Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1186 lines
34 KiB

/*++
Copyright (c) 1998-2000 Microsoft Corporation
Module Name :
LKR-hash.h
Abstract:
Declares LKRhash: a fast, scalable, cache- and
multiprocessor-friendly hash table
Authors:
Paul (Per-Ake) Larson, [email protected], July 1997
Murali R. Krishnan (MuraliK)
George V. Reilly (GeorgeRe) 06-Jan-1998
--*/
#ifndef __LKR_HASH_H__
#define __LKR_HASH_H__
/* Enable STL-style iterators */
#ifndef LKR_NO_STL_ITERATORS
# define LKR_STL_ITERATORS 1
#endif /* !LKR_NO_STL_ITERATORS */
/* Enable call-back, table visitor routines */
#ifndef LKR_NO_APPLY_IF
# define LKR_APPLY_IF
#endif /* !LKR_NO_APPLY_IF */
/* Expose the table's ReadLock and WriteLock routines */
#ifndef LKR_NO_EXPOSED_TABLE_LOCK
# define LKR_EXPOSED_TABLE_LOCK
#endif /* !LKR_NO_EXPOSED_TABLE_LOCK */
#ifndef __IRTLMISC_H__
# include <irtlmisc.h>
#endif /* !__IRTLMISC_H__ */
#ifdef __cplusplus
extern "C" {
#endif /* __cplusplus */
typedef struct LkrHashTable* PLkrHashTable;
/*--------------------------------------------------------------------
* Possible return codes from LKR_functions and TypedLkrHashTable
*/
enum LK_RETCODE {
/* severe errors < 0 */
LK_UNUSABLE = -99, /* Table corrupted: all bets are off */
LK_ALLOC_FAIL, /* ran out of memory */
LK_BAD_ITERATOR, /* invalid iterator; e.g., points to another table */
LK_BAD_RECORD, /* invalid record; e.g., NULL for LKR_InsertRecord */
LK_BAD_PARAMETERS, /* invalid parameters; e.g., NULL fnptrs to ctor */
LK_NOT_INITIALIZED, /* LKRHashTableInit was not called */
LK_BAD_TABLE, /* Called with invalid PLkrHashTable */
LK_SUCCESS = 0, /* everything's okay */
LK_KEY_EXISTS, /* key already present for
LKR_InsertRecord(no-overwrite) */
LK_NO_SUCH_KEY, /* key not found */
LK_NO_MORE_ELEMENTS,/* iterator exhausted */
};
#define LKR_SUCCEEDED(lkrc) ((lkrc) >= LK_SUCCESS)
/*--------------------------------------------------------------------
* Size parameter to LKR_CreateTable
*/
enum LK_TABLESIZE {
LK_SMALL_TABLESIZE= 1, /* < 200 elements */
LK_MEDIUM_TABLESIZE= 2, /* 200...10,000 elements */
LK_LARGE_TABLESIZE= 3, /* 10,000+ elements */
};
/*--------------------------------------------------------------------
* Creation flag parameter to LKR_CreateTable
*/
enum {
LK_CREATE_DEFAULT = 0, /* 0 is an acceptable default */
LK_CREATE_MULTIKEYS = 0x0001, /* Allow multiple identical keys? */
};
/*--------------------------------------------------------------------
* Initialization flag parameters to LKR_Initialize
*/
enum {
LK_INIT_DEFAULT = 0, /* 0 is an acceptable default */
LK_INIT_DEBUG_SPEW = 0x1000, /* Enable debug output: debug version only */
};
/*--------------------------------------------------------------------
* Reference Counting and Lifetime Management
*
* Increment the reference count of a record before returning it from
* LKR_FindKey. It's necessary to do it in LKR_FindKey itself while the
* bucket is still locked, rather than one of the wrappers, to avoid race
* conditions. Similarly, the reference count is incremented in
* LKR_InsertRecord and decremented in LKR_DeleteKey. Finally, if an old
* record is overwritten in LKR_InsertRecord, its reference count is
* decremented.
*
* Summary of calls to AddRefRecord
* +1: add a new reference or owner
* - LKR_InsertRecord
* - LKR_FindKey
* - IncrementIterator
* -1: delete a reference => release an owner
* - LKR_InsertRecord (overwrite old record with same key)
* - LKR_DeleteKey, LKR_DeleteRecord
* - ApplyIf(LKP_DELETE), DeleteIf
* - IncrementIterator (previous record), CloseIterator, Erase(iter)
* - LKR_Clear, table destructor
* 0: no change (not called)
* - LKR_FindRecord (by definition, you already have a ref to the record)
*
* It's up to you to decrement the reference count when you're finished
* with it after retrieving it via LKR_FindKey (e.g., you could call
* pht->AddRefRecord(pRec, LKAR_EXPLICIT_RELEASE)) and to determine the
* semantics of what this means. The hashtable itself has no notion of
* reference counts; this is merely to help with the lifetime management
* of the record objects.
*/
/* These reason codes help in debugging refcount leaks */
enum LK_ADDREF_REASON {
/* negative reasons => decrement refcount => release ownership */
LKAR_EXPLICIT_RELEASE = -29, /* user calls ht.AddRefRecord to */
/* explicitly release a record */
LKAR_DELETE_KEY = -28, /* DeleteKey() */
LKAR_DELETE_RECORD = -27, /* DeleteRecord() */
LKAR_INSERT_RELEASE = -26, /* InsertRecord overwrites prev record */
LKAR_CLEAR = -25, /* Clear() */
LKAR_DTOR = -24, /* hash table destructor */
LKAR_APPLY_DELETE = -23, /* Apply[If] LKP_(PERFORM|_DELETE) */
LKAR_DELETE_IF_DELETE = -22, /* DeleteIf LKP_(PERFORM|_DELETE) */
LKAR_ITER_RELEASE = -21, /* ++iter releases previous record */
LKAR_ITER_ASSIGN_RELEASE = -20, /* iter.operator= releases prev rec */
LKAR_ITER_DTOR = -19, /* ~iter */
LKAR_ITER_ERASE = -18, /* Erase(iter): iter releases record */
LKAR_ITER_ERASE_TABLE = -17, /* Erase(iter); table releases record */
LKAR_ITER_CLOSE = -16, /* CloseIterator (obsolete) */
/* positive reasons => increment refcount => add an owner */
LKAR_INSERT_RECORD = +11, /* InsertRecord() */
LKAR_FIND_KEY = +12, /* FindKey() */
LKAR_ITER_ACQUIRE = +13, /* ++iter acquires next record */
LKAR_ITER_COPY_CTOR = +14, /* iter copy constructor acquires rec */
LKAR_ITER_ASSIGN_ACQUIRE = +15, /* iter.operator= acquires new rec */
LKAR_ITER_INSERT = +16, /* Insert(iter) */
LKAR_ITER_FIND = +17, /* Find(iter) */
LKAR_EXPLICIT_ACQUIRE = +18, /* user calls ht.AddRefRecord to */
/* explicitly acquire a ref to a rec */
};
/* Convert an LK_ADDREF_REASON to a string representation.
* Useful for debugging.
*/
IRTL_DLLEXP
const char*
LKR_AddRefReasonAsString(
LK_ADDREF_REASON lkar);
/*--------------------------------------------------------------------
* Callback functions needed by table:
* ExtractKey, CalcKeyHash, EqualKeys, AddRefRecord
* Internally, records are handled as `const void*' and
* keys are handled as `const DWORD_PTR'. The latter allows for
* keys to be numbers as well as pointers (polymorphism).
*/
/* Use types defined in recent versions of the Platform SDK in <basetsd.h>.
*/
#ifndef _W64
typedef DWORD DWORD_PTR; /* integral type big enough to hold a pointer */
#endif
/* Given a record, return its key. Assumes that the key is embedded in
* the record, or at least somehow derivable from the record. For
* completely unrelated keys & values, a wrapper class should use
* something like STL's pair<key,value> template to aggregate them
* into a record.
*/
typedef
const DWORD_PTR
(WINAPI *LKR_PFnExtractKey) (
const void* pvRecord);
/* Given a key, return its hash signature. The hashing functions in
* hashfn.h (or something that builds upon them) are suggested.
*/
typedef
DWORD
(WINAPI *LKR_PFnCalcKeyHash) (
const DWORD_PTR pnKey);
/* Compare two keys for equality; e.g., _stricmp, memcmp, operator==
*/
typedef
BOOL
(WINAPI *LKR_PFnEqualKeys) (
const DWORD_PTR pnKey1,
const DWORD_PTR pnKey2);
/* Adjust the reference count of a record. See the earlier discussion
* of reference counting and lifetime management.
*/
typedef
void
(WINAPI *LKR_PFnAddRefRecord)(
const void* pvRecord,
LK_ADDREF_REASON lkar);
#ifdef LKR_APPLY_IF
/*--------------------------------------------------------------------
* Apply, ApplyIf, and DeleteIf provide one way to visit (enumerate) all
* records in a table.
*/
/*--------------------------------------------------------------------
* Return codes from PFnRecordPred.
*/
enum LK_PREDICATE {
LKP_ABORT = 1, /* Stop walking the table immediately */
LKP_NO_ACTION = 2, /* No action, just keep walking */
LKP_PERFORM = 3, /* Perform action and continue walking */
LKP_PERFORM_STOP = 4, /* Perform action, then stop */
LKP_DELETE = 5, /* Delete record and keep walking */
LKP_DELETE_STOP = 6, /* Delete record, then stop */
};
/*--------------------------------------------------------------------
* Return codes from PFnRecordAction.
*/
enum LK_ACTION {
LKA_ABORT = 1, /* Stop walking the table immediately */
LKA_FAILED = 2, /* Action failed; continue walking the table */
LKA_SUCCEEDED = 3, /* Action succeeded; continue walking the table */
};
/*--------------------------------------------------------------------
* Parameter to Apply and ApplyIf.
*/
enum LK_LOCKTYPE {
LKL_READLOCK = 1, /* Lock the table for reading (for constness) */
LKL_WRITELOCK = 2, /* Lock the table for writing */
};
/* LKR_ApplyIf() and LKR_DeleteIf(): Does the record match the predicate?
*/
typedef
LK_PREDICATE
(WINAPI *LKR_PFnRecordPred) (
const void* pvRecord,
void* pvState);
/* LKR_Apply() et al: Perform action on record.
*/
typedef
LK_ACTION
(WINAPI *LKR_PFnRecordAction)(
const void* pvRecord,
void* pvState);
#endif /* LKR_APPLY_IF */
/* Initialize the global variables needed by other LKR routines.
*/
IRTL_DLLEXP
BOOL
LKR_Initialize(
DWORD dwInitFlags);
/* Clean up the global variables needed by other LKR routines.
*/
IRTL_DLLEXP
void
LKR_Terminate();
/* Create a new LkrHashTable
* Returns pointer to new table if successful. NULL, otherwise.
* The table must be destroyed with LKR_DeleteTable.
*/
IRTL_DLLEXP
PLkrHashTable
LKR_CreateTable(
LPCSTR pszName, /* Identify the table for debugging */
LKR_PFnExtractKey pfnExtractKey, /* Extract key from record */
LKR_PFnCalcKeyHash pfnCalcKeyHash, /* Calculate hash signature of key */
LKR_PFnEqualKeys pfnEqualKeys, /* Compare two keys */
LKR_PFnAddRefRecord pfnAddRefRecord,/* AddRef in LKR_FindKey, etc */
LK_TABLESIZE nTableSize, /* Small/Med/Large number of elements*/
DWORD fCreateFlags /* Mixture of LK_CREATE_* flags. */
);
/* Destroy an LkrHashTable created by LKR_CreateTable.
*/
IRTL_DLLEXP
void
LKR_DeleteTable(
PLkrHashTable plkr);
/* Insert a new record into hash table.
* Returns LKR_SUCCESS if all OK, LKR_KEY_EXISTS if same key already
* exists (unless fOverwrite), LKR_ALLOC_FAIL if out of space,
* or LKR_BAD_RECORD for a bad record.
* If fOverwrite is set and a record with this key is already present,
* it will be overwritten. If there are multiple records with this key,
* only the first will be overwritten.
*/
IRTL_DLLEXP
LK_RETCODE
LKR_InsertRecord(
PLkrHashTable plkr,
const void* pvRecord,
BOOL fOverwrite);
/* Delete record with the given key from the table. Does not actually delete
* record from memory, just calls AddRefRecord(LKAR_DELETE_KEY);
* Returns LKR_SUCCESS if all OK, or LKR_NO_SUCH_KEY if not found
* If fDeleteAllSame is set, all records that match pnKey will be deleted
* from the table; otherwise, only the first matching record is deleted.
*/
IRTL_DLLEXP
LK_RETCODE
LKR_DeleteKey(
PLkrHashTable plkr,
const DWORD_PTR pnKey,
BOOL fDeleteAllSame);
/* Delete a record from the table, if present.
* Returns LKR_SUCCESS if all OK, or LKR_NO_SUCH_KEY if not found
*/
IRTL_DLLEXP
LK_RETCODE
LKR_DeleteRecord(
PLkrHashTable plkr,
const void* pvRecord);
/* Find record with given key.
* Returns: LKR_SUCCESS, if record found (record is returned in *ppvRecord)
* LKR_NO_SUCH_KEY, if no record with given key value was found
* LKR_BAD_RECORD, if ppvRecord is invalid
* LKR_UNUSABLE, if hash table not in usable state
* Note: the record is AddRef'd. You must decrement the reference
* count when you are finished with the record (if you're implementing
* refcounting semantics).
*/
IRTL_DLLEXP
LK_RETCODE
LKR_FindKey(
PLkrHashTable plkr,
const DWORD_PTR pnKey,
const void** ppvRecord);
/* Sees if the record is contained in the table
* Returns: LKR_SUCCESS, if record found
* LKR_NO_SUCH_KEY, if record is not in the table
* LKR_BAD_RECORD, if pvRecord is invalid
* LKR_UNUSABLE, if hash table not in usable state
* Note: the record is *not* AddRef'd. By definition, the caller
* already has a reference to it.
*/
IRTL_DLLEXP
LK_RETCODE
LKR_FindRecord(
PLkrHashTable plkr,
const void* pvRecord);
#ifdef LKR_APPLY_IF
/* Walk the hash table, applying pfnAction to all records.
* Locks one subtable after another with either a (possibly
* shared) readlock or a writelock, according to lkl.
* Loop is aborted if pfnAction ever returns LKA_ABORT.
* Returns the number of successful applications.
*/
IRTL_DLLEXP
DWORD
LKR_Apply(
PLkrHashTable plkr,
LKR_PFnRecordAction pfnAction,
void* pvState,
LK_LOCKTYPE lkl);
/* Walk the hash table, applying pfnAction to any records that match
* pfnPredicate. Locks one subtable after another with either
* a (possibly shared) readlock or a writelock, according to lkl.
* Loop is aborted if pfnAction ever returns LKA_ABORT.
* Returns the number of successful applications.
*/
IRTL_DLLEXP
DWORD
LKR_ApplyIf(
PLkrHashTable plkr,
LKR_PFnRecordPred pfnPredicate,
LKR_PFnRecordAction pfnAction,
void* pvState,
LK_LOCKTYPE lkl);
/* Delete any records that match pfnPredicate.
* Locks one subtable after another with a writelock.
* Returns the number of deletions.
*
* Do *not* walk the hash table by hand with an iterator and call
* LKR_DeleteKey. The iterator will end up pointing to garbage.
*/
IRTL_DLLEXP
DWORD
LKR_DeleteIf(
PLkrHashTable plkr,
LKR_PFnRecordPred pfnPredicate,
void* pvState);
#endif /* LKR_APPLY_IF */
/* Check table for consistency. Returns 0 if okay, or the number of
* errors otherwise.
*/
IRTL_DLLEXP
int
LKR_CheckTable(
PLkrHashTable plkr);
/* Remove all data from the table
*/
IRTL_DLLEXP
void
LKR_Clear(
PLkrHashTable plkr);
/* Number of elements in the table
*/
IRTL_DLLEXP
DWORD
LKR_Size(
PLkrHashTable plkr);
/* Maximum possible number of elements in the table
*/
IRTL_DLLEXP
DWORD
LKR_MaxSize(
PLkrHashTable plkr);
/* Is the hash table usable?
*/
IRTL_DLLEXP
BOOL
LKR_IsUsable(
PLkrHashTable plkr);
/* Is the hash table consistent and correct?
*/
IRTL_DLLEXP
BOOL
LKR_IsValid(
PLkrHashTable plkr);
#ifdef LKR_EXPOSED_TABLE_LOCK
/* Lock the table (exclusively) for writing
*/
IRTL_DLLEXP
void
LKR_WriteLock(
PLkrHashTable plkr);
/* Lock the table (possibly shared) for reading
*/
IRTL_DLLEXP
void
LKR_ReadLock(
PLkrHashTable plkr);
/* Unlock the table for writing
*/
IRTL_DLLEXP
void
LKR_WriteUnlock(
PLkrHashTable plkr);
/* Unlock the table for reading
*/
IRTL_DLLEXP
void
LKR_ReadUnlock(
PLkrHashTable plkr);
/* Is the table already locked for writing?
*/
IRTL_DLLEXP
BOOL
LKR_IsWriteLocked(
PLkrHashTable plkr);
/* Is the table already locked for reading?
*/
IRTL_DLLEXP
BOOL
LKR_IsReadLocked(
PLkrHashTable plkr);
/* Is the table unlocked for writing?
*/
IRTL_DLLEXP
BOOL
LKR_IsWriteUnlocked(
PLkrHashTable plkr);
/* Is the table unlocked for reading?
*/
IRTL_DLLEXP
BOOL
LKR_IsReadUnlocked(
PLkrHashTable plkr);
/* Convert the read lock to a write lock. Note: another thread may acquire
* exclusive access to the table before this routine returns.
*/
IRTL_DLLEXP
void
LKR_ConvertSharedToExclusive(
PLkrHashTable plkr);
/* Convert the write lock to a read lock
*/
IRTL_DLLEXP
void
LKR_ConvertExclusiveToShared(
PLkrHashTable plkr);
#endif /* LKR_EXPOSED_TABLE_LOCK */
#ifdef __cplusplus
} // extern "C"
// Only provide iterators in the C++ interface. It's too hard to
// provide the correct ownership semantics in a typesafe way in C,
// and C users can always use the LKR_ApplyIf family of callback
// enumerators if they really need to walk the hashtable.
#ifdef LKR_STL_ITERATORS
#pragma message("STL iterators")
// needed for std::forward_iterator_tag, etc
# include <utility>
#include <irtldbg.h>
#define LKR_ITER_TRACE IRTLTRACE
class IRTL_DLLEXP LKR_Iterator
{
private:
friend IRTL_DLLEXP LKR_Iterator LKR_Begin(PLkrHashTable plkr);
friend IRTL_DLLEXP LKR_Iterator LKR_End(PLkrHashTable plkr);
// private ctor
LKR_Iterator(bool);
public:
// default ctor
LKR_Iterator();
// copy ctor
LKR_Iterator(const LKR_Iterator& rhs);
// assignment operator
LKR_Iterator& operator=(const LKR_Iterator& rhs);
// dtor
~LKR_Iterator();
// Increment the iterator to point to the next record, or to LKR_End()
bool Increment();
// Is the iterator valid?
bool IsValid() const;
// Returns the record that the iterator points to.
// Must point to a valid record.
const void* Record() const;
// Returns the key of the record that the iterator points to.
// Must point to a valid record.
const DWORD_PTR Key() const;
// Compare two iterators for equality
bool operator==(const LKR_Iterator& rhs) const;
// Compare two iterators for inequality
bool operator!=(const LKR_Iterator& rhs) const;
// pointer to implementation object
void* pImpl;
}; // class LKR_Iterator
/* Return iterator pointing to first item in table
*/
IRTL_DLLEXP
LKR_Iterator
LKR_Begin(
PLkrHashTable plkr);
/* Return a one-past-the-end iterator. Always empty.
*/
IRTL_DLLEXP
LKR_Iterator
LKR_End(
PLkrHashTable plkr);
/* Insert a record
* Returns `true' if successful; iterResult points to that record
* Returns `false' otherwise; iterResult == End()
*/
IRTL_DLLEXP
bool
LKR_Insert(
PLkrHashTable plkr,
/* in */ const void* pvRecord,
/* out */ LKR_Iterator& riterResult,
/* in */ bool fOverwrite=false);
/* Erase the record pointed to by the iterator; adjust the iterator
* to point to the next record. Returns `true' if successful.
*/
IRTL_DLLEXP
bool
LKR_Erase(
PLkrHashTable plkr,
/* in,out */ LKR_Iterator& riter);
/* Erase the records in the range [riterFirst, riterLast).
* Returns `true' if successful.
*/
IRTL_DLLEXP
bool
LKR_Erase(
PLkrHashTable plkr,
/*in*/ LKR_Iterator& riterFirst,
/*in*/ LKR_Iterator& riterLast);
/* Find the (first) record that has its key == pnKey.
* If successful, returns `true' and iterator points to (first) record.
* If fails, returns `false' and iterator == End()
*/
IRTL_DLLEXP
bool
LKR_Find(
PLkrHashTable plkr,
/* in */ DWORD_PTR pnKey,
/* out */ LKR_Iterator& riterResult);
/* Find the range of records that have their keys == pnKey.
* If successful, returns `true', iterFirst points to first record,
* and iterLast points to one-beyond-the last such record.
* If fails, returns `false' and both iterators == End().
* Primarily useful when fMultiKeys == TRUE
*/
IRTL_DLLEXP
bool
LKR_EqualRange(
PLkrHashTable plkr,
/* in */ DWORD_PTR pnKey,
/* out */ LKR_Iterator& riterFirst, // inclusive
/* out */ LKR_Iterator& riterLast); // exclusive
#endif // LKR_STL_ITERATORS
//--------------------------------------------------------------------
// A typesafe wrapper for PLkrHashTable
//
// * _Derived must derive from TypedLkrHashTable and provide certain member
// functions. It's needed for various downcasting operations.
// * _Record is the type of the record. PLkrHashTable will store
// pointers to _Record, as const void*.
// * _Key is the type of the key. _Key is used directly; i.e., it is
// not assumed to be a pointer type. PLkrHashTable assumes that
// the key is stored in the associated record. See the comments
// at the declaration of LKR_PFnExtractKey for more details.
//
// You may need to add the following line to your code to disable
// warning messages about truncating extremly long identifiers.
// #pragma warning (disable : 4786)
//
// The _Derived class should look something like this:
// class CDerived : public TypedLkrHashTable<CDerived, RecordType, KeyType>
// {
// public:
// CDerived()
// : TypedLkrHashTable<CDerived, RecordType, KeyType>("CDerived")
// {/*other ctor actions*/}
// static KeyType ExtractKey(const RecordType* pTest);
// static DWORD CalcKeyHash(const KeyType Key);
// static bool EqualKeys(const KeyType Key1, const KeyType Key2);
// static void AddRefRecord(RecordType* pRecord,LK_ADDREF_REASON lkar);
// // optional: other functions
// };
//
//--------------------------------------------------------------------
template <class _Derived, class _Record, class _Key>
class TypedLkrHashTable
{
public:
// convenient aliases
typedef _Derived Derived;
typedef _Record Record;
typedef _Key Key;
typedef TypedLkrHashTable<_Derived, _Record, _Key> HashTable;
#ifdef LKR_APPLY_IF
// LKR_ApplyIf() and LKR_DeleteIf(): Does the record match the predicate?
// Note: takes a Record*, not a const Record*. You can modify the
// record in Pred() or Action(), if you like, but if you do, you
// should use LKL_WRITELOCK to lock the table.
typedef LK_PREDICATE (WINAPI *PFnRecordPred) (Record* pRec, void* pvState);
// Apply() et al: Perform action on record.
typedef LK_ACTION (WINAPI *PFnRecordAction)(Record* pRec, void* pvState);
#endif // LKR_APPLY_IF
protected:
PLkrHashTable m_plkr;
// Wrappers for the typesafe methods exposed by the derived class
static const DWORD_PTR WINAPI
_ExtractKey(const void* pvRecord)
{
const _Record* pRec = static_cast<const _Record*>(pvRecord);
const _Key key = static_cast<const _Key>(_Derived::ExtractKey(pRec));
// I would prefer to use reinterpret_cast here and in _CalcKeyHash
// and _EqualKeys, but the stupid Win64 compiler thinks it knows
// better than I do.
return (const DWORD_PTR) key;
}
static DWORD WINAPI
_CalcKeyHash(const DWORD_PTR pnKey)
{
const _Key key = (const _Key) (DWORD_PTR) pnKey;
return _Derived::CalcKeyHash(key);
}
static BOOL WINAPI
_EqualKeys(const DWORD_PTR pnKey1, const DWORD_PTR pnKey2)
{
const _Key key1 = (const _Key) (DWORD_PTR) pnKey1;
const _Key key2 = (const _Key) (DWORD_PTR) pnKey2;
return _Derived::EqualKeys(key1, key2);
}
static void WINAPI
_AddRefRecord(const void* pvRecord, LK_ADDREF_REASON lkar)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
_Derived::AddRefRecord(pRec, lkar);
}
#ifdef LKR_APPLY_IF
// Typesafe wrappers for Apply, ApplyIf, and DeleteIf.
class CState
{
public:
PFnRecordPred m_pfnPred;
PFnRecordAction m_pfnAction;
void* m_pvState;
CState(
PFnRecordPred pfnPred,
PFnRecordAction pfnAction,
void* pvState)
: m_pfnPred(pfnPred), m_pfnAction(pfnAction), m_pvState(pvState)
{}
};
static LK_PREDICATE WINAPI
_Pred(const void* pvRecord, void* pvState)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
CState* pState = static_cast<CState*>(pvState);
return (*pState->m_pfnPred)(pRec, pState->m_pvState);
}
static LK_ACTION WINAPI
_Action(const void* pvRecord, void* pvState)
{
_Record* pRec = static_cast<_Record*>(const_cast<void*>(pvRecord));
CState* pState = static_cast<CState*>(pvState);
return (*pState->m_pfnAction)(pRec, pState->m_pvState);
}
#endif // LKR_APPLY_IF
public:
TypedLkrHashTable(
LPCSTR pszName, // An identifier for debugging
LK_TABLESIZE nTableSize, // Small/Med/Large number of elements
bool fMultiKeys=false // Allow multiple identical keys?
)
: m_plkr(NULL)
{
m_plkr = LKR_CreateTable(pszName, _ExtractKey, _CalcKeyHash,
_EqualKeys, _AddRefRecord,
nTableSize, fMultiKeys);
}
~TypedLkrHashTable()
{
LKR_DeleteTable(m_plkr);
}
LK_RETCODE InsertRecord(const _Record* pRec, bool fOverwrite=false)
{ return LKR_InsertRecord(m_plkr, pRec, fOverwrite); }
LK_RETCODE DeleteKey(const _Key key, bool fDeleteAllSame=false)
{
const void* pvKey = reinterpret_cast<const void*>((DWORD_PTR)(key));
DWORD_PTR pnKey = reinterpret_cast<DWORD_PTR>(pvKey);
return LKR_DeleteKey(m_plkr, pnKey, fDeleteAllSame);
}
LK_RETCODE DeleteRecord(const _Record* pRec)
{ return LKR_DeleteRecord(m_plkr, pRec);}
// Note: returns a _Record**, not a const Record**. Note that you
// can use a const type for the template parameter to ensure constness.
LK_RETCODE FindKey(const _Key key, _Record** ppRec) const
{
if (ppRec == NULL)
return LK_BAD_RECORD;
*ppRec = NULL;
const void* pvRec = NULL;
const void* pvKey = reinterpret_cast<const void*>((DWORD_PTR)(key));
DWORD_PTR pnKey = reinterpret_cast<DWORD_PTR>(pvKey);
LK_RETCODE lkrc = LKR_FindKey(m_plkr, pnKey, &pvRec);
*ppRec = static_cast<_Record*>(const_cast<void*>(pvRec));
return lkrc;
}
LK_RETCODE FindRecord(const _Record* pRec) const
{ return LKR_FindRecord(m_plkr, pRec);}
#ifdef LKR_APPLY_IF
DWORD Apply(PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK)
{
IRTLASSERT(pfnAction != NULL);
if (pfnAction == NULL)
return 0;
CState state(NULL, pfnAction, pvState);
return LKR_Apply(m_plkr, _Action, &state, lkl);
}
DWORD ApplyIf(PFnRecordPred pfnPredicate,
PFnRecordAction pfnAction,
void* pvState=NULL,
LK_LOCKTYPE lkl=LKL_READLOCK)
{
IRTLASSERT(pfnPredicate != NULL && pfnAction != NULL);
if (pfnPredicate == NULL || pfnAction == NULL)
return 0;
CState state(pfnPredicate, pfnAction, pvState);
return LKR_ApplyIf(m_plkr, _Pred, _Action, &state, lkl);
}
DWORD DeleteIf(PFnRecordPred pfnPredicate, void* pvState=NULL)
{
IRTLASSERT(pfnPredicate != NULL);
if (pfnPredicate == NULL)
return 0;
CState state(pfnPredicate, NULL, pvState);
return LKR_DeleteIf(m_plkr, _Pred, &state);
}
#endif // LKR_APPLY_IF
int CheckTable() const
{ return LKR_CheckTable(m_plkr); }
void Clear()
{ return LKR_Clear(m_plkr); }
DWORD Size() const
{ return LKR_Size(m_plkr); }
DWORD MaxSize() const
{ return LKR_MaxSize(m_plkr); }
BOOL IsUsable() const
{ return LKR_IsUsable(m_plkr); }
BOOL IsValid() const
{ return LKR_IsValid(m_plkr); }
#ifdef LKR_EXPOSED_TABLE_LOCK
void WriteLock()
{ LKR_WriteLock(m_plkr); }
void ReadLock() const
{ LKR_ReadLock(m_plkr); }
void WriteUnlock()
{ LKR_WriteUnlock(m_plkr); }
void ReadUnlock() const
{ LKR_ReadUnlock(m_plkr); }
BOOL IsWriteLocked() const
{ return LKR_IsWriteLocked(m_plkr); }
BOOL IsReadLocked() const
{ return LKR_IsReadLocked(m_plkr); }
BOOL IsWriteUnlocked() const
{ return LKR_IsWriteUnlocked(m_plkr); }
BOOL IsReadUnlocked() const
{ return LKR_IsReadUnlocked(m_plkr); }
void ConvertSharedToExclusive() const
{ LKR_ConvertSharedToExclusive(m_plkr); }
void ConvertExclusiveToShared() const
{ LKR_ConvertExclusiveToShared(m_plkr); }
#endif // LKR_EXPOSED_TABLE_LOCK
#ifdef LKR_STL_ITERATORS
friend class LKR_Iterator;
// TODO: const_iterator
public:
class iterator
{
friend class TypedLkrHashTable<_Derived, _Record, _Key>;
protected:
LKR_Iterator m_iter;
iterator(
LKR_Iterator& rhs)
: m_iter(rhs)
{
LKR_ITER_TRACE(_TEXT("Typed::prot ctor, this=%p, rhs=%p\n"),
this, &rhs);
}
public:
typedef std::forward_iterator_tag iterator_category;
typedef _Record value_type;
typedef ptrdiff_t difference_type;
typedef size_t size_type;
typedef value_type& reference;
typedef value_type* pointer;
iterator()
: m_iter()
{
LKR_ITER_TRACE(_TEXT("Typed::default ctor, this=%p\n"), this);
}
iterator(
const iterator& rhs)
: m_iter(rhs.m_iter)
{
LKR_ITER_TRACE(_TEXT("Typed::copy ctor, this=%p, rhs=%p\n"),
this, &rhs);
}
iterator& operator=(
const iterator& rhs)
{
LKR_ITER_TRACE(_TEXT("Typed::operator=, this=%p, rhs=%p\n"),
this, &rhs);
m_iter = rhs.m_iter;
return *this;
}
~iterator()
{
LKR_ITER_TRACE(_TEXT("Typed::dtor, this=%p\n"), this);
}
reference operator*() const
{
void* pvRecord = const_cast<void*>(m_iter.Record());
return reinterpret_cast<reference>(pvRecord);
}
pointer operator->() const { return &(operator*()); }
// pre-increment
iterator& operator++()
{
LKR_ITER_TRACE(_TEXT("Typed::pre-increment, this=%p\n"), this);
m_iter.Increment();
return *this;
}
// post-increment
iterator operator++(int)
{
LKR_ITER_TRACE(_TEXT("Typed::post-increment, this=%p\n"), this);
iterator iterPrev = *this;
m_iter.Increment();
return iterPrev;
}
bool operator==(
const iterator& rhs) const
{
LKR_ITER_TRACE(_TEXT("Typed::operator==, this=%p, rhs=%p\n"),
this, &rhs);
return m_iter == rhs.m_iter;
}
bool operator!=(
const iterator& rhs) const
{
LKR_ITER_TRACE(_TEXT("Typed::operator!=, this=%p, rhs=%p\n"),
this, &rhs);
return m_iter != rhs.m_iter;
}
_Record* Record() const
{
LKR_ITER_TRACE(_TEXT("Typed::Record, this=%p\n"), this);
return reinterpret_cast<_Record*>(
const_cast<void*>(m_iter.Record()));
}
_Key Key() const
{
LKR_ITER_TRACE(_TEXT("Typed::Key, this=%p\n"), this);
return reinterpret_cast<_Key>(
reinterpret_cast<void*>(m_iter.Key()));
}
}; // class iterator
// Return iterator pointing to first item in table
iterator begin()
{
LKR_ITER_TRACE(_TEXT("Typed::begin()\n"));
return LKR_Begin(m_plkr);
}
// Return a one-past-the-end iterator. Always empty.
iterator end() const
{
LKR_ITER_TRACE(_TEXT("Typed::end()\n"));
return LKR_End(m_plkr);
}
template <class _InputIterator>
TypedLkrHashTable(
LPCSTR pszName, // An identifier for debugging
_InputIterator f, // first element in range
_InputIterator l, // one-beyond-last element
LK_TABLESIZE nTableSize, // Small/Med/Large number of elements
bool fMultiKeys=false // Allow multiple identical keys?
)
{
m_plkr = LKR_CreateTable(pszName, _ExtractKey, _CalcKeyHash,
_EqualKeys, _AddRefRecord,
nTableSize, fMultiKeys);
insert(f, l);
}
template <class _InputIterator>
void insert(_InputIterator f, _InputIterator l)
{
for ( ; f != l; ++f)
InsertRecord(&(*f));
}
bool
Insert(
const _Record* pRecord,
iterator& riterResult,
bool fOverwrite=false)
{
LKR_ITER_TRACE(_TEXT("Typed::Insert\n"));
return LKR_Insert(m_plkr, pRecord, riterResult.m_iter, fOverwrite);
}
bool
Erase(
iterator& riter)
{
LKR_ITER_TRACE(_TEXT("Typed::Erase\n"));
return LKR_Erase(m_plkr, riter.m_iter);
}
bool
Erase(
iterator& riterFirst,
iterator& riterLast)
{
LKR_ITER_TRACE(_TEXT("Typed::Erase2\n"));
return LKR_Erase(m_plkr, riterFirst.m_iter, riterLast.m_iter);
}
bool
Find(
const _Key key,
iterator& riterResult)
{
LKR_ITER_TRACE(_TEXT("Typed::Find\n"));
const void* pvKey = reinterpret_cast<const void*>((DWORD_PTR)(key));
DWORD_PTR pnKey = reinterpret_cast<DWORD_PTR>(pvKey);
return LKR_Find(m_plkr, pnKey, riterResult.m_iter);
}
bool
EqualRange(
const _Key key,
iterator& riterFirst,
iterator& riterLast)
{
LKR_ITER_TRACE(_TEXT("Typed::EqualRange\n"));
const void* pvKey = reinterpret_cast<const void*>((DWORD_PTR)(key));
DWORD_PTR pnKey = reinterpret_cast<DWORD_PTR>(pvKey);
return LKR_EqualRange(m_plkr, pnKey, riterFirst.m_iter,
riterLast.m_iter);
}
#undef LKR_ITER_TRACE
#endif // LKR_STL_ITERATORS
}; // class TypedLkrHashTable
#endif /* __cplusplus */
#endif /* __LKR_HASH_H__ */