Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

249 lines
8.6 KiB

//----------------------------------------------------------------------------
//
// d3dutil.h
//
// Miscellaneous utility declarations.
//
// Copyright (C) Microsoft Corporation, 1997.
//
//----------------------------------------------------------------------------
#ifndef _D3DUTIL_H_
#define _D3DUTIL_H_
#include <d3d8typesp.h>
#include <d3dflt.h>
#include <d3ditype.h>
#define RESPATH_D3D "Software\\Microsoft\\Direct3D"
#ifdef __cplusplus
extern "C" {
#endif
typedef D3DVECTOR* LPD3DVECTOR;
// Stub function that should never be called. Prints a warning and
// DebugBreaks. Can be inserted in any function table, although it
// will destroy the stack frame with callconv or argument mismatch.
// That's OK since if it's called something has gone wrong.
void FASTCALL
DebugBreakFn(void);
// Texture coordinate difference.
FLOAT FASTCALL
TextureDiff(FLOAT fTb, FLOAT fTa, INT iMode);
// Inline texture coordinate difference.
__inline FLOAT
InlTextureDiff(FLOAT fTb, FLOAT fTa, INT iMode)
#include <texdiff.h>
// Returns a good approximation to sqrt(fX*fX + fY*fY)
FLOAT FASTCALL
OctagonNorm(FLOAT fX, FLOAT fY);
// LOD computation.
INT FASTCALL
ComputeLOD(CONST struct tagD3DI_RASTCTX *pCtx,
FLOAT fU, FLOAT fV, FLOAT fW,
FLOAT fDUoWDX, FLOAT fDVoWDX, FLOAT fDOoWDX,
FLOAT fDUoWDY, FLOAT fDVoWDY, FLOAT fDOoWDY);
// Table fog value computation.
UINT FASTCALL
ComputeTableFog(PDWORD pdwRenderState, FLOAT fZ);
// Compute integer log2 for exact powers of 2.
UINT32 FASTCALL
IntLog2(UINT32 x);
//
// D3DVECTOR operations.
//
#define pVecLenSq(pVec) \
pVecDot(pVec, pVec)
#define pVecLen(pVec) \
SQRTF(pVecLenSq(pVec))
void FASTCALL
pVecNormalize2(LPD3DVECTOR pVec, LPD3DVECTOR pRes);
#define pVecNormalize(pVec) pVecNormalize2(pVec, pVec)
#define VecNormalize(Vec) pVecNormalize(&(Vec))
#define VecNormalize2(Vec, Res) pVecNormalize2(&(Vec), &(Res))
#define pVecDot(pVec1, pVec2) \
((pVec1)->x * (pVec2)->x + (pVec1)->y * (pVec2)->y + \
(pVec1)->z * (pVec2)->z)
#define pVecAdd(pVec1, pVec2, pRes) \
((pRes)->x = (pVec1)->x + (pVec2)->x, \
(pRes)->y = (pVec1)->y + (pVec2)->y, \
(pRes)->z = (pVec1)->z + (pVec2)->z)
#define pVecSub(pVec1, pVec2, pRes) \
((pRes)->x = (pVec1)->x - (pVec2)->x, \
(pRes)->y = (pVec1)->y - (pVec2)->y, \
(pRes)->z = (pVec1)->z - (pVec2)->z)
#define pVecScale(pVec, fScale, pRes) \
((pRes)->x = (pVec)->x * (fScale), \
(pRes)->y = (pVec)->y * (fScale), \
(pRes)->z = (pVec)->z * (fScale))
#define pVecNeg(pVec, pRes) \
((pRes)->x = NEGF((pVec)->x), \
(pRes)->y = NEGF((pVec)->y), \
(pRes)->z = NEGF((pVec)->z))
#define pVecSet(pVec, fX, fY, fZ) \
((pVec)->x = (fX), (pVec)->y = (fY), (pVec)->z = (fZ))
#define VecLenSq(Vec) pVecLenSq(&(Vec))
#define VecLen(Vec) pVecLen(&(Vec))
#ifdef _X86_
// Vector normalize through a table
void FASTCALL TableVecNormalize(float *result, float *normal);
// Vector normalize using Jim Blinn's floating point trick
void FASTCALL JBVecNormalize(float *result, float *normal);
#define VecNormalizeFast(Vec) TableVecNormalize((float*)&(Vec), (float*)&(Vec))
#define VecNormalizeFast2(Vec, Res) TableVecNormalize((float*)&(Res), (float*)&(Vec))
#define pVecNormalizeFast(Vec) TableVecNormalize((float*)pVec, (float*)pVec)
#define pVecNormalizeFast2(pVec, pRes) TableVecNormalize((float*)pRes, (float*)pVec)
#else
#define VecNormalizeFast(Vec) pVecNormalize((LPD3DVECTOR)&(Vec))
#define VecNormalizeFast2(Vec, Res) pVecNormalize2((LPD3DVECTOR)&(Vec), &(Res))
#define pVecNormalizeFast(pVec) pVecNormalize((LPD3DVECTOR)(pVec))
#define pVecNormalizeFast2(pVec, pRes) pVecNormalize2((LPD3DVECTOR)(pVec), pRes)
#endif // _X86_
#define VecDot(Vec1, Vec2) pVecDot(&(Vec1), &(Vec2))
#define VecAdd(Vec1, Vec2, Res) pVecAdd(&(Vec1), &(Vec2), &(Res))
#define VecSub(Vec1, Vec2, Res) pVecSub(&(Vec1), &(Vec2), &(Res))
#define VecScale(Vec1, fScale, Res) pVecScale(&(Vec1), fScale, &(Res))
#define VecNeg(Vec, Res) pVecNeg(&(Vec), &(Res))
#define VecSet(Vec, fX, fY, fZ) pVecSet(&(Vec), fX, fY, fZ)
//---------------------------------------------------------------------
// Convert homogeneous vector to 3D vector
//
// Returns:
// 0 - if success
// -1 - v.w == 0
//
__inline int Vector4to3D(D3DVECTORH *v)
{
if (v->w == 0)
return -1;
D3DVALUE k = 1.0f/v->w;
v->x *= k;
v->y *= k;
v->z *= k;
v->w = 1;
return 0;
}
//---------------------------------------------------------------------
// Multiplies vector (x,y,z,1) by 4x4 matrix, producing a homogeneous vector
//
// res and v should not be the same
//
__inline void VecMatMul4(D3DVECTOR *v, D3DMATRIX *m, D3DVECTORH *res)
{
res->x = v->x*m->_11 + v->y*m->_21 + v->z*m->_31 + m->_41;
res->y = v->x*m->_12 + v->y*m->_22 + v->z*m->_32 + m->_42;
res->z = v->x*m->_13 + v->y*m->_23 + v->z*m->_33 + m->_43;
res->w = v->x*m->_14 + v->y*m->_24 + v->z*m->_34 + m->_44;
}
//---------------------------------------------------------------------
// Multiplies vector (x,y,z,w) by transposed 4x4 matrix, producing a
// homogeneous vector
//
// res and v should not be the same
//
__inline void VecMatMul4HT(D3DVECTORH *v, D3DMATRIX *m, D3DVECTORH *res)
{
res->x = v->x*m->_11 + v->y*m->_12 + v->z*m->_13 + v->w*m->_14;
res->y = v->x*m->_21 + v->y*m->_22 + v->z*m->_23 + v->w*m->_24;
res->z = v->x*m->_31 + v->y*m->_32 + v->z*m->_33 + v->w*m->_34;
res->w = v->x*m->_41 + v->y*m->_42 + v->z*m->_43 + v->w*m->_44;
}
//---------------------------------------------------------------------
// Multiplies vector (x,y,z,1) by 4x3 matrix
//
// res and v should not be the same
//
__inline void VecMatMul(D3DVECTOR *v, D3DMATRIX *m, D3DVECTOR *res)
{
res->x = v->x*m->_11 + v->y*m->_21 + v->z*m->_31 + m->_41;
res->y = v->x*m->_12 + v->y*m->_22 + v->z*m->_32 + m->_42;
res->z = v->x*m->_13 + v->y*m->_23 + v->z*m->_33 + m->_43;
}
//---------------------------------------------------------------------
// Multiplies vector (x,y,z) by 3x3 matrix
//
// res and v should not be the same
//
__inline void VecMatMul3(D3DVECTOR *v, D3DMATRIX *m, D3DVECTOR *res)
{
res->x = v->x*m->_11 + v->y*m->_21 + v->z*m->_31;
res->y = v->x*m->_12 + v->y*m->_22 + v->z*m->_32;
res->z = v->x*m->_13 + v->y*m->_23 + v->z*m->_33;
}
//---------------------------------------------------------------------
// Builds normalized plane equations going through 3 points
//
// Returns:
// 0 - if success
// -1 - if can not build plane
//
int MakePlane(D3DVECTOR *v1, D3DVECTOR *v2, D3DVECTOR *v3,
D3DVECTORH *plane);
//---------------------------------------------------------------------
// This function uses Cramer's Rule to calculate the matrix inverse.
// See nt\private\windows\opengl\serever\soft\so_math.c
//
// Returns:
// 0 - if success
// -1 - if input matrix is singular
//
int Inverse4x4(D3DMATRIX *src, D3DMATRIX *inverse);
//---------------------------------------------------------------------
// 4 by 4 matrix product
//
// result = a*b.
// "result" pointer could be equal to "a" or "b"
//
void MatrixProduct(D3DMATRIX *result, D3DMATRIX *a, D3DMATRIX *b);
//---------------------------------------------------------------------
// Checks the FVF flags for errors and returns the stride in bytes between
// vertices.
//
// Returns:
// HRESULT and stride in bytes between vertices
//
//---------------------------------------------------------------------
HRESULT FASTCALL
FVFCheckAndStride(DWORD dwFVF, DWORD* pdwStride);
//---------------------------------------------------------------------
// Gets the value from DIRECT3D registry key
// Returns TRUE if success
// If fails value is not changed
//
BOOL GetD3DRegValue(DWORD type, char *valueName, LPVOID value, DWORD dwSize);
#ifdef __cplusplus
}
#endif
#endif // #ifndef _D3DUTIL_H_