dwErr);
}
//+---------------------------------------------------------------------------
//
// Function: SetAccessListLookupServer
//
// Synopsis: Sets the name of the server to lookup the names/sids on for
// the given path
//
// Arguments: [IN pwszPath] -- Path to get the server name for
// [IN AccessList] -- Reference to CAccessList class that
// needs the server name
//
// Returns: ERROR_SUCCESS -- Success
//
//----------------------------------------------------------------------------
DWORD SetAccessListLookupServer(IN PWSTR pwszPath,
IN CAccessList &AccessList )
{
DWORD dwErr = ERROR_SUCCESS;
PWSTR pwszServer, pwszSep;
if( pwszPath && IS_UNC_PATH( pwszPath, wcslen( pwszPath ) ) )
{
pwszServer = pwszPath + 2;
pwszSep = wcschr(pwszServer, L'\\');
if(pwszSep)
{
*pwszSep = UNICODE_NULL;
}
dwErr = AccessList.SetLookupServer(pwszServer);
if(pwszSep)
{
*pwszSep = L'\\';
}
}
return(dwErr);
}