Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2556 lines
75 KiB

//==========================================================================;
//
// codec.c
//
// Copyright (c) 1992-1999 Microsoft Corporation
//
// Description:
//
//
// History:
//
//==========================================================================;
#include <windows.h>
#include <windowsx.h>
#include <mmsystem.h>
#include <mmddk.h>
#include <mmreg.h>
#include <ctype.h>
#include <msacm.h>
#include <msacmdrv.h>
#include "codec.h"
#include "msadpcm.h"
#include "debug.h"
#define SIZEOF_ARRAY(ar) (sizeof(ar)/sizeof((ar)[0]))
const UINT gauFormatTagIndexToTag[] =
{
WAVE_FORMAT_PCM,
WAVE_FORMAT_ADPCM
};
#define CODEC_MAX_FORMAT_TAGS SIZEOF_ARRAY(gauFormatTagIndexToTag)
#define CODEC_MAX_FILTER_TAGS 0
//
// array of sample rates supported
//
//
const UINT gauFormatIndexToSampleRate[] =
{
8000,
11025,
22050,
44100
};
#define CODEC_MAX_SAMPLE_RATES SIZEOF_ARRAY(gauFormatIndexToSampleRate)
//
// array of bits per sample supported
//
//
const UINT gauFormatIndexToBitsPerSample[] =
{
8,
16
};
#define CODEC_MAX_BITSPERSAMPLE_PCM SIZEOF_ARRAY(gauFormatIndexToBitsPerSample)
#define CODEC_MAX_BITSPERSAMPLE_ADPCM 1
#define CODEC_MAX_CHANNELS MSADPCM_MAX_CHANNELS
//
// number of formats we enumerate per channels is number of sample rates
// times number of channels times number of
// (bits per sample) types.
//
#define CODEC_MAX_FORMATS_PCM (CODEC_MAX_SAMPLE_RATES * \
CODEC_MAX_CHANNELS * \
CODEC_MAX_BITSPERSAMPLE_PCM)
#define CODEC_MAX_FORMATS_ADPCM (CODEC_MAX_SAMPLE_RATES * \
CODEC_MAX_CHANNELS * \
CODEC_MAX_BITSPERSAMPLE_ADPCM)
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// int LoadStringCodec
//
// Description:
// This function should be used by all codecs to load resource strings
// which will be passed back to the ACM. It works correctly for all
// platforms, as follows:
//
// Win16: Compiled to LoadString to load ANSI strings.
//
// Win32: The 32-bit ACM always expects Unicode strings. Therefore,
// when UNICODE is defined, this function is compiled to
// LoadStringW to load a Unicode string. When UNICODE is
// not defined, this function loads an ANSI string, converts
// it to Unicode, and returns the Unicode string to the
// codec.
//
// Note that you may use LoadString for other strings (strings which
// will not be passed back to the ACM), because these strings will
// always be consistent with the definition of UNICODE.
//
// Arguments:
// Same as LoadString, except that it expects an LPSTR for Win16 and a
// LPWSTR for Win32.
//
// Return (int):
// Same as LoadString.
//
//--------------------------------------------------------------------------;
#ifndef WIN32
#define LoadStringCodec LoadString
#else
#ifdef UNICODE
#define LoadStringCodec LoadStringW
#else
int FNGLOBAL LoadStringCodec
(
HINSTANCE hinst,
UINT uID,
LPWSTR lpwstr,
int cch)
{
LPSTR lpstr;
int iReturn;
lpstr = (LPSTR)GlobalAlloc(GPTR, cch);
if (NULL == lpstr)
{
return 0;
}
iReturn = LoadStringA(hinst, uID, lpstr, cch);
if (0 == iReturn)
{
if (0 != cch)
{
lpwstr[0] = '\0';
}
}
else
{
MultiByteToWideChar( GetACP(), 0, lpstr, cch, lpwstr, cch );
}
GlobalFree((HGLOBAL)lpstr);
return iReturn;
}
#endif // UNICODE
#endif // WIN32
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// BOOL pcmIsValidFormat
//
// Description:
// This function verifies that a wave format header is a valid PCM
// header that our PCM converter can deal with.
//
// Arguments:
// LPWAVEFORMATEX pwfx: Pointer to format header to verify.
//
// Return (BOOL):
// The return value is non-zero if the format header looks valid. A
// zero return means the header is not valid.
//
// History:
// 11/21/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
BOOL FNLOCAL pcmIsValidFormat
(
LPWAVEFORMATEX pwfx
)
{
UINT uBlockAlign;
if (!pwfx)
return (FALSE);
if (pwfx->wFormatTag != WAVE_FORMAT_PCM)
return (FALSE);
if ((pwfx->wBitsPerSample != 8) && (pwfx->wBitsPerSample != 16))
return (FALSE);
if ((pwfx->nChannels < 1) || (pwfx->nChannels > MSADPCM_MAX_CHANNELS))
return (FALSE);
//
// now verify that the block alignment is correct..
//
uBlockAlign = PCM_BLOCKALIGNMENT(pwfx);
if (uBlockAlign != (UINT)pwfx->nBlockAlign)
return (FALSE);
//
// finally, verify that avg bytes per second is correct
//
if ((pwfx->nSamplesPerSec * uBlockAlign) != pwfx->nAvgBytesPerSec)
return (FALSE);
return (TRUE);
} // pcmIsValidFormat()
//--------------------------------------------------------------------------;
//
// WORD adpcmBlockAlign
//
// Description:
// This function computes the standard block alignment that should
// be used given the WAVEFORMATEX structure.
//
// NOTE! It is _assumed_ that the format is a valid MS-ADPCM format
// and that the following fields in the format structure are valid:
//
// nChannels
// nSamplesPerSec
//
// Arguments:
// LPWAVEFORMATEX pwfx:
//
// Return (WORD):
// The return value is the block alignment that should be placed in
// the pwfx->nBlockAlign field.
//
// History:
// 06/13/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
WORD FNLOCAL adpcmBlockAlign
(
LPWAVEFORMATEX pwfx
)
{
UINT uBlockAlign;
UINT uChannelShift;
//
//
//
uChannelShift = pwfx->nChannels >> 1;
uBlockAlign = 256 << uChannelShift;
//
// choose a block alignment that makes sense for the sample rate
// that the original PCM data is. basically, this needs to be
// some reasonable number to allow efficient streaming, etc.
//
// don't let block alignment get too small...
//
if (pwfx->nSamplesPerSec > 11025)
{
uBlockAlign *= (UINT)(pwfx->nSamplesPerSec / 11000);
}
return (WORD)(uBlockAlign);
} // adpcmBlockAlign()
//--------------------------------------------------------------------------;
//
// WORD adpcmSamplesPerBlock
//
// Description:
// This function computes the Samples Per Block that should be used
// given the WAVEFORMATEX structure.
//
// NOTE! It is _assumed_ that the format is a valid MS-ADPCM format
// and that the following fields in the format structure are valid:
//
// nChannels = must be 1 or 2!
// nSamplesPerSec
// nBlockAlign
//
// Arguments:
// LPWAVEFORMATEX pwfx:
//
// Return (DWORD):
// The return value is the average bytes per second that should be
// placed in the pwfx->nAvgBytesPerSec field.
//
// History:
// 06/13/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
WORD FNLOCAL adpcmSamplesPerBlock
(
LPWAVEFORMATEX pwfx
)
{
UINT uSamplesPerBlock;
UINT uChannelShift;
UINT uHeaderBytes;
UINT uBitsPerSample;
//
//
//
uChannelShift = pwfx->nChannels >> 1;
uHeaderBytes = 7 << uChannelShift;
uBitsPerSample = MSADPCM_BITS_PER_SAMPLE << uChannelShift;
//
//
//
uSamplesPerBlock = (pwfx->nBlockAlign - uHeaderBytes) * 8;
uSamplesPerBlock /= uBitsPerSample;
uSamplesPerBlock += 2;
return (WORD)(uSamplesPerBlock);
} // adpcmSamplesPerBlock()
//--------------------------------------------------------------------------;
//
// UINT adpcmAvgBytesPerSec
//
// Description:
// This function computes the Average Bytes Per Second that should
// be used given the WAVEFORMATEX structure.
//
// NOTE! It is _assumed_ that the format is a valid MS-ADPCM format
// and that the following fields in the format structure are valid:
//
// nChannels = must be 1 or 2!
// nSamplesPerSec
// nBlockAlign
//
// Arguments:
// LPWAVEFORMATEX pwfx:
//
// Return (DWORD):
// The return value is the average bytes per second that should be
// placed in the pwfx->nAvgBytesPerSec field.
//
// History:
// 06/13/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
DWORD FNLOCAL adpcmAvgBytesPerSec
(
LPWAVEFORMATEX pwfx
)
{
DWORD dwAvgBytesPerSec;
UINT uSamplesPerBlock;
//
//
//
uSamplesPerBlock = adpcmSamplesPerBlock(pwfx);
//
// compute bytes per second including header bytes
//
dwAvgBytesPerSec = (pwfx->nSamplesPerSec * pwfx->nBlockAlign) /
uSamplesPerBlock;
return (dwAvgBytesPerSec);
} // adpcmAvgBytesPerSec()
//--------------------------------------------------------------------------;
//
// BOOL adpcmIsValidFormat
//
// Description:
//
//
// Arguments:
//
//
// Return (BOOL FNLOCAL):
//
//
// History:
// 1/26/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
BOOL FNLOCAL adpcmIsValidFormat
(
LPWAVEFORMATEX pwfx
)
{
LPADPCMWAVEFORMAT pwfADPCM = (LPADPCMWAVEFORMAT)pwfx;
if (!pwfx)
return (FALSE);
if (pwfx->wFormatTag != WAVE_FORMAT_ADPCM)
return (FALSE);
//
// check wBitsPerSample
//
if (pwfx->wBitsPerSample != MSADPCM_BITS_PER_SAMPLE)
return (FALSE);
//
// check channels
//
if ((pwfx->nChannels < 1) || (pwfx->nChannels > MSADPCM_MAX_CHANNELS))
return (FALSE);
//
// verify that there is at least enough space specified in cbSize
// for the extra info for the ADPCM header...
//
if (pwfx->cbSize < MSADPCM_WFX_EXTRA_BYTES)
return (FALSE);
//
// Verifying nBlockAlign and wSamplesPerBlock are consistent.
//
if ( (pwfADPCM->wSamplesPerBlock != adpcmSamplesPerBlock(pwfx)) )
return FALSE;
return (TRUE);
} // adpcmIsValidFormat()
//--------------------------------------------------------------------------;
//
// BOOL adpcmIsMagicFormat
//
// Description:
//
//
// Arguments:
//
//
// Return (BOOL FNLOCAL):
//
//
// History:
// 1/27/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
BOOL FNLOCAL adpcmIsMagicFormat
(
LPADPCMWAVEFORMAT pwfADPCM
)
{
UINT u;
//
// verify that there is at least enough space specified in cbSize
// for the extra info for the ADPCM header...
//
if (pwfADPCM->wfx.cbSize < MSADPCM_WFX_EXTRA_BYTES)
return (FALSE);
//
// check coef's to see if it is Microsoft's standard ADPCM
//
if (pwfADPCM->wNumCoef != MSADPCM_MAX_COEFFICIENTS)
return (FALSE);
for (u = 0; u < MSADPCM_MAX_COEFFICIENTS; u++)
{
if (pwfADPCM->aCoef[u].iCoef1 != gaiCoef1[u])
return (FALSE);
if (pwfADPCM->aCoef[u].iCoef2 != gaiCoef2[u])
return (FALSE);
}
return (TRUE);
} // adpcmIsMagicFormat()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// BOOL adpcmCopyCoefficients
//
// Description:
//
//
// Arguments:
// LPADPCMWAVEFORMAT pwfadpcm:
//
// Return (BOOL):
//
// History:
// 06/13/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
BOOL FNLOCAL adpcmCopyCoefficients
(
LPADPCMWAVEFORMAT pwfadpcm
)
{
UINT u;
pwfadpcm->wNumCoef = MSADPCM_MAX_COEFFICIENTS;
for (u = 0; u < MSADPCM_MAX_COEFFICIENTS; u++)
{
pwfadpcm->aCoef[u].iCoef1 = (short)gaiCoef1[u];
pwfadpcm->aCoef[u].iCoef2 = (short)gaiCoef2[u];
}
return (TRUE);
} // adpcmCopyCoefficients()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// LRESULT acmdDriverOpen
//
// Description:
// This function is used to handle the DRV_OPEN message for the ACM
// driver. The driver is 'opened' for many reasons with the most common
// being in preperation for conversion work. It is very important that
// the driver be able to correctly handle multiple open driver
// instances.
//
// Read the comments for this function carefully!
//
// Note that multiple _streams_ can (and will) be opened on a single
// open _driver instance_. Do not store/create instance data that must
// be unique for each stream in this function. See the acmdStreamOpen
// function for information on conversion streams.
//
// Arguments:
// HDRVR hdrvr: Driver handle that will be returned to caller of the
// OpenDriver function. Normally, this will be the ACM--but this is
// not guaranteed. For example, if an ACM driver is implemented within
// a waveform driver, then the driver will be opened by both MMSYSTEM
// and the ACM.
//
// LPACMDRVOPENDESC paod: Open description defining how the ACM driver
// is being opened. This argument may be NULL--see the comments below
// for more information.
//
// Return (LRESULT):
// The return value is non-zero if the open is successful. A zero
// return signifies that the driver cannot be opened.
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdDriverOpen
(
HDRVR hdrvr,
LPACMDRVOPENDESC paod
)
{
PCODECINST pci;
//
// the [optional] open description that is passed to this driver can
// be from multiple 'managers.' for example, AVI looks for installable
// drivers that are tagged with 'vidc' and 'vcap'. we need to verify
// that we are being opened as an Audio Compression Manager driver.
//
// if paod is NULL, then the driver is being opened for some purpose
// other than converting (that is, there will be no stream open
// requests for this instance of being opened). the most common case
// of this is the Control Panel's Drivers option checking for config
// support (DRV_[QUERY]CONFIGURE).
//
// we want to succeed this open, but be able to know that this
// open instance is bogus for creating streams. for this purpose we
// leave most of the members of our instance structure that we
// allocate below as zero...
//
if (NULL != paod)
{
//
// refuse to open if we are not being opened as an ACM driver.
// note that we do NOT modify the value of paod->dwError in this
// case.
//
if (ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC != paod->fccType)
{
return (0L);
}
}
//
// we are being opened as an installable driver--we can allocate some
// instance data to be returned in dwId argument of the DriverProc;
// or simply return non-zero to succeed the open.
//
// this driver allocates a small instance structure. note that we
// rely on allocating the memory as zero-initialized!
//
pci = (PCODECINST)LocalAlloc(LPTR, sizeof(*pci));
if (NULL == pci)
{
//
// if this open attempt was as an ACM driver, then return the
// reason we are failing in the open description structure..
//
if (NULL != paod)
{
paod->dwError = MMSYSERR_NOMEM;
}
//
// fail to open
//
return (0L);
}
//
// fill in our instance structure... note that this instance data
// can be anything that the ACM driver wishes to maintain the
// open driver instance. this data should not contain any information
// that must be maintained per open stream since multiple streams
// can be opened on a single driver instance.
//
// also note that we do _not_ check the version of the ACM opening
// us (paod->dwVersion) to see if it is at least new enough to work
// with this driver (for example, if this driver required Version 3.0
// of the ACM and a Version 2.0 installation tried to open us). the
// reason we do not fail is to allow the ACM to get the driver details
// which contains the version of the ACM that is _required_ by this
// driver. the ACM will examine that value (in padd->vdwACM) and
// do the right thing for this driver... like not load it and inform
// the user of the problem.
//
pci->hdrvr = hdrvr;
pci->hinst = GetDriverModuleHandle(hdrvr); // Module handle.
if (NULL != paod)
{
pci->DriverProc = NULL;
pci->fccType = paod->fccType;
pci->vdwACM = paod->dwVersion;
pci->dwFlags = paod->dwFlags;
paod->dwError = MMSYSERR_NOERROR;
}
//
// non-zero return is success for DRV_OPEN
//
return ((LRESULT)pci);
} // acmdDriverOpen()
//--------------------------------------------------------------------------;
//
// LRESULT acmdDriverClose
//
// Description:
// This function handles the DRV_CLOSE message for the codec. The
// codec receives a DRV_CLOSE message for each succeeded DRV_OPEN
// message (see acmdDriverOpen).
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// Return (LRESULT):
// The return value is non-zero if the open instance can be closed.
// A zero return signifies that the codec instance could not be
// closed.
//
// NOTE! It is _strongly_ recommended that the codec never fail to
// close.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdDriverClose
(
PCODECINST pci
)
{
//
// check to see if we allocated instance data. if we did not, then
// immediately succeed.
//
if (pci != NULL)
{
//
// close down the conversion instance. this codec simply needs
// to free the instance data structure...
//
LocalFree((HLOCAL)pci);
}
//
// non-zero return is success for DRV_CLOSE
//
return (1L);
} // acmdDriverClose()
//--------------------------------------------------------------------------;
//
// LRESULT acmdDriverConfigure
//
// Description:
// This function is called to handle the DRV_[QUERY]CONFIGURE messages.
// These messages are for 'hardware configuration' support of the
// codec. That is, a dialog should be displayed to configure ports,
// IRQ's, memory mappings, etc if it needs to.
//
// The most common way that these messages are generated under Win 3.1
// and NT Product 1 is from the Control Panel's Drivers option. Other
// sources may generate these messages in future versions of Windows.
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// HWND hwnd: Handle to parent window to use when displaying hardware
// configuration dialog box. A codec is _required_ to display a modal
// dialog box using this hwnd argument as the parent. This argument
// may be (HWND)-1 which tells the codec that it is only being
// queried for configuration support.
//
// LPDRVCONFIGINFO pdci: Pointer to optional DRVCONFIGINFO structure.
// If this argument is NULL, then the codec should invent its own
// storage location.
//
// Return (LRESULT):
// A non-zero return values specifies that either configuration is
// supported or that the dialog was successfully displayed and
// dismissed. A zero return indicates either configuration is not
// supported or some other failure.
//
// History:
// 1/25/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdDriverConfigure
(
PCODECINST pci,
HWND hwnd,
LPDRVCONFIGINFO pdci
)
{
//
// first check to see if we are only being queried for hardware
// configuration support. if hwnd == (HWND)-1 then we are being
// queried and should return zero for 'not supported' and non-zero
// for 'supported'.
//
if (hwnd == (HWND)-1)
{
//
// this codec does not support hardware configuration so return
// zero...
//
return (0L);
}
//
// we are being asked to bring up our hardware configuration dialog.
// if this codec can bring up a dialog box, then after the dialog
// is dismissed we return non-zero. if we are not able to display a
// dialog, then return zero.
//
return (0L);
} // acmdDriverConfigure()
//--------------------------------------------------------------------------;
//
// LRESULT acmdDriverDetails
//
// Description:
// This function handles the ACMDM_DRIVER_DETAILS message. The codec
// is responsible for filling in the ACMDRIVERDETAILS structure with
// various information.
//
// NOTE! It is *VERY* important that you fill in your ACMDRIVERDETAILS
// structure correctly. The ACM and applications must be able to
// rely on this information.
//
// WARNING! The _reserved_ bits of any fields of the ACMDRIVERDETAILS
// structure are _exactly that_: RESERVED. Do NOT use any extra
// flag bits, etc. for custom information. The proper way to add
// custom capabilities to your codec is this:
//
// o define a new message in the ACMDM_USER range.
//
// o an application that wishes to use one of these extra features
// should then:
//
// o open the codec with acmConverterOpen.
//
// o check for the proper uMid and uPid using acmConverterInfo
//
// o send the 'user defined' message with acmConverterMessage
// to retrieve additional information, etc.
//
// o close the codec with acmConverterClose.
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPACMDRIVERDETAILS padd: Pointer to ACMDRIVERDETAILS structure to fill in
// for caller. This structure may be larger or smaller than the
// current definition of ACMDRIVERDETAILS--cbStruct specifies the valid
// size.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) for success. A non-zero
// return signifies an error which is either an MMSYSERR_* or an
// ACMERR_*.
//
// Note that this function should never fail. There are two possible
// error conditions:
//
// o if padd is NULL or an invalid pointer.
//
// o if cbStruct is less than four; in this case, there is not enough
// room to return the number of bytes filled in.
//
// Because these two error conditions are easily defined, the ACM
// will catch these errors. The codec does not need to check for these
// conditions.
//
// History:
// 1/23/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdDriverDetails
(
PCODECINST pci,
LPACMDRIVERDETAILS padd
)
{
ACMDRIVERDETAILS add;
DWORD cbStruct;
//
// it is easiest to fill in a temporary structure with valid info
// and then copy the requested number of bytes to the destination
// buffer.
//
cbStruct = min(padd->cbStruct, sizeof(ACMDRIVERDETAILS));
add.cbStruct = cbStruct;
//
// for the current implementation of an ACM codec, the fccType and
// fccComp members *MUST* always be ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC ('audc')
// and ACMDRIVERDETAILS_FCCCOMP_UNDEFINED (0) respectively.
//
add.fccType = ACMDRIVERDETAILS_FCCTYPE_AUDIOCODEC;
add.fccComp = ACMDRIVERDETAILS_FCCCOMP_UNDEFINED;
//
// the manufacturer id (uMid) and product id (uPid) must be filled
// in with your company's _registered_ id's. for more information
// on these id's and how to get them registered contact Microsoft
// and get the Multimedia Developer Registration Kit:
//
// Microsoft Corporation
// Multimedia Systems Group
// Product Marketing
// One Microsoft Way
// Redmond, WA 98052-6399
//
// Phone: 800-227-4679 x11771
//
// note that during the development phase or your codec, you may
// use the reserved value of '0' for both uMid and uPid.
//
add.wMid = MM_MICROSOFT;
add.wPid = MM_MSFT_ACM_MSADPCM;
//
// the vdwACM and vdwDriver members contain version information for
// the driver.
//
// vdwACM must contain the version of the *ACM* that the codec was
// designed for.
//
// vdwDriver is the version of the driver.
//
add.vdwACM = VERSION_MSACM;
add.vdwDriver = VERSION_CODEC;
//
// the following flags are used to specify the type of conversion(s)
// that the converter/codec/filter supports. these are placed in the
// fdwSupport field of the ACMDRIVERDETAILS structure. note that a converter
// can support one or more of these flags in any combination.
//
// ACMDRIVERDETAILS_SUPPORTF_CODEC: this flag is set if the converter supports
// conversions from one format tag to another format tag. for example,
// if a converter compresses WAVE_FORMAT_PCM to WAVE_FORMAT_ADPCM, then
// this bit should be set.
//
// ACMDRIVERDETAILS_SUPPORTF_CONVERTER: this flags is set if the converter
// supports conversions on the same format tag. as an example, the PCM
// converter that is built into the ACM sets this bit (and only this
// bit) because it converts only PCM formats (bits, sample rate).
//
// ACMDRIVERDETAILS_SUPPORTF_FILTER: this flag is set if the converter supports
// 'in place' transformations on a single format tag without changing
// the size of the resulting data. for example, a converter that changed
// the 'volume' of PCM data would set this bit. note that this is a
// _destructive_ action--but it saves memory, etc.
//
// this converter only supports compression and decompression.
//
add.fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC;
//
// Return the number of format tags this converter supports
// (In the case of PCM only this is 1)
//
add.cFormatTags = CODEC_MAX_FORMAT_TAGS;
//
// Return the number of filter tags this converter supports
// (In the case of a codec (only) it is 0)
//
add.cFilterTags = CODEC_MAX_FILTER_TAGS;
//
// the remaining members in the ACMDRIVERDETAILS structure are sometimes
// not needed. because of this we make a quick check to see if we
// should go through the effort of filling in these members.
//
if (FIELD_OFFSET(ACMDRIVERDETAILS, hicon) < cbStruct)
{
//
// this codec has no custom icon
//
add.hicon = NULL;
LoadStringCodec(pci->hinst, IDS_CODEC_SHORTNAME, add.szShortName, SIZEOFACMSTR(add.szShortName));
LoadStringCodec(pci->hinst, IDS_CODEC_LONGNAME, add.szLongName, SIZEOFACMSTR(add.szLongName));
if (FIELD_OFFSET(ACMDRIVERDETAILS, szCopyright) < cbStruct)
{
LoadStringCodec(pci->hinst, IDS_CODEC_COPYRIGHT, add.szCopyright, SIZEOFACMSTR(add.szCopyright));
LoadStringCodec(pci->hinst, IDS_CODEC_LICENSING, add.szLicensing, SIZEOFACMSTR(add.szLicensing));
LoadStringCodec(pci->hinst, IDS_CODEC_FEATURES, add.szFeatures, SIZEOFACMSTR(add.szFeatures));
}
}
//
// now copy the correct number of bytes to the caller's buffer
//
_fmemcpy(padd, &add, (UINT)add.cbStruct);
//
// success!
//
return (MMSYSERR_NOERROR);
} // acmdDriverDetails()
//--------------------------------------------------------------------------;
//
// LRESULT acmdDriverAbout
//
// Description:
// This function is called to handle the ACMDM_DRIVER_ABOUT message.
// A codec has the option of displaying its own 'about box' or letting
// the ACM display one for it.
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// HWND hwnd: Handle to parent window to use when displaying custom
// about box. If a codec displays its own dialog, it is _required_
// to display a modal dialog box using this hwnd argument as the
// parent.
//
// Return (LRESULT):
// The return value is MMSYSERR_NOTSUPPORTED if the ACM should display
// a generic about box using the information contained in the codec
// capabilities structure.
//
// If the codec chooses to display its own dialog box, then after
// the dialog is dismissed by the user, MMSYSERR_NOERROR should be
// returned.
//
// History:
// 1/24/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdDriverAbout
(
PCODECINST pci,
HWND hwnd
)
{
//
// this codec does not need any special dialog, so tell the ACM to
// display one for us. note that this is the _recommended_ method
// for consistency and simplicity of codecs. why write code when
// you don't have to?
//
return (MMSYSERR_NOTSUPPORTED);
} // acmdDriverAbout()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// LRESULT acmdFormatSuggest
//
// Description:
// This function handles the ACMDM_FORMAT_SUGGEST message. The purpose
// of this function is to provide a way for the ACM (wave mapper) or
// an application to quickly get a destination format that this codec
// can convert the source format to. The 'suggested' format should
// be as close to a common format as possible.
//
// Another way to think about this message is: what format would this
// codec like to convert the source format to?
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPACMDRVFORMATSUGGEST padfs: Pointer to ACMDRVFORMATSUGGEST structure.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero ACMERR_*
// or MMSYSERR_* if the function fails.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdFormatSuggest
(
PCODECINST pci,
LPACMDRVFORMATSUGGEST padfs
)
{
LPWAVEFORMATEX pwfxSrc;
LPWAVEFORMATEX pwfxDst;
LPADPCMWAVEFORMAT pwfadpcm;
LPPCMWAVEFORMAT pwfpcm;
pwfxSrc = padfs->pwfxSrc;
pwfxDst = padfs->pwfxDst;
//
//
//
//
switch (pwfxSrc->wFormatTag)
{
case WAVE_FORMAT_PCM:
//
// verify source format is acceptable for this driver
//
if (!pcmIsValidFormat(pwfxSrc))
break;
//
// Verify that you are not asking for a particular dest format
// that is not ADPCM.
//
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_WFORMATTAG) &&
(pwfxDst->wFormatTag != WAVE_FORMAT_ADPCM) ) {
return (ACMERR_NOTPOSSIBLE);
}
// Verify that if other restrictions are given, they
// match to the source. (Since we do not convert
// the nChannels or nSamplesPerSec
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_NCHANNELS) &&
(pwfxSrc->nChannels != pwfxDst->nChannels) ) {
return (ACMERR_NOTPOSSIBLE);
}
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_NSAMPLESPERSEC) &&
(pwfxSrc->nSamplesPerSec != pwfxDst->nSamplesPerSec) ) {
return (ACMERR_NOTPOSSIBLE);
}
// Verify that if we are asking for a specific number of bits
// per sample, that it is the correct #
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_WBITSPERSAMPLE) &&
(pwfxDst->wBitsPerSample != 4) ) {
return (ACMERR_NOTPOSSIBLE);
}
//
// suggest an ADPCM format that has most of the same details
// as the source PCM format
//
pwfxDst->wFormatTag = WAVE_FORMAT_ADPCM;
pwfxDst->nSamplesPerSec = pwfxSrc->nSamplesPerSec;
pwfxDst->nChannels = pwfxSrc->nChannels;
pwfxDst->wBitsPerSample = MSADPCM_BITS_PER_SAMPLE;
pwfxDst->nBlockAlign = adpcmBlockAlign(pwfxDst);
pwfxDst->nAvgBytesPerSec = adpcmAvgBytesPerSec(pwfxDst);
pwfxDst->cbSize = MSADPCM_WFX_EXTRA_BYTES;
pwfadpcm = (LPADPCMWAVEFORMAT)pwfxDst;
pwfadpcm->wSamplesPerBlock = adpcmSamplesPerBlock(pwfxDst);
adpcmCopyCoefficients(pwfadpcm);
return (MMSYSERR_NOERROR);
case WAVE_FORMAT_ADPCM:
//
// verify source format is acceptable for this driver
//
if (!adpcmIsValidFormat(pwfxSrc) ||
!adpcmIsMagicFormat((LPADPCMWAVEFORMAT)pwfxSrc))
break;
//
// Verify that you are not asking for a particular dest format
// that is not PCM.
//
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_WFORMATTAG) &&
(pwfxDst->wFormatTag != WAVE_FORMAT_PCM) ) {
return (ACMERR_NOTPOSSIBLE);
}
// Verify that if other restrictions are given, they
// match to the source. (Since we do not convert
// the nChannels or nSamplesPerSec
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_NCHANNELS) &&
(pwfxSrc->nChannels != pwfxDst->nChannels) ) {
return (ACMERR_NOTPOSSIBLE);
}
if( (padfs->fdwSuggest & ACM_FORMATSUGGESTF_NSAMPLESPERSEC) &&
(pwfxSrc->nSamplesPerSec != pwfxDst->nSamplesPerSec) ) {
return (ACMERR_NOTPOSSIBLE);
}
//
// suggest a PCM format that has most of the same details
// as the source ADPCM format
//
pwfxDst->wFormatTag = WAVE_FORMAT_PCM;
pwfxDst->nSamplesPerSec = pwfxSrc->nSamplesPerSec;
pwfxDst->nChannels = pwfxSrc->nChannels;
// Verify that if we are asking for a specific number of bits
// per sample, that it is the correct #
if( padfs->fdwSuggest & ACM_FORMATSUGGESTF_WBITSPERSAMPLE ) {
if( (pwfxDst->wBitsPerSample != 8) &&
(pwfxDst->wBitsPerSample != 16) ) {
return (ACMERR_NOTPOSSIBLE);
}
} else {
// Default to 16 bit decode
pwfxDst->wBitsPerSample = 16;
}
pwfpcm = (LPPCMWAVEFORMAT)pwfxDst;
pwfxDst->nBlockAlign = PCM_BLOCKALIGNMENT(pwfxDst);
pwfxDst->nAvgBytesPerSec = pwfxDst->nSamplesPerSec *
pwfxDst->nBlockAlign;
return (MMSYSERR_NOERROR);
}
//
// can't suggest anything because either the source format is foreign
// or the destination format has restrictions that this converter
// cannot deal with.
//
return (ACMERR_NOTPOSSIBLE);
} // acmdFormatSuggest()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// LRESULT acmdFormatTagDetails
//
// Description:
//
//
// Arguments:
// PCODECINST pci:
//
// LPACMFORMATTAGDETAILS padft:
//
// DWORD fdwDetails:
//
// Return (LRESULT):
//
// History:
// 08/01/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdFormatTagDetails
(
PCODECINST pci,
LPACMFORMATTAGDETAILS padft,
DWORD fdwDetails
)
{
UINT uFormatTag;
//
//
//
//
//
switch (ACM_FORMATTAGDETAILSF_QUERYMASK & fdwDetails)
{
case ACM_FORMATTAGDETAILSF_INDEX:
//
// if the index is too large, then they are asking for a
// non-existant format. return error.
//
if (CODEC_MAX_FORMAT_TAGS <= padft->dwFormatTagIndex)
return (ACMERR_NOTPOSSIBLE);
uFormatTag = gauFormatTagIndexToTag[(UINT)padft->dwFormatTagIndex];
break;
case ACM_FORMATTAGDETAILSF_LARGESTSIZE:
switch (padft->dwFormatTag)
{
case WAVE_FORMAT_UNKNOWN:
case WAVE_FORMAT_ADPCM:
uFormatTag = WAVE_FORMAT_ADPCM;
break;
case WAVE_FORMAT_PCM:
uFormatTag = WAVE_FORMAT_PCM;
break;
default:
return (ACMERR_NOTPOSSIBLE);
}
break;
case ACM_FORMATTAGDETAILSF_FORMATTAG:
switch (padft->dwFormatTag)
{
case WAVE_FORMAT_ADPCM:
uFormatTag = WAVE_FORMAT_ADPCM;
break;
case WAVE_FORMAT_PCM:
uFormatTag = WAVE_FORMAT_PCM;
break;
default:
return (ACMERR_NOTPOSSIBLE);
}
break;
//
// if this converter does not understand a query type, then
// return 'not supported'
//
default:
return (MMSYSERR_NOTSUPPORTED);
}
//
//
//
//
switch (uFormatTag)
{
case WAVE_FORMAT_PCM:
padft->dwFormatTagIndex = 0;
padft->dwFormatTag = WAVE_FORMAT_PCM;
padft->cbFormatSize = sizeof(PCMWAVEFORMAT);
padft->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC;
padft->cStandardFormats = CODEC_MAX_FORMATS_PCM;
//
// the ACM is responsible for the PCM format tag name
//
padft->szFormatTag[0] = '\0';
break;
case WAVE_FORMAT_ADPCM:
padft->dwFormatTagIndex = 1;
padft->dwFormatTag = WAVE_FORMAT_ADPCM;
padft->cbFormatSize = sizeof(WAVEFORMATEX) +
MSADPCM_WFX_EXTRA_BYTES;
padft->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC;
padft->cStandardFormats = CODEC_MAX_FORMATS_ADPCM;
LoadStringCodec(pci->hinst, IDS_CODEC_NAME, padft->szFormatTag, SIZEOFACMSTR(padft->szFormatTag));
break;
default:
return (ACMERR_NOTPOSSIBLE);
}
//
// return only the requested info
//
// the ACM will guarantee that the ACMFORMATTAGDETAILS structure
// passed is at least large enough to hold the base information of
// the details structure
//
padft->cbStruct = min(padft->cbStruct, sizeof(*padft));
//
//
//
return (MMSYSERR_NOERROR);
} // acmdFormatTagDetails()
//--------------------------------------------------------------------------;
//
// LRESULT acmdFormatDetails
//
// Description:
//
//
// Arguments:
// PCODECINST pci:
//
// LPACMFORMATDETAILS padf:
//
// DWORD fdwDetails:
//
// Return (LRESULT):
//
// History:
// 06/13/93 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdFormatDetails
(
PCODECINST pci,
LPACMFORMATDETAILS padf,
DWORD fdwDetails
)
{
LPWAVEFORMATEX pwfx;
LPADPCMWAVEFORMAT pwfadpcm;
UINT uFormatIndex;
UINT u;
pwfx = padf->pwfx;
//
//
//
//
//
switch (ACM_FORMATDETAILSF_QUERYMASK & fdwDetails)
{
case ACM_FORMATDETAILSF_INDEX:
//
// enumerate by index
//
// for this converter, this is more code than necessary... just
// verify that the format tag is something we know about
//
switch (padf->dwFormatTag)
{
case WAVE_FORMAT_PCM:
if (CODEC_MAX_FORMATS_PCM <= padf->dwFormatIndex)
return (ACMERR_NOTPOSSIBLE);
//
// put some stuff in more accessible variables--note
// that we bring variable sizes down to a reasonable
// size for 16 bit code...
//
uFormatIndex = (UINT)padf->dwFormatIndex;
pwfx = padf->pwfx;
//
// now fill in the format structure
//
pwfx->wFormatTag = WAVE_FORMAT_PCM;
u = uFormatIndex / (CODEC_MAX_BITSPERSAMPLE_PCM * CODEC_MAX_CHANNELS);
pwfx->nSamplesPerSec = gauFormatIndexToSampleRate[u];
u = uFormatIndex % CODEC_MAX_CHANNELS;
pwfx->nChannels = u + 1;
u = (uFormatIndex / CODEC_MAX_CHANNELS) % CODEC_MAX_CHANNELS;
pwfx->wBitsPerSample = (WORD)gauFormatIndexToBitsPerSample[u];
pwfx->nBlockAlign = PCM_BLOCKALIGNMENT(pwfx);
pwfx->nAvgBytesPerSec = pwfx->nSamplesPerSec * pwfx->nBlockAlign;
//
// note that the cbSize field is NOT valid for PCM
// formats
//
// pwfx->cbSize = 0;
break;
case WAVE_FORMAT_ADPCM:
if (CODEC_MAX_FORMATS_ADPCM <= padf->dwFormatIndex)
return (ACMERR_NOTPOSSIBLE);
//
// put some stuff in more accessible variables--note that we
// bring variable sizes down to a reasonable size for 16 bit
// code...
//
uFormatIndex = (UINT)padf->dwFormatIndex;
pwfx = padf->pwfx;
pwfadpcm = (LPADPCMWAVEFORMAT)pwfx;
//
//
//
pwfx->wFormatTag = WAVE_FORMAT_ADPCM;
u = uFormatIndex / (CODEC_MAX_BITSPERSAMPLE_ADPCM * CODEC_MAX_CHANNELS);
pwfx->nSamplesPerSec = gauFormatIndexToSampleRate[u];
u = uFormatIndex % CODEC_MAX_CHANNELS;
pwfx->nChannels = u + 1;
pwfx->wBitsPerSample = MSADPCM_BITS_PER_SAMPLE;
pwfx->nBlockAlign = adpcmBlockAlign(pwfx);
pwfx->nAvgBytesPerSec = adpcmAvgBytesPerSec(pwfx);
pwfx->cbSize = MSADPCM_WFX_EXTRA_BYTES;
pwfadpcm->wSamplesPerBlock = adpcmSamplesPerBlock(pwfx);
adpcmCopyCoefficients(pwfadpcm);
break;
default:
return (ACMERR_NOTPOSSIBLE);
}
case ACM_FORMATDETAILSF_FORMAT:
//
// must want to verify that the format passed in is supported
// and return a string description...
//
switch (pwfx->wFormatTag)
{
case WAVE_FORMAT_PCM:
if (!pcmIsValidFormat(pwfx))
return (ACMERR_NOTPOSSIBLE);
break;
case WAVE_FORMAT_ADPCM:
if (!adpcmIsValidFormat(pwfx) ||
!adpcmIsMagicFormat((LPADPCMWAVEFORMAT)pwfx))
return (ACMERR_NOTPOSSIBLE);
break;
default:
return (ACMERR_NOTPOSSIBLE);
}
break;
default:
//
// don't know how to do the query type passed--return 'not
// supported'.
//
return (MMSYSERR_NOTSUPPORTED);
}
//
// return only the requested info
//
// the ACM will guarantee that the ACMFORMATDETAILS structure
// passed is at least large enough to hold the base structure
//
// note that we let the ACM create the format string for us since
// we require no special formatting (and don't want to deal with
// internationalization issues, etc)
//
padf->fdwSupport = ACMDRIVERDETAILS_SUPPORTF_CODEC;
padf->szFormat[0] = '\0';
padf->cbStruct = min(padf->cbStruct, sizeof(*padf));
//
//
//
return (MMSYSERR_NOERROR);
} // acmdFormatDetails()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// LRESULT acmdStreamQuery
//
// Description:
// This is an internal helper used by the ACMDM_STREM_OPEN
// and ACMDM_STREAM_SIZE messages.
// The purpose of this function is to tell the caller if the proposed
// conversion can be handled by this codec.
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPWAVEFORMATEX pwfxSrc:
//
// LPWAVEFORMATEX pwfxDst:
//
// LPWAVEFILTER pwfltr:
//
// DWORD fdwOpen:
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero ACMERR_*
// or MMSYSERR_* if the function fails.
//
// A return value of ACMERR_NOTPOSSIBLE must be returned if the conversion
// cannot be performed by this codec.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdStreamQuery
(
PCODECINST pci,
LPWAVEFORMATEX pwfxSrc,
LPWAVEFORMATEX pwfxDst,
LPWAVEFILTER pwfltr,
DWORD fdwOpen
)
{
LPADPCMWAVEFORMAT pwfADPCM;
LPPCMWAVEFORMAT pwfPCM;
//
// check to see if this
// codec can convert from the source to the destination.
//
// first check if source is ADPCM so destination must be PCM..
//
if (adpcmIsValidFormat(pwfxSrc))
{
if (!pcmIsValidFormat(pwfxDst))
return (ACMERR_NOTPOSSIBLE);
//
// converting from ADPCM to PCM...
//
pwfADPCM = (LPADPCMWAVEFORMAT)pwfxSrc;
pwfPCM = (LPPCMWAVEFORMAT)pwfxDst;
if (pwfADPCM->wfx.nChannels != pwfPCM->wf.nChannels)
return (ACMERR_NOTPOSSIBLE);
if (pwfADPCM->wfx.nSamplesPerSec != pwfPCM->wf.nSamplesPerSec)
return (ACMERR_NOTPOSSIBLE);
if (!adpcmIsMagicFormat(pwfADPCM))
return (ACMERR_NOTPOSSIBLE);
return (MMSYSERR_NOERROR);
}
//
// now try source as PCM so destination must be ADPCM..
//
else if (pcmIsValidFormat(pwfxSrc))
{
if (!adpcmIsValidFormat(pwfxDst))
return (ACMERR_NOTPOSSIBLE);
//
// converting from PCM to ADPCM...
//
pwfPCM = (LPPCMWAVEFORMAT)pwfxSrc;
pwfADPCM = (LPADPCMWAVEFORMAT)pwfxDst;
if (pwfADPCM->wfx.nChannels != pwfPCM->wf.nChannels)
return (ACMERR_NOTPOSSIBLE);
if (pwfADPCM->wfx.nSamplesPerSec != pwfPCM->wf.nSamplesPerSec)
return (ACMERR_NOTPOSSIBLE);
if (!adpcmIsMagicFormat(pwfADPCM))
return (ACMERR_NOTPOSSIBLE);
return (MMSYSERR_NOERROR);
}
//
// we are unable to perform the conversion we are being queried for
// so return ACMERR_NOTPOSSIBLE to signify this...
//
return (ACMERR_NOTPOSSIBLE);
} // acmdStreamQuery()
//--------------------------------------------------------------------------;
//
// LRESULT acmdStreamOpen
//
// Description:
// This function handles the ACMDM_STREAM_OPEN message. This message
// is sent to initiate a new conversion stream. This is usually caused
// by an application calling acmOpenConversion. If this function is
// successful, then one or more ACMDM_STREAM_CONVERT messages will be
// sent to convert individual buffers (user calls acmStreamConvert).
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPACMDRVINSTANCE padi: Pointer to instance data for the conversion
// stream. This structure was allocated by the ACM and filled with
// the most common instance data needed for conversions.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero ACMERR_*
// or MMSYSERR_* if the function fails.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdStreamOpen
(
PCODECINST pci,
LPACMDRVSTREAMINSTANCE padsi
)
{
LPWAVEFORMATEX pwfxSrc;
LPWAVEFORMATEX pwfxDst;
pwfxSrc = padsi->pwfxSrc;
pwfxDst = padsi->pwfxDst;
//
// the most important condition to check before doing anything else
// is that this codec can actually perform the conversion we are
// being opened for. this check should fail as quickly as possible
// if the conversion is not possible by this codec.
//
// it is VERY important to fail quickly so the ACM can attempt to
// find a codec that is suitable for the conversion. also note that
// the ACM may call this codec several times with slightly different
// format specifications before giving up.
//
// this codec first verifies that the src and dst formats are
// acceptable...
//
if (acmdStreamQuery(pci,
pwfxSrc,
pwfxDst,
padsi->pwfltr,
padsi->fdwOpen))
{
//
// either the source or destination format is illegal for this
// codec--or the conversion between the formats can not be
// performed by this codec.
//
return (ACMERR_NOTPOSSIBLE);
}
//
// we have decided that this codec can handle the conversion stream.
// so we want to do _as much work as possible_ right now to prepare
// for converting data. any resource allocation, table building, etc
// that can be dealt with at this time should be done.
//
// THIS IS VERY IMPORTANT! all ACMDM_STREAM_CONVERT messages need to
// be handled as quickly as possible.
//
// this codec is very simple, so we only figure out what conversion
// function that should be used for converting from the src format
// to the dst format and place this in the dwDrvInstance member
// of the ACMDRVINSTANCE structure. we then only need to 'call'
// this function during the ACMDM_STREAM_CONVERT message.
//
if (pwfxSrc->wFormatTag == WAVE_FORMAT_ADPCM)
{
#ifdef WIN32
switch (pwfxDst->nChannels)
{
case 1:
if (8 == pwfxDst->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmDecode4Bit_M08;
else
padsi->dwDriver = (DWORD_PTR)adpcmDecode4Bit_M16;
break;
case 2:
if (8 == pwfxDst->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmDecode4Bit_S08;
else
padsi->dwDriver = (DWORD_PTR)adpcmDecode4Bit_S16;
break;
default:
return ACMERR_NOTPOSSIBLE;
}
#else
padsi->dwDriver = (DWORD_PTR)DecodeADPCM_4Bit_386;
#endif
return (MMSYSERR_NOERROR);
}
else if (pwfxSrc->wFormatTag == WAVE_FORMAT_PCM)
{
//
// Check to see if we will be doing this conversion in realtime.
// (The default is yes)
//
if (padsi->fdwOpen & ACM_STREAMOPENF_NONREALTIME)
{
switch (pwfxSrc->nChannels)
{
case 1:
if (8 == pwfxSrc->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_M08_FullPass;
else
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_M16_FullPass;
break;
case 2:
if (8 == pwfxSrc->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_S08_FullPass;
else
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_S16_FullPass;
break;
default:
return ACMERR_NOTPOSSIBLE;
}
}
else
{
#ifdef WIN32
switch (pwfxSrc->nChannels)
{
case 1:
if (8 == pwfxSrc->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_M08_OnePass;
else
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_M16_OnePass;
break;
case 2:
if (8 == pwfxSrc->wBitsPerSample)
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_S08_OnePass;
else
padsi->dwDriver = (DWORD_PTR)adpcmEncode4Bit_S16_OnePass;
break;
default:
return ACMERR_NOTPOSSIBLE;
}
#else
padsi->dwDriver = (DWORD_PTR)EncodeADPCM_4Bit_386;
#endif
}
return (MMSYSERR_NOERROR);
}
//
// fail--we cannot perform the conversion
//
return (ACMERR_NOTPOSSIBLE);
} // acmdStreamOpen()
//--------------------------------------------------------------------------;
//
// LRESULT acmdStreamClose
//
// Description:
// This function is called to handle the ACMDM_STREAM_CLOSE message.
// This message is sent when a conversion stream is no longer being
// used (the stream is being closed; usually by an application
// calling acmCloseConversion). The codec should clean up any resources
// that were allocated for the stream.
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPACMDRVINSTANCE padi: Pointer to instance data for the conversion
// stream.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero ACMERR_*
// or MMSYSERR_* if the function fails.
//
// NOTE! It is _strongly_ recommended that a codec not fail to close
// a conversion stream.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdStreamClose
(
PCODECINST pci,
LPACMDRVSTREAMINSTANCE padsi
)
{
//
// the codec should clean up all resources that were allocated for
// the stream instance.
//
// this codec did not allocate any resources, so we succeed immediately
//
return (MMSYSERR_NOERROR);
} // acmdStreamClose()
//--------------------------------------------------------------------------;
//
// LRESULT acmdStreamSize
//
// Description:
// This function handles the ACMDM_STREAM_SIZE message. The purpose
// of this function is to provide the _largest size in bytes_ that
// the source or destination buffer needs to be given the input and
// output formats and the size in bytes of the source or destination
// data buffer.
//
// In other words: how big does my destination buffer need to be to
// hold the converted data? (ACM_STREAMSIZEF_SOURCE)
//
// Or: how big can my source buffer be given the destination buffer?
// (ACM_STREAMSIZEF_DESTINATION)
//
// Arguments:
// PCODECINST pci: Pointer to private ACM driver instance structure.
// This structure is [optionally] allocated during the DRV_OPEN message
// which is handled by the acmdDriverOpen function.
//
// LPACMDRVSTREAMINSTANCE padsi: Pointer to instance data for the
// conversion stream. This structure was allocated by the ACM and
// filled with the most common instance data needed for conversions.
// The information in this structure is exactly the same as it was
// during the ACMDM_STREAM_OPEN message--so it is not necessary
// to re-verify the information referenced by this structure.
//
// LPACMDRVSTREAMSIZE padss: Specifies a pointer to the ACMDRVSTREAMSIZE
// structure that defines the conversion stream size query attributes.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero error code
// if the function fails.
//
// An ACM driver should return MMSYSERR_NOTSUPPORTED if a query type
// is requested that the driver does not understand. Note that a driver
// must support both the ACM_STREAMSIZEF_DESTINATION and
// ACM_STREAMSIZEF_SOURCE queries.
//
// If the conversion would be 'out of range' given the input arguments,
// then ACMERR_NOTPOSSIBLE should be returned.
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdStreamSize
(
PCODECINST pci,
LPACMDRVSTREAMINSTANCE padsi,
LPACMDRVSTREAMSIZE padss
)
{
LPWAVEFORMATEX pwfxSrc;
LPWAVEFORMATEX pwfxDst;
LPADPCMWAVEFORMAT pwfadpcm;
DWORD cb;
DWORD cBlocks;
DWORD cbBytesPerBlock;
pwfxSrc = padsi->pwfxSrc;
pwfxDst = padsi->pwfxDst;
//
//
//
switch (ACM_STREAMSIZEF_QUERYMASK & padss->fdwSize)
{
case ACM_STREAMSIZEF_SOURCE:
cb = padss->cbSrcLength;
if (WAVE_FORMAT_ADPCM == pwfxSrc->wFormatTag)
{
//
// how many destination PCM bytes are needed to hold
// the decoded ADPCM data of padss->cbSrcLength bytes
//
// always round UP
//
cBlocks = cb / pwfxSrc->nBlockAlign;
if (0 == cBlocks)
{
return (ACMERR_NOTPOSSIBLE);
}
pwfadpcm = (LPADPCMWAVEFORMAT)pwfxSrc;
cbBytesPerBlock = pwfadpcm->wSamplesPerBlock * pwfxDst->nBlockAlign;
if ((0xFFFFFFFFL / cbBytesPerBlock) < cBlocks)
{
return (ACMERR_NOTPOSSIBLE);
}
if (0 == (cb % pwfxSrc->nBlockAlign))
{
cb = cBlocks * cbBytesPerBlock;
}
else
{
cb = (cBlocks + 1) * cbBytesPerBlock;
}
}
else
{
//
// how many destination ADPCM bytes are needed to hold
// the encoded PCM data of padss->cbSrcLength bytes
//
// always round UP
//
pwfadpcm = (LPADPCMWAVEFORMAT)pwfxDst;
cbBytesPerBlock = pwfadpcm->wSamplesPerBlock * pwfxSrc->nBlockAlign;
cBlocks = cb / cbBytesPerBlock;
if (0 == (cb % cbBytesPerBlock))
{
cb = cBlocks * pwfxDst->nBlockAlign;
}
else
{
cb = (cBlocks + 1) * pwfxDst->nBlockAlign;
}
if (0L == cb)
{
return (ACMERR_NOTPOSSIBLE);
}
}
padss->cbDstLength = cb;
return (MMSYSERR_NOERROR);
case ACM_STREAMSIZEF_DESTINATION:
cb = padss->cbDstLength;
if (WAVE_FORMAT_ADPCM == pwfxDst->wFormatTag)
{
//
// how many source PCM bytes can be encoded into a
// destination buffer of padss->cbDstLength bytes
//
// always round DOWN
//
cBlocks = cb / pwfxDst->nBlockAlign;
if (0 == cBlocks)
{
return (ACMERR_NOTPOSSIBLE);
}
pwfadpcm = (LPADPCMWAVEFORMAT)pwfxDst;
cbBytesPerBlock = pwfadpcm->wSamplesPerBlock * pwfxSrc->nBlockAlign;
if ((0xFFFFFFFFL / cbBytesPerBlock) < cBlocks)
{
return (ACMERR_NOTPOSSIBLE);
}
cb = cBlocks * cbBytesPerBlock;
}
else
{
//
// how many source ADPCM bytes can be decoded into a
// destination buffer of padss->cbDstLength bytes
//
// always round DOWN
//
pwfadpcm = (LPADPCMWAVEFORMAT)pwfxSrc;
cbBytesPerBlock = pwfadpcm->wSamplesPerBlock * pwfxDst->nBlockAlign;
cBlocks = cb / cbBytesPerBlock;
if (0 == cBlocks)
{
return (ACMERR_NOTPOSSIBLE);
}
cb = cBlocks * pwfxSrc->nBlockAlign;
}
padss->cbSrcLength = cb;
return (MMSYSERR_NOERROR);
}
//
//
//
return (MMSYSERR_NOTSUPPORTED);
} // acmdStreamSize()
//--------------------------------------------------------------------------;
//
// LRESULT acmdStreamConvert
//
// Description:
// This function handles the ACMDM_STREAM_CONVERT message. This is the
// whole purpose of writing a codec--to convert data. This message is
// sent after a stream has been opened (the codec receives and succeeds
// the ACMDM_STREAM_OPEN message).
//
// Arguments:
// PCODECINST pci: Pointer to private codec instance structure.
//
// LPACMDRVSTREAMHEADER pdsh: Pointer to a conversion stream instance
// structure.
//
// DWORD fdwConvert: Misc. flags for how conversion should be done.
//
// Return (LRESULT):
// The return value is zero (MMSYSERR_NOERROR) if this function
// succeeds with no errors. The return value is a non-zero ACMERR_*
// or MMSYSERR_* if the function fails.
//
// History:
// 11/28/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNLOCAL acmdStreamConvert
(
PCODECINST pci,
LPACMDRVSTREAMINSTANCE padsi,
LPACMDRVSTREAMHEADER padsh
)
{
CONVERTPROC_C fpConvertC;
#ifndef WIN32
CONVERTPROC_ASM fpConvertAsm;
BOOL fRealTime;
#endif
BOOL fBlockAlign;
BOOL fDecode;
LPWAVEFORMATEX pwfpcm;
LPADPCMWAVEFORMAT pwfadpcm;
DWORD dw;
fBlockAlign = (0 != (ACM_STREAMCONVERTF_BLOCKALIGN & padsh->fdwConvert));
fDecode = ( WAVE_FORMAT_PCM == padsi->pwfxDst->wFormatTag );
if( !fDecode )
{
//
// encode
//
pwfpcm = padsi->pwfxSrc;
pwfadpcm = (LPADPCMWAVEFORMAT)padsi->pwfxDst;
dw = PCM_BYTESTOSAMPLES(pwfpcm, padsh->cbSrcLength);
if (fBlockAlign)
{
dw = (dw / pwfadpcm->wSamplesPerBlock) * pwfadpcm->wSamplesPerBlock;
}
//
// Look for an easy exit. We can only handle an even number of
// samples.
//
if( dw < 2 )
{
padsh->cbDstLengthUsed = 0;
if( fBlockAlign )
padsh->cbSrcLengthUsed = 0;
else
padsh->cbSrcLengthUsed = padsh->cbSrcLength;
return MMSYSERR_NOERROR;
}
//
// Make sure we have an even number of samples.
//
dw &= ~1;
dw = PCM_SAMPLESTOBYTES(pwfpcm, dw);
padsh->cbSrcLengthUsed = dw;
}
else
{
//
// Decode.
//
pwfadpcm = (LPADPCMWAVEFORMAT)padsi->pwfxSrc;
pwfpcm = padsi->pwfxDst;
//
// Determine the number of samples to convert.
//
dw = padsh->cbSrcLength;
if (fBlockAlign) {
dw = (dw / pwfadpcm->wfx.nBlockAlign) * pwfadpcm->wfx.nBlockAlign;
}
padsh->cbSrcLengthUsed = dw;
}
//
// Call the conversion routine.
//
#ifdef WIN32
fpConvertC = (CONVERTPROC_C)padsi->dwDriver;
padsh->cbDstLengthUsed = (*fpConvertC)(
(HPBYTE)padsh->pbSrc,
padsh->cbSrcLengthUsed,
(HPBYTE)padsh->pbDst,
(UINT)pwfadpcm->wfx.nBlockAlign,
(UINT)pwfadpcm->wSamplesPerBlock,
(UINT)pwfadpcm->wNumCoef,
(LPADPCMCOEFSET)&(pwfadpcm->aCoef[0])
);
#else
fRealTime = (0L == (padsi->fdwOpen & ACM_STREAMOPENF_NONREALTIME) );
if( fDecode || fRealTime ) {
fpConvertAsm = (CONVERTPROC_ASM)padsi->dwDriver;
padsh->cbDstLengthUsed = (*fpConvertAsm)(
padsi->pwfxSrc,
padsh->pbSrc,
padsi->pwfxDst,
padsh->pbDst,
padsh->cbSrcLengthUsed
);
} else {
fpConvertC = (CONVERTPROC_C)padsi->dwDriver;
padsh->cbDstLengthUsed = (*fpConvertC)(
(HPBYTE)padsh->pbSrc,
padsh->cbSrcLengthUsed,
(HPBYTE)padsh->pbDst,
(UINT)pwfadpcm->wfx.nBlockAlign,
(UINT)pwfadpcm->wSamplesPerBlock,
(UINT)pwfadpcm->wNumCoef,
(LPADPCMCOEFSET)&(pwfadpcm->aCoef[0])
);
}
#endif
return (MMSYSERR_NOERROR);
} // acmdStreamConvert()
//==========================================================================;
//
//
//
//
//==========================================================================;
//--------------------------------------------------------------------------;
//
// LRESULT DriverProc
//
// Description:
//
//
// Arguments:
// DWORD_PTR dwId: For most messages, dwId is the DWORD_PTR value that
// the driver returns in response to a DRV_OPEN message. Each time
// that the driver is opened, through the DrvOpen API, the driver
// receives a DRV_OPEN message and can return an arbitrary, non-zero
// value. The installable driver interface saves this value and returns
// a unique driver handle to the application. Whenever the application
// sends a message to the driver using the driver handle, the interface
// routes the message to this entry point and passes the corresponding
// dwId. This mechanism allows the driver to use the same or different
// identifiers for multiple opens but ensures that driver handles are
// unique at the application interface layer.
//
// The following messages are not related to a particular open instance
// of the driver. For these messages, the dwId will always be zero.
//
// DRV_LOAD, DRV_FREE, DRV_ENABLE, DRV_DISABLE, DRV_OPEN
//
// HDRVR hdrvr: This is the handle returned to the application
// by the driver interface.
//
// UINT uMsg: The requested action to be performed. Message
// values below DRV_RESERVED are used for globally defined messages.
// Message values from DRV_RESERVED to DRV_USER are used for defined
// driver protocols. Messages above DRV_USER are used for driver
// specific messages.
//
// LPARAM lParam1: Data for this message. Defined separately for
// each message.
//
// LPARAM lParam2: Data for this message. Defined separately for
// each message.
//
//
// Return (LRESULT):
// Defined separately for each message.
//
// History:
// 11/16/92 cjp [curtisp]
//
//--------------------------------------------------------------------------;
LRESULT FNEXPORT DriverProc
(
DWORD_PTR dwId,
HDRVR hdrvr,
UINT uMsg,
LPARAM lParam1,
LPARAM lParam2
)
{
LRESULT lr;
PCODECINST pci;
//
// make pci either NULL or a valid instance pointer. note that dwId
// is 0 for several of the DRV_* messages (ie DRV_LOAD, DRV_OPEN...)
// see acmdDriverOpen for information on what dwId is for other
// messages (instance data).
//
pci = (PCODECINST)dwId;
switch (uMsg)
{
//
// lParam1: Unused.
//
// lParam2: Unused.
//
case DRV_LOAD:
#ifdef WIN32
DbgInitialize(TRUE);
#endif
DPF(4, "DRV_LOAD");
return(1L);
//
// lParam1: Unused.
//
// lParam2: Unused.
//
case DRV_FREE:
DPF(4, "DRV_FREE");
return (1L);
//
// lParam1: Not used. Ignore this argument.
//
// lParam2: Pointer to ACMDRVOPENDESC (or NULL).
//
case DRV_OPEN:
DPF(4, "DRV_OPEN");
lr = acmdDriverOpen(hdrvr, (LPACMDRVOPENDESC)lParam2);
return (lr);
//
// lParam1: Unused.
//
// lParam2: Unused.
//
case DRV_CLOSE:
DPF(4, "DRV_CLOSE");
lr = acmdDriverClose(pci);
return (lr);
//
// lParam1: Unused.
//
// lParam2: Unused.
//
case DRV_INSTALL:
DPF(4, "DRV_INSTALL");
return ((LRESULT)DRVCNF_RESTART);
//
// lParam1: Unused.
//
// lParam2: Unused.
//
case DRV_REMOVE:
DPF(4, "DRV_REMOVE");
return ((LRESULT)DRVCNF_RESTART);
//
// lParam1: Not used.
//
// lParam2: Not used.
//
case DRV_QUERYCONFIGURE:
DPF(4, "DRV_QUERYCONFIGURE");
//
// set up lParam1 and lParam2 to values that can be used by
// acmdDriverConfigure to know that it is being 'queried'
// for hardware configuration support.
//
lParam1 = -1L;
lParam2 = 0L;
//--fall through--//
//
// lParam1: Handle to parent window for the configuration dialog
// box.
//
// lParam2: Optional pointer to DRVCONFIGINFO structure.
//
case DRV_CONFIGURE:
DPF(4, "DRV_CONFIGURE");
lr = acmdDriverConfigure(pci, (HWND)lParam1,
(LPDRVCONFIGINFO)lParam2);
return (lr);
//
// lParam1: Pointer to ACMDRIVERDETAILS structure.
//
// lParam2: Size in bytes of ACMDRIVERDETAILS stucture passed.
//
case ACMDM_DRIVER_DETAILS:
DPF(4, "ACMDM_DRIVER_DETAILS");
lr = acmdDriverDetails(pci, (LPACMDRIVERDETAILS)lParam1);
return (lr);
//
// lParam1: Handle to parent window to use if displaying your own
// about box.
//
// lParam2: Not used.
//
case ACMDM_DRIVER_ABOUT:
DPF(4, "ACMDM_DRIVER_ABOUT");
lr = acmdDriverAbout(pci, (HWND)lParam1);
return (lr);
//--------------------------------------------------------------------------;
//--------------------------------------------------------------------------;
//
// lParam1: Pointer to ACMDRVFORMATSUGGEST structure.
//
// lParam2: Not used.
//
case ACMDM_FORMAT_SUGGEST:
DPF(4, "ACMDM_FORMAT_SUGGEST");
lr = acmdFormatSuggest(pci, (LPACMDRVFORMATSUGGEST)lParam1 );
return (lr);
//
// lParam1: FORMATTAGDETAILS
//
// lParam2: Not used.
//
case ACMDM_FORMATTAG_DETAILS:
DPF(4, "ACMDM_FORMATTAG_DETAILS");
lr = acmdFormatTagDetails(pci, (LPACMFORMATTAGDETAILS)lParam1, (DWORD)lParam2);
return (lr);
//
// lParam1: FORMATDETAILS
//
// lParam2: fdwDetails
//
case ACMDM_FORMAT_DETAILS:
DPF(4, "ACMDM_FORMAT_DETAILS");
lr = acmdFormatDetails(pci, (LPACMFORMATDETAILS)lParam1, (DWORD)lParam2);
return (lr);
//--------------------------------------------------------------------------;
//--------------------------------------------------------------------------;
//
// lParam1: Pointer to ACMDRVSTREAMINSTANCE structure.
//
// lParam2: Not used.
//
case ACMDM_STREAM_OPEN:
DPF(4, "ACMDM_STREAM_OPEN");
lr = acmdStreamOpen(pci, (LPACMDRVSTREAMINSTANCE)lParam1);
return (lr);
//
// lParam1: Pointer to ACMDRVSTREAMINSTANCE structure.
//
// lParam2: Not Used.
//
case ACMDM_STREAM_CLOSE:
DPF(4, "ACMDM_STREAM_CLOSE");
lr = acmdStreamClose(pci, (LPACMDRVSTREAMINSTANCE)lParam1);
return (lr);
//
// lParam1: Pointer to ACMDRVSTREAMINSTANCE structure.
//
// lParam2: Pointer to ACMDRVSTREAMSIZE structure.
//
case ACMDM_STREAM_SIZE:
DPF(4, "ACMDM_STREAM_SIZE");
lr = acmdStreamSize(pci, (LPACMDRVSTREAMINSTANCE)lParam1, (LPACMDRVSTREAMSIZE)lParam2);
return (lr);
//
// lParam1: Pointer to ACMDRVSTREAMINSTANCE structure.
//
// lParam2: Pointer to ACMDRVSTREAMHEADER structure.
//
case ACMDM_STREAM_CONVERT:
DPF(4, "ACMDM_STREAM_CONVERT");
lr = acmdStreamConvert(pci, (LPACMDRVSTREAMINSTANCE)lParam1, (LPACMDRVSTREAMHEADER)lParam2);
return (lr);
}
//
// if we are executing the following code, then this codec does not
// handle the message that was sent. there are two ranges of messages
// we need to deal with:
//
// o ACM specific driver messages: if a codec does not answer a
// message sent in the ACM driver message range, then it must
// return MMSYSERR_NOTSUPPORTED. this applies to the 'user'
// range as well (for consistency).
//
// o Other installable driver messages: if a codec does not answer
// a message that is NOT in the ACM driver message range, then
// it must call DefDriverProc and return that result.
//
DPF(4, "OTHER MESSAGE RECEIVED BY DRIVERPROC");
if (uMsg >= ACMDM_USER)
return (MMSYSERR_NOTSUPPORTED);
else
return (DefDriverProc(dwId, hdrvr, uMsg, lParam1, lParam2));
} // DriverProc()