Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

6699 lines
214 KiB

/*++
Copyright (c) Microsoft Corporation. All rights reserved.
Module Name:
diutil.c
Abstract:
Device Installer utility routines.
Author:
Lonny McMichael (lonnym) 10-May-1995
Revision History:
--*/
#include "precomp.h"
#pragma hdrstop
#include <initguid.h>
//
// Define and initialize all device class GUIDs.
// (This must only be done once per module!)
//
#include <devguid.h>
//
// Define and initialize a global variable, GUID_NULL
// (from coguid.h)
//
DEFINE_GUID(GUID_NULL, 0L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
//
// Define the period in miliseconds to wait between attempts to lock the SCM database
//
#define ACQUIRE_SCM_LOCK_INTERVAL 500
//
// Define the number of attempts at locking the SCM database should be made
//
#define ACQUIRE_SCM_LOCK_ATTEMPTS 5
//
// Declare global string variables used throughout device
// installer routines.
//
// These strings are defined in regstr.h:
//
CONST TCHAR pszNoUseClass[] = REGSTR_VAL_NOUSECLASS,
pszNoInstallClass[] = REGSTR_VAL_NOINSTALLCLASS,
pszNoDisplayClass[] = REGSTR_VAL_NODISPLAYCLASS,
pszDeviceDesc[] = REGSTR_VAL_DEVDESC,
pszDevicePath[] = REGSTR_VAL_DEVICEPATH,
pszPathSetup[] = REGSTR_PATH_SETUP,
pszKeySetup[] = REGSTR_KEY_SETUP,
pszPathRunOnce[] = REGSTR_PATH_RUNONCE,
pszSourcePath[] = REGSTR_VAL_SRCPATH,
pszSvcPackPath[] = REGSTR_VAL_SVCPAKSRCPATH,
pszDriverCachePath[] = REGSTR_VAL_DRIVERCACHEPATH,
pszBootDir[] = REGSTR_VAL_BOOTDIR,
pszInsIcon[] = REGSTR_VAL_INSICON,
pszInstaller32[] = REGSTR_VAL_INSTALLER_32,
pszEnumPropPages32[] = REGSTR_VAL_ENUMPROPPAGES_32,
pszInfPath[] = REGSTR_VAL_INFPATH,
pszInfSection[] = REGSTR_VAL_INFSECTION,
pszDrvDesc[] = REGSTR_VAL_DRVDESC,
pszHardwareID[] = REGSTR_VAL_HARDWAREID,
pszCompatibleIDs[] = REGSTR_VAL_COMPATIBLEIDS,
pszDriver[] = REGSTR_VAL_DRIVER,
pszConfigFlags[] = REGSTR_VAL_CONFIGFLAGS,
pszMfg[] = REGSTR_VAL_MFG,
pszService[] = REGSTR_VAL_SERVICE,
pszProviderName[] = REGSTR_VAL_PROVIDER_NAME,
pszFriendlyName[] = REGSTR_VAL_FRIENDLYNAME,
pszServicesRegPath[] = REGSTR_PATH_SERVICES,
pszLegacyInfOption[] = REGSTR_VAL_LEGACYINFOPT,
pszInfSectionExt[] = REGSTR_VAL_INFSECTIONEXT,
pszDeviceClassesPath[] = REGSTR_PATH_DEVICE_CLASSES,
pszDeviceInstance[] = REGSTR_VAL_DEVICE_INSTANCE,
pszDefault[] = REGSTR_VAL_DEFAULT,
pszControl[] = REGSTR_KEY_CONTROL,
pszLinked[] = REGSTR_VAL_LINKED,
pszDeviceParameters[] = REGSTR_KEY_DEVICEPARAMETERS,
pszLocationInformation[] = REGSTR_VAL_LOCATION_INFORMATION,
pszCapabilities[] = REGSTR_VAL_CAPABILITIES,
pszUiNumber[] = REGSTR_VAL_UI_NUMBER,
pszUpperFilters[] = REGSTR_VAL_UPPERFILTERS,
pszLowerFilters[] = REGSTR_VAL_LOWERFILTERS,
pszMatchingDeviceId[] = REGSTR_VAL_MATCHINGDEVID,
pszBasicProperties32[] = REGSTR_VAL_BASICPROPERTIES_32,
pszCoInstallers32[] = REGSTR_VAL_COINSTALLERS_32,
pszPathCoDeviceInstallers[] = REGSTR_PATH_CODEVICEINSTALLERS,
pszSystem[] = REGSTR_KEY_SYSTEM,
pszDrvSignPath[] = REGSTR_PATH_DRIVERSIGN,
pszNonDrvSignPath[] = REGSTR_PATH_NONDRIVERSIGN,
pszDrvSignPolicyPath[] = REGSTR_PATH_DRIVERSIGN_POLICY,
pszNonDrvSignPolicyPath[] = REGSTR_PATH_NONDRIVERSIGN_POLICY,
pszDrvSignPolicyValue[] = REGSTR_VAL_POLICY,
pszDrvSignBehaviorOnFailedVerifyDS[] = REGSTR_VAL_BEHAVIOR_ON_FAILED_VERIFY,
pszDriverDate[] = REGSTR_VAL_DRIVERDATE,
pszDriverDateData[] = REGSTR_VAL_DRIVERDATEDATA,
pszDriverVersion[] = REGSTR_VAL_DRIVERVERSION,
pszDevSecurity[] = REGSTR_VAL_DEVICE_SECURITY_DESCRIPTOR,
pszDevType[] = REGSTR_VAL_DEVICE_TYPE,
pszExclusive[] = REGSTR_VAL_DEVICE_EXCLUSIVE,
pszCharacteristics[] = REGSTR_VAL_DEVICE_CHARACTERISTICS,
pszUiNumberDescFormat[] = REGSTR_VAL_UI_NUMBER_DESC_FORMAT,
pszRemovalPolicyOverride[] = REGSTR_VAL_REMOVAL_POLICY,
pszReinstallPath[] = REGSTR_PATH_REINSTALL,
pszReinstallDeviceInstanceIds[] = REGSTR_VAL_REINSTALL_DEVICEINSTANCEIDS,
pszReinstallDisplayName[] = REGSTR_VAL_REINSTALL_DISPLAYNAME,
pszReinstallString[] = REGSTR_VAL_REINSTALL_STRING;
//
// Other misc. global strings (defined in devinst.h):
//
CONST TCHAR pszInfWildcard[] = DISTR_INF_WILDCARD,
pszOemInfWildcard[] = DISTR_OEMINF_WILDCARD,
pszCiDefaultProc[] = DISTR_CI_DEFAULTPROC,
pszSpaceLparen[] = DISTR_SPACE_LPAREN,
pszRparen[] = DISTR_RPAREN,
pszUniqueSubKey[] = DISTR_UNIQUE_SUBKEY,
pszOemInfGenerate[] = DISTR_OEMINF_GENERATE,
pszOemInfDefaultPath[] = DISTR_OEMINF_DEFAULTPATH,
pszDefaultService[] = DISTR_DEFAULT_SERVICE,
pszGuidNull[] = DISTR_GUID_NULL,
pszEventLog[] = DISTR_EVENTLOG,
pszGroupOrderListPath[] = DISTR_GROUPORDERLIST_PATH,
pszServiceGroupOrderPath[] = DISTR_SERVICEGROUPORDER_PATH,
pszOptions[] = DISTR_OPTIONS,
pszOptionsText[] = DISTR_OPTIONSTEXT,
pszLanguagesSupported[] = DISTR_LANGUAGESSUPPORTED,
pszRunOnceExe[] = DISTR_RUNONCE_EXE,
pszGrpConv[] = DISTR_GRPCONV,
pszGrpConvNoUi[] = DISTR_GRPCONV_NOUI,
pszDefaultSystemPartition[] = DISTR_DEFAULT_SYSPART,
pszBasicPropDefaultProc[] = DISTR_BASICPROP_DEFAULTPROC,
pszEnumPropDefaultProc[] = DISTR_ENUMPROP_DEFAULTPROC,
pszCoInstallerDefaultProc[] = DISTR_CODEVICEINSTALL_DEFAULTPROC,
pszDriverObjectPathPrefix[] = DISTR_DRIVER_OBJECT_PATH_PREFIX,
pszDriverSigningClasses[] = DISTR_DRIVER_SIGNING_CLASSES,
pszEmbeddedNTSecurity[] = DISTR_PATH_EMBEDDED_NT_SECURITY,
pszMinimizeFootprint[] = DISTR_VAL_MINIMIZE_FOOTPRINT,
pszDisableSCE[] = DISTR_VAL_DISABLE_SCE;
//
// Define flag bitmask indicating which flags are controlled internally by the
// device installer routines, and thus are read-only to clients.
//
#define DI_FLAGS_READONLY ( DI_DIDCOMPAT | DI_DIDCLASS | DI_MULTMFGS )
#define DI_FLAGSEX_READONLY ( DI_FLAGSEX_DIDINFOLIST \
| DI_FLAGSEX_DIDCOMPATINFO \
| DI_FLAGSEX_IN_SYSTEM_SETUP )
#define DNF_FLAGS_READONLY ( DNF_DUPDESC \
| DNF_OLDDRIVER \
| DNF_LEGACYINF \
| DNF_CLASS_DRIVER \
| DNF_COMPATIBLE_DRIVER \
| DNF_INET_DRIVER \
| DNF_INDEXED_DRIVER \
| DNF_OLD_INET_DRIVER \
| DNF_DUPPROVIDER \
| DNF_INF_IS_SIGNED \
| DNF_OEM_F6_INF \
| DNF_DUPDRIVERVER )
//
// Define flag bitmask indicating which flags are illegal.
//
#define DI_FLAGS_ILLEGAL ( 0x00400000L ) // setupx DI_NOSYNCPROCESSING flag
#define DI_FLAGSEX_ILLEGAL ( 0xC0000008L ) // all flags not currently defined
#define DNF_FLAGS_ILLEGAL ( 0xFFFE0000L ) // ""
#define NDW_INSTALLFLAG_ILLEGAL (~( NDW_INSTALLFLAG_DIDFACTDEFS \
| NDW_INSTALLFLAG_HARDWAREALLREADYIN \
| NDW_INSTALLFLAG_NEEDRESTART \
| NDW_INSTALLFLAG_NEEDREBOOT \
| NDW_INSTALLFLAG_NEEDSHUTDOWN \
| NDW_INSTALLFLAG_EXPRESSINTRO \
| NDW_INSTALLFLAG_SKIPISDEVINSTALLED \
| NDW_INSTALLFLAG_NODETECTEDDEVS \
| NDW_INSTALLFLAG_INSTALLSPECIFIC \
| NDW_INSTALLFLAG_SKIPCLASSLIST \
| NDW_INSTALLFLAG_CI_PICKED_OEM \
| NDW_INSTALLFLAG_PCMCIAMODE \
| NDW_INSTALLFLAG_PCMCIADEVICE \
| NDW_INSTALLFLAG_USERCANCEL \
| NDW_INSTALLFLAG_KNOWNCLASS ))
#define DYNAWIZ_FLAG_ILLEGAL (~( DYNAWIZ_FLAG_PAGESADDED \
| DYNAWIZ_FLAG_INSTALLDET_NEXT \
| DYNAWIZ_FLAG_INSTALLDET_PREV \
| DYNAWIZ_FLAG_ANALYZE_HANDLECONFLICT ))
#define NEWDEVICEWIZARD_FLAG_ILLEGAL (~(0)) // no flags are legal presently
//
// Declare data used in GUID->string conversion (from ole32\common\ccompapi.cxx).
//
static const BYTE GuidMap[] = { 3, 2, 1, 0, '-', 5, 4, '-', 7, 6, '-',
8, 9, '-', 10, 11, 12, 13, 14, 15 };
static const TCHAR szDigits[] = TEXT("0123456789ABCDEF");
PDEVICE_INFO_SET
AllocateDeviceInfoSet(
VOID
)
/*++
Routine Description:
This routine allocates a device information set structure, zeroes it,
and initializes the synchronization lock for it.
Arguments:
none.
Return Value:
If the function succeeds, the return value is a pointer to the new
device information set.
If the function fails, the return value is NULL.
--*/
{
PDEVICE_INFO_SET p;
if(p = MyMalloc(sizeof(DEVICE_INFO_SET))) {
ZeroMemory(p, sizeof(DEVICE_INFO_SET));
p->MachineName = -1;
p->InstallParamBlock.DriverPath = -1;
p->InstallParamBlock.CoInstallerCount = -1;
//
// If we're in GUI-mode setup on Windows NT, we'll automatically set
// the DI_FLAGSEX_IN_SYSTEM_SETUP flag in the devinstall parameter
// block for this devinfo set.
//
if(GuiSetupInProgress) {
p->InstallParamBlock.FlagsEx |= DI_FLAGSEX_IN_SYSTEM_SETUP;
}
//
// If we're in non-interactive mode, set the "be quiet" bits.
//
if(GlobalSetupFlags & (PSPGF_NONINTERACTIVE|PSPGF_UNATTENDED_SETUP)) {
p->InstallParamBlock.Flags |= DI_QUIETINSTALL;
p->InstallParamBlock.FlagsEx |= DI_FLAGSEX_NOUIONQUERYREMOVE;
}
//
// Initialize our enumeration 'hints'
//
p->DeviceInfoEnumHintIndex = INVALID_ENUM_INDEX;
p->ClassDriverEnumHintIndex = INVALID_ENUM_INDEX;
if(p->StringTable = pStringTableInitialize(0)) {
if (CreateLogContext(NULL, FALSE, &(p->InstallParamBlock.LogContext)) == NO_ERROR) {
//
// succeeded
//
if(InitializeSynchronizedAccess(&(p->Lock))) {
return p;
}
DeleteLogContext(p->InstallParamBlock.LogContext);
}
pStringTableDestroy(p->StringTable);
}
MyFree(p);
}
return NULL;
}
VOID
DestroyDeviceInfoElement(
IN HDEVINFO hDevInfo,
IN PDEVICE_INFO_SET pDeviceInfoSet,
IN PDEVINFO_ELEM DeviceInfoElement
)
/*++
Routine Description:
This routine destroys the specified device information element, freeing
all resources associated with it.
ASSUMES THAT THE CALLING ROUTINE HAS ALREADY ACQUIRED THE LOCK!
Arguments:
hDevInfo - Supplies a handle to the device information set whose internal
representation is given by pDeviceInfoSet. This opaque handle is
actually the same pointer as pDeviceInfoSet, but we want to keep this
distinction clean, so that in the future we can change our implementation
(e.g., hDevInfo might represent an offset in an array of DEVICE_INFO_SET
elements).
pDeviceInfoSet - Supplies a pointer to the device information set of which
the devinfo element is a member. This set contains the class driver list
object list that must be used in destroying the class driver list.
DeviceInfoElement - Supplies a pointer to the device information element
to be destroyed.
Return Value:
None.
--*/
{
DWORD i;
PINTERFACE_DEVICE_NODE InterfaceDeviceNode, NextInterfaceDeviceNode;
CONFIGRET cr;
MYASSERT(hDevInfo && (hDevInfo != INVALID_HANDLE_VALUE));
//
// Free resources contained in the install parameters block. Do this
// before anything else, because we'll be calling the class installer
// with DIF_DESTROYPRIVATEDATA, and we want everything to be in a
// consistent state when we do (plus, it may need to destroy private
// data it's stored with individual driver nodes).
//
DestroyInstallParamBlock(hDevInfo,
pDeviceInfoSet,
DeviceInfoElement,
&(DeviceInfoElement->InstallParamBlock)
);
//
// Dereference the class driver list.
//
DereferenceClassDriverList(pDeviceInfoSet, DeviceInfoElement->ClassDriverHead);
//
// Destroy compatible driver list.
//
DestroyDriverNodes(DeviceInfoElement->CompatDriverHead, pDeviceInfoSet);
//
// If this is a non-registered device instance, then delete any registry
// keys the caller may have created during the lifetime of this element.
//
if(DeviceInfoElement->DevInst && !(DeviceInfoElement->DiElemFlags & DIE_IS_REGISTERED)) {
pSetupDeleteDevRegKeys(DeviceInfoElement->DevInst,
DICS_FLAG_GLOBAL | DICS_FLAG_CONFIGSPECIFIC,
(DWORD)-1,
DIREG_BOTH,
TRUE
);
cr = CM_Uninstall_DevInst(DeviceInfoElement->DevInst, 0);
}
//
// Free any interface device lists that may be associated with this devinfo element.
//
if(DeviceInfoElement->InterfaceClassList) {
for(i = 0; i < DeviceInfoElement->InterfaceClassListSize; i++) {
for(InterfaceDeviceNode = DeviceInfoElement->InterfaceClassList[i].InterfaceDeviceNode;
InterfaceDeviceNode;
InterfaceDeviceNode = NextInterfaceDeviceNode) {
NextInterfaceDeviceNode = InterfaceDeviceNode->Next;
MyFree(InterfaceDeviceNode);
}
}
MyFree(DeviceInfoElement->InterfaceClassList);
}
//
// Zero the signature field containing the address of the containing devinfo
// set. This will keep us thinking an SP_DEVINFO_DATA is still valid after
// the underlying element has been deleted.
//
DeviceInfoElement->ContainingDeviceInfoSet = NULL;
MyFree(DeviceInfoElement);
}
DWORD
DestroyDeviceInfoSet(
IN HDEVINFO hDevInfo, OPTIONAL
IN PDEVICE_INFO_SET pDeviceInfoSet
)
/*++
Routine Description:
This routine frees a device information set, and all resources
used on its behalf.
Arguments:
hDevInfo - Optionally, supplies a handle to the device information set
whose internal representation is given by pDeviceInfoSet. This
opaque handle is actually the same pointer as pDeviceInfoSet, but
we want to keep this distinction clean, so that in the future we
can change our implementation (e.g., hDevInfo might represent an
offset in an array of DEVICE_INFO_SET elements).
This parameter will only be NULL if we're cleaning up half-way
through the creation of a device information set.
pDeviceInfoSet - supplies a pointer to the device information set
to be freed.
Return Value:
If successful, the return code is NO_ERROR, otherwise, it is an
ERROR_* code.
--*/
{
PDEVINFO_ELEM NextElem;
PDRIVER_NODE DriverNode, NextNode;
PMODULE_HANDLE_LIST_NODE NextModuleHandleNode;
DWORD i;
SPFUSIONINSTANCE spFusionInstance;
//
// We have to make sure that the wizard refcount is zero, and that
// we haven't acquired the lock more than once (i.e., we're nested
// more than one level deep in Di calls.
//
if(pDeviceInfoSet->WizPageList ||
(pDeviceInfoSet->LockRefCount > 1)) {
return ERROR_DEVINFO_LIST_LOCKED;
}
//
// Destroy all the device information elements in this set. Make sure
// that we maintain consistency while removing devinfo elements, because
// we may be calling the class installer. This means that the device
// installer APIs still have to work, even while we're tearing down the
// list.
//
while(pDeviceInfoSet->DeviceInfoHead) {
//
// We'd better not have any device info elements locked by wizard
// pages, since our wizard refcount is zero!
//
MYASSERT(!(pDeviceInfoSet->DeviceInfoHead->DiElemFlags & DIE_IS_LOCKED));
NextElem = pDeviceInfoSet->DeviceInfoHead->Next;
DestroyDeviceInfoElement(hDevInfo, pDeviceInfoSet, pDeviceInfoSet->DeviceInfoHead);
MYASSERT(pDeviceInfoSet->DeviceInfoCount > 0);
pDeviceInfoSet->DeviceInfoCount--;
//
// If this element was the currently selected device for this
// set, then reset the device selection.
//
if(pDeviceInfoSet->SelectedDevInfoElem == pDeviceInfoSet->DeviceInfoHead) {
pDeviceInfoSet->SelectedDevInfoElem = NULL;
}
pDeviceInfoSet->DeviceInfoHead = NextElem;
}
MYASSERT(pDeviceInfoSet->DeviceInfoCount == 0);
pDeviceInfoSet->DeviceInfoTail = NULL;
//
// Free resources contained in the install parameters block. Do this
// before anything else, because we'll be calling the class installer
// with DIF_DESTROYPRIVATEDATA, and we want everything to be in a
// consistent state when we do (plus, it may need to destroy private
// data it's stored with individual driver nodes).
//
DestroyInstallParamBlock(hDevInfo,
pDeviceInfoSet,
NULL,
&(pDeviceInfoSet->InstallParamBlock)
);
//
// Destroy class driver list.
//
if(pDeviceInfoSet->ClassDriverHead) {
//
// We've already destroyed all device information elements, so there should be
// exactly one driver list object remaining--the one referenced by the global
// class driver list. Also, it's refcount should be 1.
//
MYASSERT(
(pDeviceInfoSet->ClassDrvListObjectList) &&
(!pDeviceInfoSet->ClassDrvListObjectList->Next) &&
(pDeviceInfoSet->ClassDrvListObjectList->RefCount == 1) &&
(pDeviceInfoSet->ClassDrvListObjectList->DriverListHead == pDeviceInfoSet->ClassDriverHead)
);
MyFree(pDeviceInfoSet->ClassDrvListObjectList);
DestroyDriverNodes(pDeviceInfoSet->ClassDriverHead, pDeviceInfoSet);
}
//
// Free the interface class GUID list (if there is one).
//
if(pDeviceInfoSet->GuidTable) {
MyFree(pDeviceInfoSet->GuidTable);
}
//
// Destroy the associated string table.
//
pStringTableDestroy(pDeviceInfoSet->StringTable);
//
// Destroy the lock (we have to do this after we've made all necessary calls
// to the class installer, because after the lock is freed, the HDEVINFO set
// is inaccessible).
//
DestroySynchronizedAccess(&(pDeviceInfoSet->Lock));
//
// If there are any module handles left to be freed, do that now.
//
for(; pDeviceInfoSet->ModulesToFree; pDeviceInfoSet->ModulesToFree = NextModuleHandleNode) {
NextModuleHandleNode = pDeviceInfoSet->ModulesToFree->Next;
for(i = 0; i < pDeviceInfoSet->ModulesToFree->ModuleCount; i++) {
MYASSERT(pDeviceInfoSet->ModulesToFree->ModuleList[i].ModuleHandle);
spFusionEnterContext(pDeviceInfoSet->ModulesToFree->ModuleList[i].FusionContext,
&spFusionInstance);
FreeLibrary(pDeviceInfoSet->ModulesToFree->ModuleList[i].ModuleHandle);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(pDeviceInfoSet->ModulesToFree->ModuleList[i].FusionContext);
}
MyFree(pDeviceInfoSet->ModulesToFree);
}
//
// If this is a remote HDEVINFO set, then disconnect from the remote machine.
//
if(pDeviceInfoSet->hMachine) {
CM_Disconnect_Machine(pDeviceInfoSet->hMachine);
}
//
// Now, destroy the container itself.
//
MyFree(pDeviceInfoSet);
return NO_ERROR;
}
VOID
DestroyInstallParamBlock(
IN HDEVINFO hDevInfo, OPTIONAL
IN PDEVICE_INFO_SET pDeviceInfoSet,
IN PDEVINFO_ELEM DevInfoElem, OPTIONAL
IN PDEVINSTALL_PARAM_BLOCK InstallParamBlock
)
/*++
Routine Description:
This routine frees any resources contained in the specified install
parameter block. THE BLOCK ITSELF IS NOT FREED!
Arguments:
hDevInfo - Optionally, supplies a handle to the device information set
containing the element whose parameter block is to be destroyed.
If this parameter is not supplied, then we're cleaning up after
failing part-way through a SetupDiCreateDeviceInfoList.
pDeviceInfoSet - Supplies a pointer to the device information set of which
the devinfo element is a member.
DevInfoElem - Optionally, supplies the address of the device information
element whose parameter block is to be destroyed. If the parameter
block being destroyed is associated with the set itself, then this
parameter will be NULL.
InstallParamBlock - Supplies the address of the install parameter
block whose resources are to be freed.
Return Value:
None.
--*/
{
SP_DEVINFO_DATA DeviceInfoData;
LONG i;
if(InstallParamBlock->UserFileQ) {
//
// If there's a user-supplied file queue stored in this installation
// parameter block, then decrement the refcount on it. Make sure we
// do this before calling the class installer with DIF_DESTROYPRIVATEDATA,
// or else they won't be able to close the queue.
//
MYASSERT(((PSP_FILE_QUEUE)(InstallParamBlock->UserFileQ))->LockRefCount);
((PSP_FILE_QUEUE)(InstallParamBlock->UserFileQ))->LockRefCount--;
}
if(hDevInfo && (hDevInfo != INVALID_HANDLE_VALUE)) {
//
// Call the class installer/co-installers (if there are any) to let them
// clean up any private data they may have.
//
if(DevInfoElem) {
//
// Generate an SP_DEVINFO_DATA structure from our device information
// element (if we have one).
//
DeviceInfoData.cbSize = sizeof(SP_DEVINFO_DATA);
DevInfoDataFromDeviceInfoElement(pDeviceInfoSet,
DevInfoElem,
&DeviceInfoData
);
}
InvalidateHelperModules(hDevInfo,
(DevInfoElem ? &DeviceInfoData : NULL),
IHM_FREE_IMMEDIATELY
);
}
if(InstallParamBlock->ClassInstallHeader) {
MyFree(InstallParamBlock->ClassInstallHeader);
}
//
// Get rid of the log context sitting in here.
//
DeleteLogContext(InstallParamBlock->LogContext);
}
PDEVICE_INFO_SET
AccessDeviceInfoSet(
IN HDEVINFO DeviceInfoSet
)
/*++
Routine Description:
This routine locks the specified device information set, and returns
a pointer to the structure for its internal representation. It also
increments the lock refcount on this set, so that it can't be destroyed
if the lock has been acquired multiple times.
After access to the set is completed, the caller must call
UnlockDeviceInfoSet with the pointer returned by this function.
Arguments:
DeviceInfoSet - Supplies the pointer to the device information set
to be accessed.
Return Value:
If the function succeeds, the return value is a pointer to the
device information set.
If the function fails, the return value is NULL.
Remarks:
If the method for accessing a device information set's internal
representation via its handle changes (e.g., instead of a pointer, it's an
index into a table), then RollbackDeviceInfoSet and CommitDeviceInfoSet
must also be changed. Also, we cast an HDEVINFO to a PDEVICE_INFO_SET
when specifying the containing device information set in a call to
pSetupOpenAndAddNewDevInfoElem in devinfo.c!SetupDiGetClassDevsEx (only
when we're working with a cloned devinfo set).
--*/
{
PDEVICE_INFO_SET p;
try {
p = (PDEVICE_INFO_SET)DeviceInfoSet;
if(LockDeviceInfoSet(p)) {
p->LockRefCount++;
} else {
p = NULL;
}
} except(EXCEPTION_EXECUTE_HANDLER) {
p = NULL;
}
return p;
}
PDEVICE_INFO_SET
CloneDeviceInfoSet(
IN HDEVINFO hDevInfo
)
/*++
Routine Description:
This routine locks the specified device information set, then returns a
clone of the structure used for its internal representation. Device
information elements or device interface nodes may subsequently be added to
this cloned devinfo set, and the results can be committed via
CommitDeviceInfoSet. If the changes must be backed out (e.g., because an
error was encountered while adding the additional elements to the set), the
routine RollbackDeviceInfoSet must be called.
After access to the set is completed (and the changes have either been
committed or rolled back per the discussion above), the caller must call
UnlockDeviceInfoSet with the pointer returned by CommitDeviceInfoSet or
RollbackDeviceInfoSet.
Arguments:
hDevInfo - Supplies the handle of the device information set to be cloned.
Return Value:
If the function succeeds, the return value is a pointer to the
device information set.
If the function fails, the return value is NULL.
Remarks:
The device information set handle specified to this routine MUST NOT BE
USED until the changes are either committed or rolled back. Also, the
PDEVICE_INFO_SET returned by this routine must not be treated like an
HDEVINFO handle--it is not.
--*/
{
PDEVICE_INFO_SET p, NewDevInfoSet;
BOOL b;
PVOID StringTable;
try {
p = (PDEVICE_INFO_SET)hDevInfo;
if(LockDeviceInfoSet(p)) {
p->LockRefCount++;
} else {
p = NULL;
}
} except(EXCEPTION_EXECUTE_HANDLER) {
p = NULL;
}
if(!p) {
return NULL;
}
NewDevInfoSet = NULL;
StringTable = NULL;
b = FALSE;
try {
//
// OK, we successfully locked the device information set. Now, make a copy
// of the internal structure to return to the caller.
//
NewDevInfoSet = MyMalloc(sizeof(DEVICE_INFO_SET));
if(!NewDevInfoSet) {
goto clean0;
}
CopyMemory(NewDevInfoSet, p, sizeof(DEVICE_INFO_SET));
//
// Duplicate the string table contained in this device information set.
//
StringTable = pStringTableDuplicate(p->StringTable);
if(!StringTable) {
goto clean0;
}
NewDevInfoSet->StringTable = StringTable;
//
// We've successfully cloned the device information set!
//
b = TRUE;
clean0: ; // nothing to do.
} except(EXCEPTION_EXECUTE_HANDLER) {
//
// Access the following variables so the compiler will respect our
// statement ordering w.r.t. assignment.
//
NewDevInfoSet = NewDevInfoSet;
StringTable = StringTable;
}
if(!b) {
//
// We failed to make a copy of the device information set--free any
// memory we may have allocated, and unlock the original devinfo set
// before returning failure.
//
if(NewDevInfoSet) {
MyFree(NewDevInfoSet);
}
if(StringTable) {
pStringTableDestroy(StringTable);
}
UnlockDeviceInfoSet(p);
return NULL;
}
return NewDevInfoSet;
}
PDEVICE_INFO_SET
RollbackDeviceInfoSet(
IN HDEVINFO hDevInfo,
IN PDEVICE_INFO_SET ClonedDeviceInfoSet
)
/*++
Routine Description:
This routine rolls back the specified hDevInfo to a known good state that
was saved when the set was cloned via a prior call to CloneDeviceInfoSet.
Arguments:
hDevInfo - Supplies the handle of the device information set to be rolled
back.
ClonedDeviceInfoSet - Supplies the address of the internal structure
representing the hDevInfo set's cloned (and potentially, modified)
information. Upon successful return, this structure will be freed.
Return Value:
If the function succeeds, the return value is a pointer to the rolled-back
device information set structure.
If the function fails, the return value is NULL.
--*/
{
PDEVICE_INFO_SET pDeviceInfoSet;
PDEVINFO_ELEM DevInfoElem, NextDevInfoElem;
DWORD i, InterfaceDeviceCount;
PINTERFACE_DEVICE_NODE InterfaceDeviceNode, NextInterfaceDeviceNode;
//
// Retrieve a pointer to the hDevInfo set's internal representation (we
// don't need to acquire the lock, because we did that when we cloned the
// originally cloned the structure).
//
// NOTE: If the method for accessing an HDEVINFO set's internal
// representation ever changes (i.e., the AccessDeviceInfoSet routine),
// then this code will need to be modified accordingly.
//
pDeviceInfoSet = (PDEVICE_INFO_SET)hDevInfo;
//
// Make sure no additional locks have been acquired against the cloned
// DEVICE_INFO_SET.
//
MYASSERT(pDeviceInfoSet->LockRefCount == ClonedDeviceInfoSet->LockRefCount);
//
// Do some validation to see whether it looks like only new device
// information elements were added onto the end of our existing list (i.e.,
// it's invalid to add new elements within the existing list, or to remove
// elements from the existing list).
//
#if ASSERTS_ON
if(pDeviceInfoSet->DeviceInfoHead) {
DWORD DevInfoElemCount = 1;
MYASSERT(pDeviceInfoSet->DeviceInfoHead == ClonedDeviceInfoSet->DeviceInfoHead);
for(DevInfoElem = ClonedDeviceInfoSet->DeviceInfoHead;
DevInfoElem->Next;
DevInfoElem = DevInfoElem->Next, DevInfoElemCount++) {
if(DevInfoElem == pDeviceInfoSet->DeviceInfoTail) {
break;
}
}
//
// Did we find the original tail?
//
MYASSERT(DevInfoElem == pDeviceInfoSet->DeviceInfoTail);
//
// And did we traverse the same number of nodes in getting there that
// was in the original list?
//
MYASSERT(DevInfoElemCount == pDeviceInfoSet->DeviceInfoCount);
}
#endif
//
// Destroy any newly-added members of the device information element list.
//
for(DevInfoElem = (pDeviceInfoSet->DeviceInfoTail ? pDeviceInfoSet->DeviceInfoTail->Next : pDeviceInfoSet->DeviceInfoHead);
DevInfoElem;
DevInfoElem = NextDevInfoElem) {
NextDevInfoElem = DevInfoElem->Next;
MYASSERT(!DevInfoElem->ClassDriverCount);
MYASSERT(!DevInfoElem->CompatDriverCount);
//
// Free any interface device lists that may be associated with this
// devinfo element.
//
if(DevInfoElem->InterfaceClassList) {
for(i = 0; i < DevInfoElem->InterfaceClassListSize; i++) {
for(InterfaceDeviceNode = DevInfoElem->InterfaceClassList[i].InterfaceDeviceNode;
InterfaceDeviceNode;
InterfaceDeviceNode = NextInterfaceDeviceNode) {
NextInterfaceDeviceNode = InterfaceDeviceNode->Next;
MyFree(InterfaceDeviceNode);
}
}
MyFree(DevInfoElem->InterfaceClassList);
}
MyFree(DevInfoElem);
}
if(pDeviceInfoSet->DeviceInfoTail) {
pDeviceInfoSet->DeviceInfoTail->Next = NULL;
}
//
// At this point, we've trimmed our device information element list back to
// what it was prior to the cloning of the device information set. However,
// we may have added new device interface nodes onto the interface class
// lists of existing devinfo elements. Go and truncate any such nodes.
//
for(DevInfoElem = pDeviceInfoSet->DeviceInfoHead;
DevInfoElem;
DevInfoElem = DevInfoElem->Next) {
if(DevInfoElem->InterfaceClassList) {
for(i = 0; i < DevInfoElem->InterfaceClassListSize; i++) {
if(DevInfoElem->InterfaceClassList[i].InterfaceDeviceTruncateNode) {
//
// One or more device interface nodes were added to this
// list. Find the tail of the list as it existed prior to
// cloning, and truncate from there.
//
InterfaceDeviceNode = NULL;
InterfaceDeviceCount = 0;
for(NextInterfaceDeviceNode = DevInfoElem->InterfaceClassList[i].InterfaceDeviceNode;
NextInterfaceDeviceNode;
InterfaceDeviceNode = NextInterfaceDeviceNode, NextInterfaceDeviceNode = NextInterfaceDeviceNode->Next) {
if(NextInterfaceDeviceNode == DevInfoElem->InterfaceClassList[i].InterfaceDeviceTruncateNode) {
break;
}
//
// We haven't encountered the truncate point yet--
// increment the count of device interface nodes we've
// traversed so far.
//
InterfaceDeviceCount++;
}
//
// We'd better have found the node to truncate in our list!
//
MYASSERT(NextInterfaceDeviceNode);
//
// Truncate the list, and destroy all newly-added device
// interface nodes.
//
if(InterfaceDeviceNode) {
InterfaceDeviceNode->Next = NULL;
} else {
DevInfoElem->InterfaceClassList[i].InterfaceDeviceNode = NULL;
}
DevInfoElem->InterfaceClassList[i].InterfaceDeviceCount = InterfaceDeviceCount;
for(InterfaceDeviceNode = NextInterfaceDeviceNode;
InterfaceDeviceNode;
InterfaceDeviceNode = NextInterfaceDeviceNode) {
NextInterfaceDeviceNode = InterfaceDeviceNode->Next;
MyFree(InterfaceDeviceNode);
}
//
// Reset the truncate node pointer.
//
DevInfoElem->InterfaceClassList[i].InterfaceDeviceTruncateNode = NULL;
}
}
}
}
//
// OK, our device information element list and device interface node lists
// are exactly as they were before the cloning took place. However, it's
// possible that we allocated (or reallocated) a new buffer for our
// GUID table, so we need to update that GUID table pointer and size in our
// original device information set structure.
//
pDeviceInfoSet->GuidTable = ClonedDeviceInfoSet->GuidTable;
pDeviceInfoSet->GuidTableSize = ClonedDeviceInfoSet->GuidTableSize;
//
// The device information set has been successfully rolled back. Free the
// memory associated with the clone.
//
pStringTableDestroy(ClonedDeviceInfoSet->StringTable);
MyFree(ClonedDeviceInfoSet);
//
// Return the original (rolled-back) device information set structure to
// the caller.
//
return pDeviceInfoSet;
}
PDEVICE_INFO_SET
CommitDeviceInfoSet(
IN HDEVINFO hDevInfo,
IN PDEVICE_INFO_SET ClonedDeviceInfoSet
)
/*++
Routine Description:
This routine commits the changes that have been made to a cloned device
information set. The clone was generated via a prior call to
CloneDeviceInfoSet.
Arguments:
hDevInfo - Supplies the handle of the device information set whose changes
are to be committed.
ClonedDeviceInfoSet - Supplies the address of the internal structure
representing the hDevInfo set's cloned (and potentially, modified)
information. Upon successful return, this structure will be freed.
Return Value:
If the function succeeds, the return value is a pointer to the committed
device information set structure.
If the function fails, the return value is NULL.
--*/
{
PDEVICE_INFO_SET pDeviceInfoSet;
PDEVINFO_ELEM DevInfoElem;
DWORD i;
//
// Retrieve a pointer to the hDevInfo set's internal representation (we
// don't need to acquire the lock, because we did that when we cloned the
// originally cloned the structure).
//
// NOTE: If the method for accessing an HDEVINFO set's internal
// representation ever changes (i.e., the AccessDeviceInfoSet routine),
// then this code will need to be modified accordingly.
//
pDeviceInfoSet = (PDEVICE_INFO_SET)hDevInfo;
//
// Make sure no additional locks have been acquired against the cloned
// DEVICE_INFO_SET.
//
MYASSERT(pDeviceInfoSet->LockRefCount == ClonedDeviceInfoSet->LockRefCount);
//
// Free the old string table.
//
pStringTableDestroy(pDeviceInfoSet->StringTable);
//
// Now copy the cloned device information set structure into the 'real' one.
//
CopyMemory(pDeviceInfoSet, ClonedDeviceInfoSet, sizeof(DEVICE_INFO_SET));
//
// Now we have to go through each device information element's interface
// class list and reset the InterfaceDeviceTruncateNode fields to indicate
// that all the new device interface nodes that were added have been
// committed.
//
for(DevInfoElem = pDeviceInfoSet->DeviceInfoHead;
DevInfoElem;
DevInfoElem = DevInfoElem->Next) {
for(i = 0; i < DevInfoElem->InterfaceClassListSize; i++) {
DevInfoElem->InterfaceClassList[i].InterfaceDeviceTruncateNode = NULL;
}
}
//
// Free the cloned device information set structure.
//
MyFree(ClonedDeviceInfoSet);
//
// We've successfully committed the changes into the original device
// information set structure--return that structure.
//
return pDeviceInfoSet;
}
PDEVINFO_ELEM
FindDevInfoByDevInst(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN DEVINST DevInst,
OUT PDEVINFO_ELEM *PrevDevInfoElem OPTIONAL
)
/*++
Routine Description:
This routine searches through all (registered) elements of a
device information set, looking for one that corresponds to the
specified device instance handle. If a match is found, a pointer
to the device information element is returned.
Arguments:
DeviceInfoSet - Specifies the set to be searched.
DevInst - Specifies the device instance handle to search for.
PrevDevInfoElem - Optionaly, supplies the address of the variable that
receives a pointer to the device information element immediately
preceding the matching element. If the element was found at the
front of the list, then this variable will be set to NULL.
Return Value:
If a device information element is found, the return value is a
pointer to that element, otherwise, the return value is NULL.
--*/
{
PDEVINFO_ELEM cur, prev;
for(cur = DeviceInfoSet->DeviceInfoHead, prev = NULL;
cur;
prev = cur, cur = cur->Next)
{
if((cur->DiElemFlags & DIE_IS_REGISTERED) && (cur->DevInst == DevInst)) {
if(PrevDevInfoElem) {
*PrevDevInfoElem = prev;
}
return cur;
}
}
return NULL;
}
BOOL
DevInfoDataFromDeviceInfoElement(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDEVINFO_ELEM DevInfoElem,
OUT PSP_DEVINFO_DATA DeviceInfoData
)
/*++
Routine Description:
This routine fills in a SP_DEVINFO_DATA structure based on the
information in the supplied DEVINFO_ELEM structure.
Note: The supplied DeviceInfoData structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
DeviceInfoSet - Supplies a pointer to the device information set
containing the specified element.
DevInfoElem - Supplies a pointer to the DEVINFO_ELEM structure
containing information to be used in filling in the
SP_DEVINFO_DATA buffer.
DeviceInfoData - Supplies a pointer to the buffer that will
receive the filled-in SP_DEVINFO_DATA structure
Return Value:
If the function succeeds, the return value is TRUE, otherwise, it
is FALSE.
--*/
{
if(DeviceInfoData->cbSize != sizeof(SP_DEVINFO_DATA)) {
return FALSE;
}
ZeroMemory(DeviceInfoData, sizeof(SP_DEVINFO_DATA));
DeviceInfoData->cbSize = sizeof(SP_DEVINFO_DATA);
CopyMemory(&(DeviceInfoData->ClassGuid),
&(DevInfoElem->ClassGuid),
sizeof(GUID)
);
DeviceInfoData->DevInst = DevInfoElem->DevInst;
//
// The 'Reserved' field actually contains a pointer to the
// corresponding device information element.
//
DeviceInfoData->Reserved = (ULONG_PTR)DevInfoElem;
return TRUE;
}
PDEVINFO_ELEM
FindAssociatedDevInfoElem(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PSP_DEVINFO_DATA DeviceInfoData,
OUT PDEVINFO_ELEM *PreviousElement OPTIONAL
)
/*++
Routine Description:
This routine returns the devinfo element for the specified
SP_DEVINFO_DATA, or NULL if no devinfo element exists.
Arguments:
DeviceInfoSet - Specifies the set to be searched.
DeviceInfoData - Supplies a pointer to a device information data
buffer specifying the device information element to retrieve.
PreviousElement - Optionally, supplies the address of a
DEVINFO_ELEM pointer that receives the element that precedes
the specified element in the linked list. If the returned
element is located at the front of the list, then this value
will be set to NULL.
Return Value:
If a device information element is found, the return value is a
pointer to that element, otherwise, the return value is NULL.
--*/
{
PDEVINFO_ELEM DevInfoElem, CurElem, PrevElem;
PDEVINFO_ELEM ActualDevInfoElem = NULL;
try {
if((DeviceInfoData->cbSize != sizeof(SP_DEVINFO_DATA)) ||
!(DevInfoElem = (PDEVINFO_ELEM)DeviceInfoData->Reserved)) {
leave;
}
if(PreviousElement) {
//
// The caller requested that the preceding element be returned
// (probably because the element is about to be deleted). Since
// this is a singly-linked list, we'll search through the list
// until we find the desired element.
//
for(CurElem = DeviceInfoSet->DeviceInfoHead, PrevElem = NULL;
CurElem;
PrevElem = CurElem, CurElem = CurElem->Next) {
if(CurElem == DevInfoElem) {
//
// We found the element in our set.
//
if(PreviousElement) {
*PreviousElement = PrevElem;
}
ActualDevInfoElem = CurElem;
leave;
}
}
} else {
//
// The caller doesn't care what the preceding element is, so we
// can go right to the element, and validate it by ensuring that
// the ContainingDeviceInfoSet field at the location pointed to
// by DevInfoElem matches the devinfo set where this guy is supposed
// to exist.
//
if(DevInfoElem->ContainingDeviceInfoSet == DeviceInfoSet) {
ActualDevInfoElem = DevInfoElem;
leave;
}
}
} except (EXCEPTION_EXECUTE_HANDLER) {
//
// invalid memory
//
ActualDevInfoElem = NULL;
}
return ActualDevInfoElem;
}
BOOL
DrvInfoDataFromDriverNode(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDRIVER_NODE DriverNode,
IN DWORD DriverType,
OUT PSP_DRVINFO_DATA DriverInfoData
)
/*++
Routine Description:
This routine fills in a SP_DRVINFO_DATA structure based on the
information in the supplied DRIVER_NODE structure.
Note: The supplied DriverInfoData structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
DeviceInfoSet - Supplies a pointer to the device information set
in which the driver node is located.
DriverNode - Supplies a pointer to the DRIVER_NODE structure
containing information to be used in filling in the
SP_DRVNFO_DATA buffer.
DriverType - Specifies what type of driver this is. This value
may be either SPDIT_CLASSDRIVER or SPDIT_COMPATDRIVER.
DriverInfoData - Supplies a pointer to the buffer that will
receive the filled-in SP_DRVINFO_DATA structure
Return Value:
If the function succeeds, the return value is TRUE, otherwise, it
is FALSE.
--*/
{
PTSTR StringPtr;
DWORD DriverInfoDataSize;
if((DriverInfoData->cbSize != sizeof(SP_DRVINFO_DATA)) &&
(DriverInfoData->cbSize != sizeof(SP_DRVINFO_DATA_V1))) {
return FALSE;
}
DriverInfoDataSize = DriverInfoData->cbSize;
ZeroMemory(DriverInfoData, DriverInfoDataSize);
DriverInfoData->cbSize = DriverInfoDataSize;
DriverInfoData->DriverType = DriverType;
MYASSERT(DriverNode->DevDescriptionDisplayName != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->DevDescriptionDisplayName
);
lstrcpy(DriverInfoData->Description,
StringPtr
);
MYASSERT(DriverNode->MfgDisplayName != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->MfgDisplayName
);
lstrcpy(DriverInfoData->MfgName,
StringPtr
);
if(DriverNode->ProviderDisplayName != -1) {
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->ProviderDisplayName
);
lstrcpy(DriverInfoData->ProviderName,
StringPtr
);
}
//
// The 'Reserved' field actually contains a pointer to the
// corresponding driver node.
//
DriverInfoData->Reserved = (ULONG_PTR)DriverNode;
//
//new NT 5 fields
//
if (DriverInfoDataSize == sizeof(SP_DRVINFO_DATA)) {
DriverInfoData->DriverDate = DriverNode->DriverDate;
DriverInfoData->DriverVersion = DriverNode->DriverVersion;
}
return TRUE;
}
PDRIVER_NODE
FindAssociatedDriverNode(
IN PDRIVER_NODE DriverListHead,
IN PSP_DRVINFO_DATA DriverInfoData,
OUT PDRIVER_NODE *PreviousNode OPTIONAL
)
/*++
Routine Description:
This routine searches through all driver nodes in a driver node
list, looking for one that corresponds to the specified driver
information structure. If a match is found, a pointer to the
driver node is returned.
Arguments:
DriverListHead - Supplies a pointer to the head of linked list
of driver nodes to be searched.
DriverInfoData - Supplies a pointer to a driver information buffer
specifying the driver node to retrieve.
PreviousNode - Optionally, supplies the address of a DRIVER_NODE
pointer that receives the node that precedes the specified
node in the linked list. If the returned node is located at
the front of the list, then this value will be set to NULL.
Return Value:
If a driver node is found, the return value is a pointer to that
node, otherwise, the return value is NULL.
--*/
{
PDRIVER_NODE DriverNode, CurNode, PrevNode;
if(((DriverInfoData->cbSize != sizeof(SP_DRVINFO_DATA)) &&
(DriverInfoData->cbSize != sizeof(SP_DRVINFO_DATA_V1))) ||
!(DriverNode = (PDRIVER_NODE)DriverInfoData->Reserved)) {
return NULL;
}
for(CurNode = DriverListHead, PrevNode = NULL;
CurNode;
PrevNode = CurNode, CurNode = CurNode->Next) {
if(CurNode == DriverNode) {
//
// We found the driver node in our list.
//
if(PreviousNode) {
*PreviousNode = PrevNode;
}
return CurNode;
}
}
return NULL;
}
PDRIVER_NODE
SearchForDriverNode(
IN PVOID StringTable,
IN PDRIVER_NODE DriverListHead,
IN PSP_DRVINFO_DATA DriverInfoData,
OUT PDRIVER_NODE *PreviousNode OPTIONAL
)
/*++
Routine Description:
This routine searches through all driver nodes in a driver node
list, looking for one that matches the fields in the specified
driver information structure (the 'Reserved' field is ignored).
If a match is found, a pointer to the driver node is returned.
Arguments:
StringTable - Supplies the string table that should be used in
retrieving string IDs for driver look-up.
DriverListHead - Supplies a pointer to the head of linked list
of driver nodes to be searched.
DriverInfoData - Supplies a pointer to a driver information buffer
specifying the driver parameters we're looking for.
PreviousNode - Optionally, supplies the address of a DRIVER_NODE
pointer that receives the node that precedes the specified
node in the linked list. If the returned node is located at
the front of the list, then this value will be set to NULL.
Return Value:
If a driver node is found, the return value is a pointer to that
node, otherwise, the return value is NULL.
--*/
{
PDRIVER_NODE CurNode, PrevNode;
LONG DevDescription, MfgName, ProviderName;
TCHAR TempString[LINE_LEN];
DWORD TempStringLength;
BOOL Match;
MYASSERT((DriverInfoData->cbSize == sizeof(SP_DRVINFO_DATA)) ||
(DriverInfoData->cbSize == sizeof(SP_DRVINFO_DATA_V1)));
//
// Retrieve the string IDs for the 3 driver parameters we'll be
// matching against.
//
lstrcpyn(TempString, DriverInfoData->Description, SIZECHARS(TempString));
if((DevDescription = pStringTableLookUpString(
StringTable,
TempString,
&TempStringLength,
NULL,
NULL,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
return NULL;
}
lstrcpyn(TempString, DriverInfoData->MfgName, SIZECHARS(TempString));
if((MfgName = pStringTableLookUpString(
StringTable,
TempString,
&TempStringLength,
NULL,
NULL,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
return NULL;
}
//
// ProviderName may be empty...
//
if(*(DriverInfoData->ProviderName)) {
lstrcpyn(TempString, DriverInfoData->ProviderName, SIZECHARS(TempString));
if((ProviderName = pStringTableLookUpString(
StringTable,
TempString,
&TempStringLength,
NULL,
NULL,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
return NULL;
}
} else {
ProviderName = -1;
}
for(CurNode = DriverListHead, PrevNode = NULL;
CurNode;
PrevNode = CurNode, CurNode = CurNode->Next)
{
//
// Check first on DevDescription (least likely to match), then on MfgName, and finally
// on ProviderName. On NT 5 and later we will also check the DriverDate and DriverVersion.
//
if(CurNode->DevDescription == DevDescription) {
if(CurNode->MfgName == MfgName) {
if(CurNode->ProviderName == ProviderName) {
//
//On NT 5 and later, also compare the DriverDate and DriverVersion
//
if (DriverInfoData->cbSize == sizeof(SP_DRVINFO_DATA)) {
//
//Assume that we have a match
//
Match = TRUE;
//
//If the DriverDate passed in is not 0 then make sure it matches
//
if (DriverInfoData->DriverDate.dwLowDateTime != 0 ||
DriverInfoData->DriverDate.dwHighDateTime != 0) {
if ((CurNode->DriverDate.dwLowDateTime != DriverInfoData->DriverDate.dwLowDateTime) ||
(CurNode->DriverDate.dwHighDateTime != DriverInfoData->DriverDate.dwHighDateTime)) {
Match = FALSE;
}
}
//
//If the DriverVersion passed in is not 0 then make sure it matches
//
else if (DriverInfoData->DriverVersion != 0) {
if (CurNode->DriverVersion != DriverInfoData->DriverVersion) {
Match = FALSE;
}
}
if (Match) {
//
// We found the driver node in our list.
//
if(PreviousNode) {
*PreviousNode = PrevNode;
}
return CurNode;
}
} else {
//
// We found the driver node in our list.
//
if(PreviousNode) {
*PreviousNode = PrevNode;
}
return CurNode;
}
}
}
}
}
return NULL;
}
DWORD
DrvInfoDetailsFromDriverNode(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDRIVER_NODE DriverNode,
OUT PSP_DRVINFO_DETAIL_DATA DriverInfoDetailData, OPTIONAL
IN DWORD BufferSize,
OUT PDWORD RequiredSize OPTIONAL
)
/*++
Routine Description:
This routine fills in a SP_DRVINFO_DETAIL_DATA structure based on the
information in the supplied DRIVER_NODE structure.
If the buffer is supplied, and is valid, this routine is guaranteed to
fill in all statically-sized fields, and as many IDs as will fit in the
variable-length multi-sz buffer.
Note: If supplied, the DriverInfoDetailData structure must have its
cbSize field filled in correctly, or the call will fail. Here correctly
means sizeof(SP_DRVINFO_DETAIL_DATA), which we use as a signature.
This is entirely separate from BufferSize. See below.
Arguments:
DeviceInfoSet - Supplies a pointer to the device information set
in which the driver node is located.
DriverNode - Supplies a pointer to the DRIVER_NODE structure
containing information to be used in filling in the
SP_DRVNFO_DETAIL_DATA buffer.
DriverInfoDetailData - Optionally, supplies a pointer to the buffer
that will receive the filled-in SP_DRVINFO_DETAIL_DATA structure.
If this buffer is not supplied, then the caller is only interested
in what the RequiredSize for the buffer is.
BufferSize - Supplies size of the DriverInfoDetailData buffer, in
bytes. If DriverInfoDetailData is not specified, then this
value must be zero. This value must be at least the size
of the fixed part of the structure (ie,
offsetof(SP_DRVINFO_DETAIL_DATA,HardwareID)) plus sizeof(TCHAR),
which gives us enough room to store the fixed part plus
a terminating nul to guarantee we return at least a valid
empty multi_sz.
RequiredSize - Optionally, supplies the address of a variable that
receives the number of bytes required to store the data. Note that
depending on structure alignment and the data itself, this may
actually be *smaller* than sizeof(SP_DRVINFO_DETAIL_DATA).
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
PTSTR StringPtr, BufferPtr;
DWORD IdListLen, CompatIdListLen, StringLen, TotalLen, i;
DWORD Err = ERROR_INSUFFICIENT_BUFFER;
#define FIXEDPARTLEN offsetof(SP_DRVINFO_DETAIL_DATA,HardwareID)
if(DriverInfoDetailData) {
//
// Check validity of the DriverInfoDetailData buffer on the way in,
// and make sure we have enough room for the fixed part
// of the structure plus the extra nul that will terminate the
// multi_sz.
//
if((DriverInfoDetailData->cbSize != sizeof(SP_DRVINFO_DETAIL_DATA))
|| (BufferSize < (FIXEDPARTLEN+sizeof(TCHAR)))) {
return ERROR_INVALID_USER_BUFFER;
}
//
// The buffer is large enough to contain at least the fixed-length part
// of the structure.
//
Err = NO_ERROR;
} else if(BufferSize) {
return ERROR_INVALID_USER_BUFFER;
}
if(DriverInfoDetailData) {
ZeroMemory(DriverInfoDetailData,FIXEDPARTLEN);
DriverInfoDetailData->cbSize = FIXEDPARTLEN + sizeof(TCHAR);
DriverInfoDetailData->InfDate = DriverNode->InfDate;
MYASSERT(DriverNode->InfSectionName != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->InfSectionName
);
lstrcpyn(DriverInfoDetailData->SectionName, StringPtr,sizeof(DriverInfoDetailData->SectionName)/sizeof(TCHAR));
MYASSERT(DriverNode->InfFileName != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->InfFileName
);
lstrcpyn(DriverInfoDetailData->InfFileName, StringPtr,sizeof(DriverInfoDetailData->InfFileName)/sizeof(TCHAR));
MYASSERT(DriverNode->DrvDescription != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->DrvDescription
);
lstrcpyn(DriverInfoDetailData->DrvDescription, StringPtr,sizeof(DriverInfoDetailData->DrvDescription)/sizeof(TCHAR));
//
// Initialize the multi_sz to be empty.
//
DriverInfoDetailData->HardwareID[0] = 0;
//
// The 'Reserved' field actually contains a pointer to the
// corresponding driver node.
//
DriverInfoDetailData->Reserved = (ULONG_PTR)DriverNode;
}
//
// Now, build the multi-sz buffer containing the hardware and compatible IDs.
//
if(DriverNode->HardwareId == -1) {
//
// If there's no HardwareId, then we know there are no compatible IDs, so
// we can return right now.
//
if(RequiredSize) {
*RequiredSize = FIXEDPARTLEN + sizeof(TCHAR);
}
return Err;
}
if(DriverInfoDetailData) {
BufferPtr = DriverInfoDetailData->HardwareID;
IdListLen = (BufferSize - FIXEDPARTLEN) / sizeof(TCHAR);
} else {
IdListLen = 0;
}
//
// Retrieve the HardwareId.
//
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->HardwareId
);
TotalLen = StringLen = lstrlen(StringPtr) + 1; // include nul terminator
if(StringLen < IdListLen) {
MYASSERT(Err == NO_ERROR);
CopyMemory(BufferPtr,
StringPtr,
StringLen * sizeof(TCHAR)
);
BufferPtr += StringLen;
IdListLen -= StringLen;
DriverInfoDetailData->CompatIDsOffset = StringLen;
} else {
if(RequiredSize) {
//
// Since the caller requested the required size, we can't just return
// here. Set the error, so we'll know not to bother trying to fill
// the buffer.
//
Err = ERROR_INSUFFICIENT_BUFFER;
} else {
return ERROR_INSUFFICIENT_BUFFER;
}
}
//
// Remember the size of the buffer left over for CompatibleIDs.
//
CompatIdListLen = IdListLen;
//
// Now retrieve the CompatibleIDs.
//
for(i = 0; i < DriverNode->NumCompatIds; i++) {
MYASSERT(DriverNode->CompatIdList[i] != -1);
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DriverNode->CompatIdList[i]
);
StringLen = lstrlen(StringPtr) + 1;
if(Err == NO_ERROR) {
if(StringLen < IdListLen) {
CopyMemory(BufferPtr,
StringPtr,
StringLen * sizeof(TCHAR)
);
BufferPtr += StringLen;
IdListLen -= StringLen;
} else {
Err = ERROR_INSUFFICIENT_BUFFER;
if(!RequiredSize) {
//
// We've run out of buffer, and the caller doesn't care what
// the total required size is, so bail now.
//
break;
}
}
}
TotalLen += StringLen;
}
if(DriverInfoDetailData) {
//
// Append the additional terminating nul. Note that we've been saving the
// last character position in the buffer all along, so we're guaranteed to
// be inside the buffer.
//
MYASSERT(BufferPtr < (PTSTR)((PBYTE)DriverInfoDetailData + BufferSize));
*BufferPtr = 0;
//
// Store the length of the CompatibleIDs list. Note that this is the length
// of the list actually returned, which may be less than the length of the
// entire list (if the caller-supplied buffer wasn't large enough).
//
if(CompatIdListLen -= IdListLen) {
//
// If this list is non-empty, then add a character for the extra nul
// terminating the multi-sz list.
//
CompatIdListLen++;
}
DriverInfoDetailData->CompatIDsLength = CompatIdListLen;
}
if(RequiredSize) {
*RequiredSize = FIXEDPARTLEN + ((TotalLen + 1) * sizeof(TCHAR));
}
return Err;
}
PDRIVER_LIST_OBJECT
GetAssociatedDriverListObject(
IN PDRIVER_LIST_OBJECT ObjectListHead,
IN PDRIVER_NODE DriverListHead,
OUT PDRIVER_LIST_OBJECT *PrevDriverListObject OPTIONAL
)
/*++
Routine Description:
This routine searches through a driver list object list, and returns a
pointer to the driver list object containing the list specified by
DrvListHead. It also optionally returns the preceding object in the list
(used when extracting the driver list object from the linked list).
Arguments:
ObjectListHead - Specifies the linked list of driver list objects to be
searched.
DriverListHead - Specifies the driver list to be searched for.
PrevDriverListObject - Optionaly, supplies the address of the variable that
receives a pointer to the driver list object immediately preceding the
matching object. If the object was found at the front of the list, then
this variable will be set to NULL.
Return Value:
If the matching driver list object is found, the return value is a pointer
to that element, otherwise, the return value is NULL.
--*/
{
PDRIVER_LIST_OBJECT prev = NULL;
while(ObjectListHead) {
if(ObjectListHead->DriverListHead == DriverListHead) {
if(PrevDriverListObject) {
*PrevDriverListObject = prev;
}
return ObjectListHead;
}
prev = ObjectListHead;
ObjectListHead = ObjectListHead->Next;
}
return NULL;
}
VOID
DereferenceClassDriverList(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDRIVER_NODE DriverListHead OPTIONAL
)
/*++
Routine Description:
This routine dereferences the class driver list object associated with the
supplied DriverListHead. If the refcount goes to zero, the object is destroyed,
and all associated memory is freed.
Arguments:
DeviceInfoSet - Supplies the address of the device information set containing the
linked list of class driver list objects.
DriverListHead - Optionally, supplies a pointer to the header of the driver list
to be dereferenced. If this parameter is not supplied, the routine does nothing.
Return Value:
None.
--*/
{
PDRIVER_LIST_OBJECT DrvListObject, PrevDrvListObject;
if(DriverListHead) {
DrvListObject = GetAssociatedDriverListObject(DeviceInfoSet->ClassDrvListObjectList,
DriverListHead,
&PrevDrvListObject
);
MYASSERT(DrvListObject && DrvListObject->RefCount);
if(!(--DrvListObject->RefCount)) {
if(PrevDrvListObject) {
PrevDrvListObject->Next = DrvListObject->Next;
} else {
DeviceInfoSet->ClassDrvListObjectList = DrvListObject->Next;
}
MyFree(DrvListObject);
DestroyDriverNodes(DriverListHead, DeviceInfoSet);
}
}
}
DWORD
GetDevInstallParams(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDEVINSTALL_PARAM_BLOCK DevInstParamBlock,
OUT PSP_DEVINSTALL_PARAMS DeviceInstallParams
)
/*++
Routine Description:
This routine fills in a SP_DEVINSTALL_PARAMS structure based on the
installation parameter block supplied.
Note: The DeviceInstallParams structure must have its cbSize field
filled in correctly, or the call will fail.
Arguments:
DeviceInfoSet - Supplies the address of the device information set
containing the parameters to be retrieved. (This parameter is
used to gain access to the string table for some of the string
parameters).
DevInstParamBlock - Supplies the address of an installation parameter
block containing the parameters to be used in filling out the
return buffer.
DeviceInstallParams - Supplies the address of a buffer that will
receive the filled-in SP_DEVINSTALL_PARAMS structure.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
PTSTR StringPtr;
if(DeviceInstallParams->cbSize != sizeof(SP_DEVINSTALL_PARAMS)) {
return ERROR_INVALID_USER_BUFFER;
}
//
// Fill in parameters.
//
ZeroMemory(DeviceInstallParams, sizeof(SP_DEVINSTALL_PARAMS));
DeviceInstallParams->cbSize = sizeof(SP_DEVINSTALL_PARAMS);
DeviceInstallParams->Flags = DevInstParamBlock->Flags;
DeviceInstallParams->FlagsEx = DevInstParamBlock->FlagsEx;
DeviceInstallParams->hwndParent = DevInstParamBlock->hwndParent;
DeviceInstallParams->InstallMsgHandler = DevInstParamBlock->InstallMsgHandler;
DeviceInstallParams->InstallMsgHandlerContext = DevInstParamBlock->InstallMsgHandlerContext;
DeviceInstallParams->FileQueue = DevInstParamBlock->UserFileQ;
DeviceInstallParams->ClassInstallReserved = DevInstParamBlock->ClassInstallReserved;
//
// The Reserved field is currently unused.
//
if(DevInstParamBlock->DriverPath != -1) {
StringPtr = pStringTableStringFromId(DeviceInfoSet->StringTable,
DevInstParamBlock->DriverPath
);
lstrcpy(DeviceInstallParams->DriverPath, StringPtr);
}
return NO_ERROR;
}
DWORD
GetClassInstallParams(
IN PDEVINSTALL_PARAM_BLOCK DevInstParamBlock,
OUT PSP_CLASSINSTALL_HEADER ClassInstallParams, OPTIONAL
IN DWORD BufferSize,
OUT PDWORD RequiredSize OPTIONAL
)
/*++
Routine Description:
This routine fills in a buffer with the class installer parameters (if any)
contained in the installation parameter block supplied.
Note: If supplied, the ClassInstallParams structure must have the cbSize
field of the embedded SP_CLASSINSTALL_HEADER structure set to the size, in bytes,
of the header. If this is not set correctly, the call will fail.
Arguments:
DevInstParamBlock - Supplies the address of an installation parameter block
containing the class installer parameters to be used in filling out the
return buffer.
DeviceInstallParams - Optionally, supplies the address of a buffer
that will receive the class installer parameters structure currently
stored in the installation parameters block. If this parameter is not
supplied, then BufferSize must be zero.
BufferSize - Supplies the size, in bytes, of the DeviceInstallParams
buffer, or zero if DeviceInstallParams is not supplied.
RequiredSize - Optionally, supplies the address of a variable that
receives the number of bytes required to store the data.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
//
// First, see whether we have any class install params, and if not, return
// ERROR_NO_CLASSINSTALL_PARAMS.
//
if(!DevInstParamBlock->ClassInstallHeader) {
return ERROR_NO_CLASSINSTALL_PARAMS;
}
if(ClassInstallParams) {
if((BufferSize < sizeof(SP_CLASSINSTALL_HEADER)) ||
(ClassInstallParams->cbSize != sizeof(SP_CLASSINSTALL_HEADER))) {
return ERROR_INVALID_USER_BUFFER;
}
} else if(BufferSize) {
return ERROR_INVALID_USER_BUFFER;
}
//
// Store required size in output parameter (if requested).
//
if(RequiredSize) {
*RequiredSize = DevInstParamBlock->ClassInstallParamsSize;
}
//
// See if supplied buffer is large enough.
//
if(BufferSize < DevInstParamBlock->ClassInstallParamsSize) {
return ERROR_INSUFFICIENT_BUFFER;
}
CopyMemory((PVOID)ClassInstallParams,
(PVOID)DevInstParamBlock->ClassInstallHeader,
DevInstParamBlock->ClassInstallParamsSize
);
return NO_ERROR;
}
DWORD
SetDevInstallParams(
IN OUT PDEVICE_INFO_SET DeviceInfoSet,
IN PSP_DEVINSTALL_PARAMS DeviceInstallParams,
OUT PDEVINSTALL_PARAM_BLOCK DevInstParamBlock,
IN BOOL MsgHandlerIsNativeCharWidth
)
/*++
Routine Description:
This routine updates an internal parameter block based on the parameters
supplied in a SP_DEVINSTALL_PARAMS structure.
Note: The supplied DeviceInstallParams structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
DeviceInfoSet - Supplies the address of the device information set
containing the parameters to be set.
DeviceInstallParams - Supplies the address of a buffer containing the new
installation parameters.
DevInstParamBlock - Supplies the address of an installation parameter
block to be updated.
MsgHandlerIsNativeCharWidth - supplies a flag indicating whether the
InstallMsgHandler in the DeviceInstallParams structure points to
a callback routine that is expecting arguments in the 'native'
character format. A value of FALSE is meaningful only in the
Unicode build and specifies that the callback routine wants
ANSI parameters.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
DWORD DriverPathLen;
LONG StringId;
TCHAR TempString[MAX_PATH];
HSPFILEQ OldQueueHandle = NULL;
BOOL bRestoreQueue = FALSE;
if(DeviceInstallParams->cbSize != sizeof(SP_DEVINSTALL_PARAMS)) {
return ERROR_INVALID_USER_BUFFER;
}
//
// No validation is currently required for the hwndParent, InstallMsgHandler,
// InstallMsgHandlerContext, or ClassInstallReserved fields.
//
//
// Validate Flags(Ex)
//
if((DeviceInstallParams->Flags & DI_FLAGS_ILLEGAL) ||
(DeviceInstallParams->FlagsEx & DI_FLAGSEX_ILLEGAL)) {
return ERROR_INVALID_FLAGS;
}
//
// Make sure that if DI_CLASSINSTALLPARAMS is being set, that we really do have
// class install parameters.
//
if((DeviceInstallParams->Flags & DI_CLASSINSTALLPARAMS) &&
!(DevInstParamBlock->ClassInstallHeader)) {
return ERROR_NO_CLASSINSTALL_PARAMS;
}
//
// Make sure that if DI_NOVCP is being set, that we have a caller-supplied file queue.
//
if((DeviceInstallParams->Flags & DI_NOVCP) &&
((DeviceInstallParams->FileQueue == NULL) || (DeviceInstallParams->FileQueue == INVALID_HANDLE_VALUE))) {
return ERROR_INVALID_FLAGS;
}
//
// Make sure that if DI_FLAGSEX_ALTPLATFORM_DRVSEARCH is being set, that we
// have a caller-supplied file queue.
//
// NOTE: We don't actually verify at this time that the file queue has
// alternate platform info associated with it--this association can
// actually be done later. We _will_ catch this (and return an error) in
// SetupDiBuildDriverInfoList if at that time we find that the file queue
// has no alt platform info.
//
if((DeviceInstallParams->FlagsEx & DI_FLAGSEX_ALTPLATFORM_DRVSEARCH) &&
!(DeviceInstallParams->Flags & DI_NOVCP)) {
return ERROR_INVALID_PARAMETER;
}
//
// Validate that the DriverPath string is properly NULL-terminated.
//
if((DriverPathLen = lstrlen(DeviceInstallParams->DriverPath)) >= MAX_PATH) {
return ERROR_INVALID_PARAMETER;
}
//
// Validate the caller-supplied file queue.
//
if((DeviceInstallParams->FileQueue == NULL) || (DeviceInstallParams->FileQueue == INVALID_HANDLE_VALUE)) {
//
// Store the current file queue handle (if any) to be released later.
//
OldQueueHandle = DevInstParamBlock->UserFileQ;
DevInstParamBlock->UserFileQ = NULL;
bRestoreQueue = TRUE;
} else {
//
// The caller supplied a file queue handle. See if it's the same one
// we already have.
//
if(DeviceInstallParams->FileQueue != DevInstParamBlock->UserFileQ) {
//
// The caller has supplied a file queue handle that's different
// from the one we currently have stored. Remember the old handle
// (in case we need to restore), and store the new handle. Also,
// increment the lock refcount on the new handle (enclose in
// try/except in case it's a bogus one).
//
OldQueueHandle = DevInstParamBlock->UserFileQ;
bRestoreQueue = TRUE;
try {
if(((PSP_FILE_QUEUE)(DeviceInstallParams->FileQueue))->Signature == SP_FILE_QUEUE_SIG) {
((PSP_FILE_QUEUE)(DeviceInstallParams->FileQueue))->LockRefCount++;
DevInstParamBlock->UserFileQ = DeviceInstallParams->FileQueue;
} else {
//
// Queue's signature isn't valid
//
bRestoreQueue = FALSE;
}
} except(EXCEPTION_EXECUTE_HANDLER) {
DevInstParamBlock->UserFileQ = OldQueueHandle;
bRestoreQueue = FALSE;
}
if(!bRestoreQueue) {
//
// The file queue handle we were given was invalid.
//
return ERROR_INVALID_PARAMETER;
}
}
}
//
// Store the specified driver path.
//
if(DriverPathLen) {
lstrcpy(TempString, DeviceInstallParams->DriverPath);
if((StringId = pStringTableAddString(DeviceInfoSet->StringTable,
TempString,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0
)) == -1) {
//
// We couldn't add the new driver path string to the string table. Restore the old
// file queue (if necessary) and return an out-of-memory error.
//
if(bRestoreQueue) {
if(DevInstParamBlock->UserFileQ) {
try {
((PSP_FILE_QUEUE)(DevInstParamBlock->UserFileQ))->LockRefCount--;
} except(EXCEPTION_EXECUTE_HANDLER) {
; // nothing to do
}
}
DevInstParamBlock->UserFileQ = OldQueueHandle;
}
return ERROR_NOT_ENOUGH_MEMORY;
}
DevInstParamBlock->DriverPath = StringId;
} else {
DevInstParamBlock->DriverPath = -1;
}
//
// Should be smooth sailing from here on out. Decrement the refcount on the old queue handle,
// if there was one.
//
if(OldQueueHandle) {
try {
MYASSERT(((PSP_FILE_QUEUE)OldQueueHandle)->LockRefCount);
((PSP_FILE_QUEUE)OldQueueHandle)->LockRefCount--;
} except(EXCEPTION_EXECUTE_HANDLER) {
; // nothing to do
}
}
//
// Ignore attempts at modifying read-only flags.
//
DevInstParamBlock->Flags = (DeviceInstallParams->Flags & ~DI_FLAGS_READONLY) |
(DevInstParamBlock->Flags & DI_FLAGS_READONLY);
DevInstParamBlock->FlagsEx = (DeviceInstallParams->FlagsEx & ~DI_FLAGSEX_READONLY) |
(DevInstParamBlock->FlagsEx & DI_FLAGSEX_READONLY);
//
// Additionally, if we're in non-interactive mode, make sure not to clear
// our "be quiet" flags.
//
if(GlobalSetupFlags & (PSPGF_NONINTERACTIVE|PSPGF_UNATTENDED_SETUP)) {
DevInstParamBlock->Flags |= DI_QUIETINSTALL;
DevInstParamBlock->FlagsEx |= DI_FLAGSEX_NOUIONQUERYREMOVE;
}
//
// Store the rest of the parameters.
//
DevInstParamBlock->hwndParent = DeviceInstallParams->hwndParent;
DevInstParamBlock->InstallMsgHandler = DeviceInstallParams->InstallMsgHandler;
DevInstParamBlock->InstallMsgHandlerContext = DeviceInstallParams->InstallMsgHandlerContext;
DevInstParamBlock->ClassInstallReserved = DeviceInstallParams->ClassInstallReserved;
DevInstParamBlock->InstallMsgHandlerIsNativeCharWidth = MsgHandlerIsNativeCharWidth;
return NO_ERROR;
}
DWORD
SetClassInstallParams(
IN OUT PDEVICE_INFO_SET DeviceInfoSet,
IN PSP_CLASSINSTALL_HEADER ClassInstallParams, OPTIONAL
IN DWORD ClassInstallParamsSize,
OUT PDEVINSTALL_PARAM_BLOCK DevInstParamBlock
)
/*++
Routine Description:
This routine updates an internal class installer parameter block based on
the parameters supplied in a class installer parameter buffer. If this
buffer is not supplied, then the existing class installer parameters (if
any) are cleared.
Arguments:
DeviceInfoSet - Supplies the address of the device information set
for which class installer parameters are to be set.
ClassInstallParams - Optionally, supplies the address of a buffer containing
the class installer parameters to be used. The SP_CLASSINSTALL_HEADER
structure at the beginning of the buffer must have its cbSize field set to
be sizeof(SP_CLASSINSTALL_HEADER), and the InstallFunction field must be
set to the DI_FUNCTION code reflecting the type of parameters supplied in
the rest of the buffer.
If this parameter is not supplied, then the current class installer parameters
(if any) will be cleared for the specified device information set or element.
ClassInstallParamsSize - Supplies the size, in bytes, of the ClassInstallParams
buffer. If the buffer is not supplied (i.e., the class installer parameters
are to be cleared), then this value must be zero.
DevInstParamBlock - Supplies the address of an installation parameter
block to be updated.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
PBYTE NewParamBuffer;
if(ClassInstallParams) {
if((ClassInstallParamsSize < sizeof(SP_CLASSINSTALL_HEADER)) ||
(ClassInstallParams->cbSize != sizeof(SP_CLASSINSTALL_HEADER))) {
return ERROR_INVALID_USER_BUFFER;
}
} else {
//
// We are to clear any existing class installer parameters.
//
if(ClassInstallParamsSize) {
return ERROR_INVALID_USER_BUFFER;
}
if(DevInstParamBlock->ClassInstallHeader) {
MyFree(DevInstParamBlock->ClassInstallHeader);
DevInstParamBlock->ClassInstallHeader = NULL;
DevInstParamBlock->ClassInstallParamsSize = 0;
DevInstParamBlock->Flags &= ~DI_CLASSINSTALLPARAMS;
}
return NO_ERROR;
}
//
// Validate the new class install parameters w.r.t. the value of the specified
// InstallFunction code.
//
switch(ClassInstallParams->InstallFunction) {
case DIF_ENABLECLASS :
//
// We should have a SP_ENABLECLASS_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_ENABLECLASS_PARAMS)) {
PSP_ENABLECLASS_PARAMS EnableClassParams;
EnableClassParams = (PSP_ENABLECLASS_PARAMS)ClassInstallParams;
//
// Don't bother validating GUID--just validate EnableMessage field.
//
if(EnableClassParams->EnableMessage <= ENABLECLASS_FAILURE) {
//
// parameter set validated.
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_MOVEDEVICE :
//
// We should have a SP_MOVEDEV_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_MOVEDEV_PARAMS)) {
PSP_MOVEDEV_PARAMS MoveDevParams;
MoveDevParams = (PSP_MOVEDEV_PARAMS)ClassInstallParams;
if(FindAssociatedDevInfoElem(DeviceInfoSet,
&(MoveDevParams->SourceDeviceInfoData),
NULL)) {
//
// parameter set validated.
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_PROPERTYCHANGE :
//
// We should have a SP_PROPCHANGE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_PROPCHANGE_PARAMS)) {
PSP_PROPCHANGE_PARAMS PropChangeParams;
PropChangeParams = (PSP_PROPCHANGE_PARAMS)ClassInstallParams;
if((PropChangeParams->StateChange >= DICS_ENABLE) &&
(PropChangeParams->StateChange <= DICS_STOP)) {
//
// Validate Scope specifier--even though these values are defined like
// flags, they are mutually exclusive, so treat them like ordinals.
//
if((PropChangeParams->Scope == DICS_FLAG_GLOBAL) ||
(PropChangeParams->Scope == DICS_FLAG_CONFIGSPECIFIC) ||
(PropChangeParams->Scope == DICS_FLAG_CONFIGGENERAL)) {
//
// DICS_START and DICS_STOP are always config specific.
//
if(((PropChangeParams->StateChange == DICS_START) || (PropChangeParams->StateChange == DICS_STOP)) &&
(PropChangeParams->Scope != DICS_FLAG_CONFIGSPECIFIC)) {
goto BadPropChangeParams;
}
//
// parameter set validated
//
// NOTE: Even though DICS_FLAG_CONFIGSPECIFIC indicates
// that the HwProfile field specifies a hardware profile,
// there's no need to do validation on that.
//
break;
}
}
}
BadPropChangeParams:
return ERROR_INVALID_PARAMETER;
case DIF_REMOVE :
//
// We should have a SP_REMOVEDEVICE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_REMOVEDEVICE_PARAMS)) {
PSP_REMOVEDEVICE_PARAMS RemoveDevParams;
RemoveDevParams = (PSP_REMOVEDEVICE_PARAMS)ClassInstallParams;
if((RemoveDevParams->Scope == DI_REMOVEDEVICE_GLOBAL) ||
(RemoveDevParams->Scope == DI_REMOVEDEVICE_CONFIGSPECIFIC)) {
//
// parameter set validated
//
// NOTE: Even though DI_REMOVEDEVICE_CONFIGSPECIFIC indicates
// that the HwProfile field specifies a hardware profile,
// there's no need to do validation on that.
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_UNREMOVE :
//
// We should have a SP_UNREMOVEDEVICE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_UNREMOVEDEVICE_PARAMS)) {
PSP_UNREMOVEDEVICE_PARAMS UnremoveDevParams;
UnremoveDevParams = (PSP_UNREMOVEDEVICE_PARAMS)ClassInstallParams;
if(UnremoveDevParams->Scope == DI_UNREMOVEDEVICE_CONFIGSPECIFIC) {
//
// parameter set validated
//
// NOTE: Even though DI_UNREMOVEDEVICE_CONFIGSPECIFIC indicates
// that the HwProfile field specifies a hardware profile,
// there's no need to do validation on that.
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_SELECTDEVICE :
//
// We should have a SP_SELECTDEVICE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_SELECTDEVICE_PARAMS)) {
PSP_SELECTDEVICE_PARAMS SelectDevParams;
SelectDevParams = (PSP_SELECTDEVICE_PARAMS)ClassInstallParams;
//
// Validate that the string fields are properly NULL-terminated.
//
if((lstrlen(SelectDevParams->Title) < MAX_TITLE_LEN) &&
(lstrlen(SelectDevParams->Instructions) < MAX_INSTRUCTION_LEN) &&
(lstrlen(SelectDevParams->ListLabel) < MAX_LABEL_LEN) &&
(lstrlen(SelectDevParams->SubTitle) < MAX_SUBTITLE_LEN)) {
//
// parameter set validated
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_INSTALLWIZARD :
//
// We should have a SP_INSTALLWIZARD_DATA structure.
//
if(ClassInstallParamsSize == sizeof(SP_INSTALLWIZARD_DATA)) {
PSP_INSTALLWIZARD_DATA InstallWizData;
DWORD i;
InstallWizData = (PSP_INSTALLWIZARD_DATA)ClassInstallParams;
//
// Validate the propsheet handle list.
//
if(InstallWizData->NumDynamicPages <= MAX_INSTALLWIZARD_DYNAPAGES) {
for(i = 0; i < InstallWizData->NumDynamicPages; i++) {
//
// For now, just verify that all handles are non-NULL.
//
if(!(InstallWizData->DynamicPages[i])) {
//
// Invalid property sheet page handle
//
return ERROR_INVALID_PARAMETER;
}
}
//
// Handles are verified, now verify Flags.
//
if(!(InstallWizData->Flags & NDW_INSTALLFLAG_ILLEGAL)) {
if(!(InstallWizData->DynamicPageFlags & DYNAWIZ_FLAG_ILLEGAL)) {
//
// parameter set validated
//
break;
}
}
}
}
return ERROR_INVALID_PARAMETER;
case DIF_NEWDEVICEWIZARD_PRESELECT :
case DIF_NEWDEVICEWIZARD_SELECT :
case DIF_NEWDEVICEWIZARD_PREANALYZE :
case DIF_NEWDEVICEWIZARD_POSTANALYZE :
case DIF_NEWDEVICEWIZARD_FINISHINSTALL :
case DIF_ADDPROPERTYPAGE_ADVANCED:
case DIF_ADDPROPERTYPAGE_BASIC:
case DIF_ADDREMOTEPROPERTYPAGE_ADVANCED:
//
// We should have a SP_NEWDEVICEWIZARD_DATA structure.
//
if(ClassInstallParamsSize == sizeof(SP_NEWDEVICEWIZARD_DATA)) {
PSP_NEWDEVICEWIZARD_DATA NewDevWizData;
DWORD i;
NewDevWizData = (PSP_NEWDEVICEWIZARD_DATA)ClassInstallParams;
//
// Validate the propsheet handle list.
//
if(NewDevWizData->NumDynamicPages <= MAX_INSTALLWIZARD_DYNAPAGES) {
for(i = 0; i < NewDevWizData->NumDynamicPages; i++) {
//
// For now, just verify that all handles are non-NULL.
//
if(!(NewDevWizData->DynamicPages[i])) {
//
// Invalid property sheet page handle
//
return ERROR_INVALID_PARAMETER;
}
}
//
// Handles are verified, now verify Flags.
//
if(!(NewDevWizData->Flags & NEWDEVICEWIZARD_FLAG_ILLEGAL)) {
//
// parameter set validated
//
break;
}
}
}
return ERROR_INVALID_PARAMETER;
case DIF_DETECT :
//
// We should have a SP_DETECTDEVICE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_DETECTDEVICE_PARAMS)) {
PSP_DETECTDEVICE_PARAMS DetectDeviceParams;
DetectDeviceParams = (PSP_DETECTDEVICE_PARAMS)ClassInstallParams;
//
// Make sure there's an entry point for the progress notification callback.
//
if(DetectDeviceParams->DetectProgressNotify) {
//
// parameter set validated.
//
break;
}
}
return ERROR_INVALID_PARAMETER;
case DIF_GETWINDOWSUPDATEINFO:
//
// We should have a SP_WINDOWSUPDATE_PARAMS structure.
//
if(ClassInstallParamsSize == sizeof(SP_WINDOWSUPDATE_PARAMS)) {
break;
}
return ERROR_INVALID_PARAMETER;
case DIF_TROUBLESHOOTER:
//
// We should have a SP_TROUBLESHOOTER_PARAMS structure.
//
if (ClassInstallParamsSize == sizeof(SP_TROUBLESHOOTER_PARAMS)) {
break;
}
return ERROR_INVALID_PARAMETER;
case DIF_POWERMESSAGEWAKE:
//
// We should have a SP_POWERMESSAGEWAKE_PARAMS structure.
//
if (ClassInstallParamsSize == sizeof(SP_POWERMESSAGEWAKE_PARAMS)) {
break;
}
return ERROR_INVALID_PARAMETER;
case DIF_INTERFACE_TO_DEVICE:
#ifdef UNICODE
//
// We should have a SP_INTERFACE_TO_DEVICE_PARAMS_W structure
//
if (ClassInstallParamsSize == sizeof(SP_INTERFACE_TO_DEVICE_PARAMS_W)) {
PSP_INTERFACE_TO_DEVICE_PARAMS_W InterfaceToDeviceParams;
InterfaceToDeviceParams = (PSP_INTERFACE_TO_DEVICE_PARAMS_W)ClassInstallParams;
if(!InterfaceToDeviceParams->Interface) {
//
// this must be defined
//
return ERROR_INVALID_PARAMETER;
}
//
// Validated
//
break;
}
#endif
return ERROR_INVALID_PARAMETER;
default :
//
// Some generic buffer. No validation to be done.
//
break;
}
//
// The class install parameters have been validated. Allocate a buffer for the
// new parameter structure.
//
if(!(NewParamBuffer = MyMalloc(ClassInstallParamsSize))) {
return ERROR_NOT_ENOUGH_MEMORY;
}
try {
CopyMemory(NewParamBuffer,
ClassInstallParams,
ClassInstallParamsSize
);
} except(EXCEPTION_EXECUTE_HANDLER) {
MyFree(NewParamBuffer);
NewParamBuffer = NULL;
}
if(!NewParamBuffer) {
//
// Then an error occurred and we couldn't store the new parameters.
//
return ERROR_INVALID_PARAMETER;
}
if(DevInstParamBlock->ClassInstallHeader) {
MyFree(DevInstParamBlock->ClassInstallHeader);
}
DevInstParamBlock->ClassInstallHeader = (PSP_CLASSINSTALL_HEADER)NewParamBuffer;
DevInstParamBlock->ClassInstallParamsSize = ClassInstallParamsSize;
DevInstParamBlock->Flags |= DI_CLASSINSTALLPARAMS;
return NO_ERROR;
}
DWORD
GetDrvInstallParams(
IN PDRIVER_NODE DriverNode,
OUT PSP_DRVINSTALL_PARAMS DriverInstallParams
)
/*++
Routine Description:
This routine fills in a SP_DRVINSTALL_PARAMS structure based on the
driver node supplied
Note: The supplied DriverInstallParams structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
DriverNode - Supplies the address of the driver node containing the
installation parameters to be retrieved.
DriverInstallParams - Supplies the address of a SP_DRVINSTALL_PARAMS
structure that will receive the installation parameters.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
NOTE:
This routine _does not_ set the Win98-compatible DNF_CLASS_DRIVER or
DNF_COMPATIBLE_DRIVER flags that indicate whether or not the driver node is
from a class or compatible driver list, respectively.
--*/
{
if(DriverInstallParams->cbSize != sizeof(SP_DRVINSTALL_PARAMS)) {
return ERROR_INVALID_USER_BUFFER;
}
//
// Copy the parameters.
//
DriverInstallParams->Rank = DriverNode->Rank;
DriverInstallParams->Flags = DriverNode->Flags;
DriverInstallParams->PrivateData = DriverNode->PrivateData;
//
// The 'Reserved' field of the SP_DRVINSTALL_PARAMS structure isn't currently
// used.
//
return NO_ERROR;
}
DWORD
SetDrvInstallParams(
IN PSP_DRVINSTALL_PARAMS DriverInstallParams,
OUT PDRIVER_NODE DriverNode
)
/*++
Routine Description:
This routine sets the driver installation parameters for the specified
driver node based on the caller-supplied SP_DRVINSTALL_PARAMS structure.
Note: The supplied DriverInstallParams structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
DriverInstallParams - Supplies the address of a SP_DRVINSTALL_PARAMS
structure containing the installation parameters to be used.
DriverNode - Supplies the address of the driver node whose installation
parameters are to be set.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, an ERROR_* code is returned.
--*/
{
if(DriverInstallParams->cbSize != sizeof(SP_DRVINSTALL_PARAMS)) {
return ERROR_INVALID_USER_BUFFER;
}
//
// Validate the flags.
//
if(DriverInstallParams->Flags & DNF_FLAGS_ILLEGAL) {
return ERROR_INVALID_FLAGS;
}
//
// No validation currently being done on Rank and PrivateData fields.
//
// We're ready to copy the parameters.
//
DriverNode->Rank = DriverInstallParams->Rank;
DriverNode->PrivateData = DriverInstallParams->PrivateData;
//
// Ignore attempts at modifying read-only flags.
//
DriverNode->Flags = (DriverInstallParams->Flags & ~DNF_FLAGS_READONLY) |
(DriverNode->Flags & DNF_FLAGS_READONLY);
return NO_ERROR;
}
LONG
AddMultiSzToStringTable(
IN PVOID StringTable,
IN PTCHAR MultiSzBuffer,
OUT PLONG StringIdList,
IN DWORD StringIdListSize,
IN BOOL CaseSensitive,
OUT PTCHAR *UnprocessedBuffer OPTIONAL
)
/*++
Routine Description:
This routine adds every string in the MultiSzBuffer to the specified
string table, and stores the resulting IDs in the supplied output buffer.
Arguments:
StringTable - Supplies the handle of the string table to add the strings to.
MultiSzBuffer - Supplies the address of the REG_MULTI_SZ buffer containing
the strings to be added.
StringIdList - Supplies the address of an array of LONGs that receives the
list of IDs for the added strings (the ordering of the IDs in this
list will be the same as the ordering of the strings in the MultiSzBuffer.
StringIdListSize - Supplies the size, in LONGs, of the StringIdList. If the
number of strings in MultiSzBuffer exceeds this amount, then only the
first StringIdListSize strings will be added, and the position in the
buffer where processing was halted will be stored in UnprocessedBuffer.
CaseSensitive - Specifies whether the string should be added case-sensitively.
UnprocessedBuffer - Optionally, supplies the address of a character pointer
that receives the position where processing was aborted because the
StringIdList buffer was filled. If all strings in the MultiSzBuffer were
processed, then this pointer will be set to NULL.
Return Value:
If successful, the return value is the number of strings added.
If failure, the return value is -1 (this happens if a string cannot be
added because of an out-of-memory condition).
--*/
{
PTSTR CurString;
LONG StringCount = 0;
for(CurString = MultiSzBuffer;
(*CurString && (StringCount < (LONG)StringIdListSize));
CurString += (lstrlen(CurString)+1)) {
if((StringIdList[StringCount] = pStringTableAddString(
StringTable,
CurString,
CaseSensitive
? STRTAB_CASE_SENSITIVE
: STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0
)) == -1)
{
StringCount = -1;
break;
}
StringCount++;
}
if(UnprocessedBuffer) {
*UnprocessedBuffer = (*CurString ? CurString : NULL);
}
return StringCount;
}
LONG
LookUpStringInDevInfoSet(
IN HDEVINFO DeviceInfoSet,
IN PTSTR String,
IN BOOL CaseSensitive
)
/*++
Routine Description:
This routine looks up the specified string in the string table associated with
the specified device information set.
Arguments:
DeviceInfoSet - Supplies the pointer to the device information set containing
the string table to look the string up in.
String - Specifies the string to be looked up. This string is not specified as
const, so that the lookup routine may modify it (i.e., lower-case it) without
having to allocate a temporary buffer.
CaseSensitive - If TRUE, then a case-sensitive lookup is performed, otherwise, the
lookup is case-insensitive.
Return Value:
If the function succeeds, the return value is the string's ID in the string table.
device information set.
If the function fails, the return value is -1.
--*/
{
PDEVICE_INFO_SET pDeviceInfoSet;
LONG StringId;
DWORD StringLen;
if(!(pDeviceInfoSet = AccessDeviceInfoSet(DeviceInfoSet))) {
return -1;
}
try {
StringId = pStringTableLookUpString(pDeviceInfoSet->StringTable,
String,
&StringLen,
NULL,
NULL,
STRTAB_BUFFER_WRITEABLE |
(CaseSensitive ? STRTAB_CASE_SENSITIVE
: STRTAB_CASE_INSENSITIVE),
NULL,0
);
} except(EXCEPTION_EXECUTE_HANDLER) {
StringId = -1;
}
UnlockDeviceInfoSet(pDeviceInfoSet);
return StringId;
}
BOOL
ShouldClassBeExcluded(
IN LPGUID ClassGuid,
IN BOOL ExcludeNoInstallClass
)
/*++
Routine Description:
This routine determines whether a class should be excluded from
some operation, based on whether it has a NoInstallClass or
NoUseClass value entry in its registry key.
Arguments:
ClassGuidString - Supplies the address of the class GUID to be
filtered.
ExcludeNoInstallClass - TRUE if NoInstallClass classes should be
excluded and FALSE if they should not be excluded.
Return Value:
If the class should be excluded, the return value is TRUE, otherwise
it is FALSE.
--*/
{
HKEY hk;
BOOL ExcludeClass = FALSE;
if((hk = SetupDiOpenClassRegKey(ClassGuid, KEY_READ)) != INVALID_HANDLE_VALUE) {
try {
if(RegQueryValueEx(hk,
pszNoUseClass,
NULL,
NULL,
NULL,
NULL) == ERROR_SUCCESS) {
ExcludeClass = TRUE;
} else if (ExcludeNoInstallClass &&
RegQueryValueEx(hk,
pszNoInstallClass,
NULL,
NULL,
NULL,
NULL) == ERROR_SUCCESS) {
ExcludeClass = TRUE;
}
} except(EXCEPTION_EXECUTE_HANDLER) {
//
// Nothing to do.
//
;
}
RegCloseKey(hk);
}
return ExcludeClass;
}
BOOL
ClassGuidFromInfVersionNode(
IN PINF_VERSION_NODE VersionNode,
OUT LPGUID ClassGuid
)
/*++
Routine Description:
This routine retrieves the class GUID for the INF whose version node
is specified. If the version node doesn't have a ClassGUID value,
then the Class value is retrieved, and all class GUIDs matching this
class name are retrieved. If there is exactly 1 match found, then
this GUID is returned, otherwise, the routine fails.
Arguments:
VersionNode - Supplies the address of an INF version node that
must contain either a ClassGUID or Class entry.
ClassGuid - Supplies the address of the variable that receives the
class GUID.
Return Value:
If a class GUID was retrieved, the return value is TRUE, otherwise,
it is FALSE.
--*/
{
PCTSTR GuidString, NameString;
DWORD NumGuids;
if(GuidString = pSetupGetVersionDatum(VersionNode, pszClassGuid)) {
if(pSetupGuidFromString(GuidString, ClassGuid) == NO_ERROR) {
return TRUE;
}
} else {
NameString = pSetupGetVersionDatum(VersionNode, pszClass);
if(NameString &&
SetupDiClassGuidsFromName(NameString,
ClassGuid,
1,
&NumGuids) && NumGuids) {
return TRUE;
}
}
return FALSE;
}
DWORD
EnumSingleDrvInf(
IN PCTSTR InfName,
IN OUT LPWIN32_FIND_DATA InfFileData,
IN DWORD SearchControl,
IN InfCacheCallback EnumInfCallback,
IN PSETUP_LOG_CONTEXT LogContext,
IN OUT PDRVSEARCH_CONTEXT Context
)
/*++
Routine Description:
This routine finds and opens the specified INF, and calls the
supplied callback routine for it. It's primary purpose is to
provide the callback with the same information the cache-search
does.
Arguments:
InfName - Supplies the name of the INF to call the callback for.
InfFileData - Supplies data returned from FindFirstFile/FindNextFile
for this INF. This parameter is used as input if the
INFINFO_INF_NAME_IS_ABSOLUTE SearchControl value is specified.
If any other SearchControl value is specified, then this buffer
is used to retrieve the Win32 Find Data for the specified INF.
SearchControl - Specifies where the INF should be searched for. May
be one of the following values:
INFINFO_INF_NAME_IS_ABSOLUTE - Open the specified INF name as-is.
INFINFO_DEFAULT_SEARCH - Look in INF dir, then System32
INFINFO_REVERSE_DEFAULT_SEARCH - reverse of the above
INFINFO_INF_PATH_LIST_SEARCH - search each dir in 'DevicePath' list
(stored in registry).
EnumInfCallback - Supplies the address of the callback routine
to use. The prototype for this callback is as follows:
typedef BOOL (CALLBACK * InfCacheCallback)(
IN PSETUP_LOG_CONTEXT LogContext,
IN PCTSTR InfPath,
IN PLOADED_INF pInf,
IN PVOID Context
);
The callback routine returns TRUE to continue enumeration,
or FALSE to abort it (with GetLastError set to ERROR_CANCELLED)
Context - Supplies the address of a buffer that the callback may
use to retrieve/return data.
Return Value:
If the function succeeds, and the enumeration callback returned
TRUE (continue enumeration), the return value is NO_ERROR.
If the function succeeds, and the enumeration callback returned
FALSE (abort enumeration), the return value is ERROR_CANCELLED.
If the function fails, the return value is an ERROR_* status code.
--*/
{
TCHAR PathBuffer[MAX_PATH];
PCTSTR InfFullPath;
DWORD Err;
BOOL TryPnf = FALSE;
PLOADED_INF Inf;
BOOL PnfWasUsed;
UINT ErrorLineNumber;
BOOL Continue;
if(SearchControl == INFINFO_INF_NAME_IS_ABSOLUTE) {
InfFullPath = InfName;
} else {
//
// The specified INF name should be searched for based
// on the SearchControl type.
//
if(Err = SearchForInfFile(InfName,
InfFileData,
SearchControl,
PathBuffer,
SIZECHARS(PathBuffer),
NULL) != NO_ERROR) {
return Err;
} else {
InfFullPath = PathBuffer;
}
}
//
// If the 'try pnf' flag isn't set, then we need to examine this particular filename,
// to see whether it's a pnf candidate.
//
if(Context->Flags & DRVSRCH_TRY_PNF) {
TryPnf = TRUE;
} else {
InfSourcePathFromFileName(InfName, NULL, &TryPnf);
}
//
// Attempt to load the INF file. Note that throughout this routine, we don't do any
// explicit locking of the INF before searching for sections, etc. That's because we
// know that this INF handle will never be exposed to anyone else, and thus there are
// no concurrency problems.
//
if((Err = LoadInfFile(InfFullPath,
InfFileData,
INF_STYLE_WIN4 | ((Context->Flags & DRVSRCH_USEOLDINFS) ? INF_STYLE_OLDNT : 0),
LDINF_FLAG_IGNORE_VOLATILE_DIRIDS | (TryPnf ? LDINF_FLAG_ALWAYS_TRY_PNF : LDINF_FLAG_MATCH_CLASS_GUID),
(Context->Flags & DRVSRCH_FILTERCLASS) ? Context->ClassGuidString : NULL,
NULL,
NULL,
NULL,
LogContext,
&Inf,
&ErrorLineNumber,
&PnfWasUsed)) != NO_ERROR) {
WriteLogEntry(
LogContext,
DRIVER_LOG_ERROR,
MSG_LOG_COULD_NOT_LOAD_INF,
NULL,
InfFullPath);
return NO_ERROR;
}
//
// Call the supplied callback routine.
//
Err = EnumInfCallback(LogContext, InfFullPath, Inf, PnfWasUsed, Context) ? NO_ERROR : GetLastError();
MYASSERT(Err == NO_ERROR || Err == ERROR_CANCELLED);
FreeInfFile(Inf);
return Err;
}
DWORD
EnumDrvInfsInDirPathList(
IN PCTSTR DirPathList, OPTIONAL
IN DWORD SearchControl,
IN InfCacheCallback EnumInfCallback,
IN BOOL IgnoreNonCriticalErrors,
IN PSETUP_LOG_CONTEXT LogContext,
IN OUT PDRVSEARCH_CONTEXT Context
)
/*++
Routine Description:
This routine enumerates all INFs present in the search list specified
by SearchControl, using the accelerated search cache
Arguments:
DirPathList - Optionally, specifies the search path listing all
directories to be enumerated. This string may contain multiple
paths, separated by semicolons (;). If this parameter is not
specified, then the SearchControl value will determine the
search path to be used.
SearchControl - Specifies the set of directories to be enumerated.
If SearchPath is specified, this parameter is ignored. May be
one of the following values:
INFINFO_DEFAULT_SEARCH : enumerate %windir%\inf, then
%windir%\system32
INFINFO_REVERSE_DEFAULT_SEARCH : reverse of the above
INFINFO_INF_PATH_LIST_SEARCH : enumerate INFs in each of the
directories listed in the DevicePath value entry under:
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion.
EnumInfCallback - Supplies the address of the callback routine
to use. The prototype for this callback is as follows:
typedef BOOL (CALLBACK * InfCacheCallback)(
IN PSETUP_LOG_CONTEXT LogContext,
IN PCTSTR InfPath,
IN PLOADED_INF pInf,
IN PVOID Context
);
The callback routine returns TRUE to continue enumeration,
or FALSE to abort it (with GetLastError set to ERROR_CANCELLED)
IgnoreNonCriticalErrors - If TRUE, then all errors are ignored
except those that prevent enumeration from continuing.
Context - Supplies the address of a buffer that the callback may
use to retrieve/return data.
Return Value:
If the function succeeds, and enumeration has not been aborted,
then the return value is NO_ERROR.
If the function succeeds, and enumeration has been aborted,
then the return value is ERROR_CANCELLED.
If the function fails, the return value is an ERROR_* status code.
--*/
{
DWORD Err = NO_ERROR;
PCTSTR PathList, CurPath;
BOOL FreePathList = TRUE;
DWORD Action;
PTSTR ClassIdList = NULL;
PTSTR HwIdList = NULL;
if(DirPathList) {
//
// Use the specified search path(s).
//
PathList = GetFullyQualifiedMultiSzPathList(DirPathList);
} else if(SearchControl == INFINFO_INF_PATH_LIST_SEARCH) {
//
// Use our global list of INF search paths.
//
PathList = InfSearchPaths;
FreePathList = FALSE;
} else {
//
// Retrieve the path list.
//
PathList = AllocAndReturnDriverSearchList(SearchControl);
}
if(!PathList) {
Err = ERROR_NOT_ENOUGH_MEMORY;
FreePathList = FALSE;
goto clean0;
}
//
// If we're doing a non-native driver search, we want to search INFs the
// old-fashioned way (i.e., sans INF cache).
//
if(Context->AltPlatformInfo) {
Action = INFCACHE_ENUMALL;
} else {
Action = INFCACHE_DEFAULT;
}
if(Context->Flags & DRVSRCH_TRY_PNF) {
//
// TRY_PNF also forces us to build/use cache, except when we're doing
// non-native driver searching.
//
Action |= INFCACHE_FORCE_PNF;
if(!Context->AltPlatformInfo) {
Action |= INFCACHE_FORCE_CACHE;
}
}
if(!(Context->Flags & DRVSRCH_USEOLDINFS)) {
//
// don't report old inf's
//
Action |= INFCACHE_EXC_OLDINFS;
}
if (Context->Flags & DRVSRCH_EXCLUDE_OLD_INET_DRIVERS) {
//
// exclude old internet INF's from search
//
Action |= INFCACHE_EXC_URL;
}
Action |= INFCACHE_EXC_NOMANU; // exclude INF's that have no/empty [Manufacturer] section
Action |= INFCACHE_EXC_NULLCLASS; // exclude INF's that have a ClassGuid = {<nill>}
Action |= INFCACHE_EXC_NOCLASS; // exclude INF's that don't have class information
//
// build class list if needed
//
// this must consist of (1) the class GUID (string form)
// (2) name of class
// (3) if USEOLDINF's specified, legacy name of class
//
if (Context->Flags & DRVSRCH_FILTERCLASS) {
DWORD len = 2;
DWORD reqsize;
TCHAR clsnam[MAX_CLASS_NAME_LEN];
MYASSERT(Context->ClassGuidString);
len += 1 + lstrlen(Context->ClassGuidString);
//
// Call SetupDiClassNameFromGuid to retrieve the class name
// corresponding to this class GUID.
// this allows us to find INF's that list this specific class name
// but not the GUID, or list this class name but a different GUID
//
if(SetupDiClassNameFromGuid(&Context->ClassGuid,
clsnam,
SIZECHARS(clsnam),
NULL) && clsnam[0]) {
len += 1+lstrlen(clsnam);
} else {
clsnam[0]=TEXT('\0');
}
if (Context->Flags & DRVSRCH_USEOLDINFS) {
len += 1 + lstrlen(Context->LegacyClassName);
}
ClassIdList = (PTSTR)MyMalloc(len*sizeof(TCHAR));
if(!ClassIdList) {
goto clean0;
}
len = 0;
lstrcpy(ClassIdList+len,Context->ClassGuidString);
len += 1 + lstrlen(ClassIdList+len);
if(clsnam[0]) {
lstrcpy(ClassIdList+len,clsnam);
len += 1 + lstrlen(ClassIdList+len);
}
if (Context->Flags & DRVSRCH_USEOLDINFS) {
lstrcpy(ClassIdList+len,Context->LegacyClassName);
len += 1 + lstrlen(ClassIdList+len);
}
ClassIdList[len++]=TEXT('\0');
} else {
MYASSERT(!(Context->Flags & DRVSRCH_USEOLDINFS));
}
//
// build HwIdList if needed
//
if (!Context->BuildClassDrvList) {
DWORD len = 2;
PLONG pDevIdNum;
PCTSTR CurDevId;
int i;
//
// first pass, obtain size
//
for(i = 0; i < 2; i++) {
for(pDevIdNum = Context->IdList[i]; *pDevIdNum != -1; pDevIdNum++) {
//
// First, obtain the device ID string corresponding to our stored-away
// string table ID.
//
CurDevId = pStringTableStringFromId(Context->StringTable, *pDevIdNum);
MYASSERT(CurDevId);
len += 1+lstrlen(CurDevId);
}
}
HwIdList = (PTSTR)MyMalloc(len*sizeof(TCHAR));
if(!HwIdList) {
goto clean0;
}
//
// second pass, write list
//
len = 0;
for(i = 0; i < 2; i++) {
for(pDevIdNum = Context->IdList[i]; *pDevIdNum != -1; pDevIdNum++) {
//
// First, obtain the device ID string corresponding to our stored-away
// string table ID.
//
CurDevId = pStringTableStringFromId(Context->StringTable, *pDevIdNum);
lstrcpy(HwIdList+len,CurDevId);
len += 1+lstrlen(HwIdList+len);
}
}
HwIdList[len++]=TEXT('\0');
}
Err = InfCacheSearchPath(LogContext,
Action,
PathList,
EnumInfCallback,
Context,
ClassIdList,
HwIdList
);
clean0:
if (ClassIdList) {
MyFree(ClassIdList);
}
if (HwIdList) {
MyFree(HwIdList);
}
if(FreePathList) {
MyFree(PathList);
}
if((Err == ERROR_CANCELLED) || !IgnoreNonCriticalErrors) {
return Err;
} else {
return NO_ERROR;
}
}
DWORD
CreateDriverNode(
IN UINT Rank,
IN PCTSTR DevDescription,
IN PCTSTR DrvDescription,
IN PCTSTR ProviderName, OPTIONAL
IN PCTSTR MfgName,
IN PFILETIME InfDate,
IN PCTSTR InfFileName,
IN PCTSTR InfSectionName,
IN PVOID StringTable,
IN LONG InfClassGuidIndex,
OUT PDRIVER_NODE *DriverNode
)
/*++
Routine Description:
This routine creates a new driver node, and initializes it with
the supplied information.
Arguments:
Rank - The rank match of the driver node being created. This is a
value in [0..n], where a lower number indicates a higher level of
compatibility between the driver represented by the node, and the
device being installed.
DevDescription - Supplies the description of the device that will be
supported by this driver.
DrvDescription - Supplies the description of this driver.
ProviderName - Supplies the name of the provider of this INF.
MfgName - Supplies the name of the manufacturer of this device.
InfDate - Supplies the address of the variable containing the date
when the INF was last written to.
InfFileName - Supplies the full name of the INF file for this driver.
InfSectionName - Supplies the name of the install section in the INF
that would be used to install this driver.
StringTable - Supplies the string table that the specified strings are
to be added to.
InfClassGuidIndex - Supplies the index into the containing HDEVINFO set's
GUID table where the class GUID for this INF is stored.
DriverNode - Supplies the address of a DRIVER_NODE pointer that will
receive a pointer to the newly-allocated node.
Return Value:
If the function succeeds, the return value is NO_ERROR, otherwise the
ERROR_* code is returned.
--*/
{
PDRIVER_NODE pDriverNode;
DWORD Err = ERROR_NOT_ENOUGH_MEMORY;
TCHAR TempString[MAX_PATH]; // an INF path is the longest string we'll store in here.
//
// validate the sizes of the strings passed in
// certain assumptions are made about the strings thoughout
// but at this point the sizes are not yet within our control
//
if((DevDescription && (lstrlen(DevDescription) >= LINE_LEN)) ||
(DrvDescription && (lstrlen(DrvDescription) >= LINE_LEN)) ||
(ProviderName && (lstrlen(ProviderName) >= LINE_LEN)) ||
(MfgName && (lstrlen(MfgName) >= LINE_LEN)) ||
(InfFileName && (lstrlen(InfFileName) >= MAX_PATH)) ||
(InfSectionName && (lstrlen(InfSectionName) >= LINE_LEN))
) {
//
// any of these could potentially cause a buffer overflow later
// on, so not allowed
//
return ERROR_BUFFER_OVERFLOW;
}
if(!(pDriverNode = MyMalloc(sizeof(DRIVER_NODE)))) {
return Err;
}
//
// Initialize the various fields in the driver node structure.
//
ZeroMemory(pDriverNode, sizeof(DRIVER_NODE));
pDriverNode->Rank = Rank;
pDriverNode->InfDate = *InfDate;
pDriverNode->HardwareId = -1;
pDriverNode->GuidIndex = InfClassGuidIndex;
//
// Now, add the strings to the associated string table, and store the string IDs.
//
// Cast the DrvDescription string being added case-sensitively as PTSTR instead of PCTSTR.
// Case sensitive string additions don't modify the buffer passed in, so we're safe in
// doing so.
//
if((pDriverNode->DrvDescription = pStringTableAddString(StringTable,
(PTSTR)DrvDescription,
STRTAB_CASE_SENSITIVE,
NULL,0)) == -1) {
goto clean0;
}
//
// For DevDescription, ProviderName, and MfgName, we use the string table IDs to do fast
// comparisons for driver nodes. Thus, we need to store case-insensitive IDs. However,
// these strings are also used for display, so we have to store them in their case-sensitive
// form as well.
//
// We must first copy the strings into a modifiable buffer, since we're going to need to add
// them case-insensitively.
//
lstrcpyn(TempString, DevDescription, SIZECHARS(TempString));
if((pDriverNode->DevDescriptionDisplayName = pStringTableAddString(StringTable,
TempString,
STRTAB_CASE_SENSITIVE,
NULL,0)) == -1) {
goto clean0;
}
if((pDriverNode->DevDescription = pStringTableAddString(
StringTable,
TempString,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
goto clean0;
}
if(ProviderName) {
lstrcpyn(TempString, ProviderName, SIZECHARS(TempString));
if((pDriverNode->ProviderDisplayName = pStringTableAddString(
StringTable,
TempString,
STRTAB_CASE_SENSITIVE,
NULL,0)) == -1) {
goto clean0;
}
if((pDriverNode->ProviderName = pStringTableAddString(
StringTable,
TempString,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
goto clean0;
}
} else {
pDriverNode->ProviderName = pDriverNode->ProviderDisplayName = -1;
}
lstrcpyn(TempString, MfgName, SIZECHARS(TempString));
if((pDriverNode->MfgDisplayName = pStringTableAddString(StringTable,
TempString,
STRTAB_CASE_SENSITIVE,
NULL,0)) == -1) {
goto clean0;
}
if((pDriverNode->MfgName = pStringTableAddString(
StringTable,
TempString,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
goto clean0;
}
lstrcpyn(TempString, InfFileName, SIZECHARS(TempString));
if((pDriverNode->InfFileName = pStringTableAddString(
StringTable,
TempString,
STRTAB_CASE_INSENSITIVE | STRTAB_BUFFER_WRITEABLE,
NULL,0)) == -1) {
goto clean0;
}
//
// Add INF section name case-sensitively, since we may have a legacy driver node, which requires
// that the original case be maintained.
//
if((pDriverNode->InfSectionName = pStringTableAddString(StringTable,
(PTSTR)InfSectionName,
STRTAB_CASE_SENSITIVE,
NULL,0)) == -1) {
goto clean0;
}
//
// If we get to here, then we've successfully stored all strings.
//
Err = NO_ERROR;
clean0:
if(Err == NO_ERROR) {
*DriverNode = pDriverNode;
} else {
DestroyDriverNodes(pDriverNode, (PDEVICE_INFO_SET)NULL);
}
return Err;
}
BOOL
pRemoveDirectory(
PTSTR Path
)
/*++
Routine Description:
This routine recursively deletes the specified directory and all the
files in it.
Arguments:
Path - Path to remove.
Return Value:
TRUE - if the directory was sucessfully deleted.
FALSE - if the directory was not successfully deleted.
--*/
{
WIN32_FIND_DATA FindFileData;
HANDLE hFind;
BOOL bFind = TRUE;
BOOL Ret = TRUE;
TCHAR szTemp[MAX_PATH];
TCHAR FindPath[MAX_PATH];
DWORD dwAttributes;
//
//If this is a directory then tack on *.* to the end of the path
//
lstrcpyn(FindPath, Path,SIZECHARS(FindPath));
dwAttributes = GetFileAttributes(Path);
if (dwAttributes & FILE_ATTRIBUTE_DIRECTORY) {
pSetupConcatenatePaths(FindPath,TEXT("*.*"),SIZECHARS(FindPath),NULL);
}
hFind = FindFirstFile(FindPath, &FindFileData);
while (hFind != INVALID_HANDLE_VALUE && bFind == TRUE) {
lstrcpyn(szTemp, Path,SIZECHARS(szTemp));
pSetupConcatenatePaths(szTemp,FindFileData.cFileName,SIZECHARS(szTemp),NULL);
//
//This is a directory
//
if ((FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) &&
(FindFileData.cFileName[0] != TEXT('.'))) {
if (!pRemoveDirectory(szTemp)) {
Ret = FALSE;
}
RemoveDirectory(szTemp);
}
//
//This is a file
//
else if (!(FindFileData.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)) {
DeleteFile(szTemp);
}
bFind = FindNextFile(hFind, &FindFileData);
}
FindClose(hFind);
//
//Remove the root directory
//
dwAttributes = GetFileAttributes(Path);
if (dwAttributes & FILE_ATTRIBUTE_DIRECTORY) {
if (!RemoveDirectory(Path)) {
Ret = FALSE;
}
}
return Ret;
}
BOOL
RemoveCDMDirectory(
IN PTSTR FullPathName
)
/*++
Routine Description:
This routine deletes the Code Download Manager temporary directory. It will
only delete the directory and all of it's contents if:
1) it is a subdirectory of the Windows TEMP directory.
Note that we also assume that this is a full path (including a filename at the end).
We will strip off the filename and remove the entire directory where this INF file
is located.
Arguments:
FullPathName - Full path to the directory that might be deleted.
Return Value:
TRUE - if the directory was sucessfully deleted.
FALSE - if the directory was not successfully deleted.
--*/
{
TCHAR Directory[MAX_PATH];
TCHAR TempPath[MAX_PATH];
PTSTR FileName;
//
//First stip off the file name so we are just left with the directory.
//
lstrcpyn(Directory, FullPathName,SIZECHARS(Directory));
if ((FileName = (PTSTR)pSetupGetFileTitle((PCTSTR)Directory))) {
*FileName = TEXT('\0');
}
if (Directory[0] == TEXT('\0')) {
return FALSE;
}
if (GetTempPath(SIZECHARS(TempPath), TempPath) == 0) {
lstrcpy(TempPath, TEXT("UNKNOWN"));
}
//
// Only remove this directory if it is a subdirectory of the TEMP path
//
if (_tcsnicmp(TempPath, Directory, sizeof(TempPath) / sizeof(TCHAR))) {
//
//Remove the directory
//
return pRemoveDirectory(Directory);
} else {
TCHAR Debug[512];
wsprintf(Debug, TEXT("SETUPAPI: RemoveCDMDirectory(%s) -> bogus path\n"), FullPathName);
DebugPrintEx(DPFLTR_ERROR_LEVEL, Debug);
MYASSERT (FALSE);
}
return FALSE;
}
VOID
DestroyDriverNodes(
IN PDRIVER_NODE DriverNode,
IN PDEVICE_INFO_SET pDeviceInfoSet
)
/*++
Routine Description:
This routine destroys the specified driver node linked list, freeing
all resources associated with it.
Arguments:
DriverNode - Supplies a pointer to the head of the driver node linked
list to be destroyed.
Return Value:
None.
--*/
{
PDRIVER_NODE NextNode;
PTSTR szInfFileName = NULL;
while(DriverNode) {
NextNode = DriverNode->Next;
if(DriverNode->CompatIdList) {
MyFree(DriverNode->CompatIdList);
}
//
// If this driver was from the Internet then we want to delete the directory where
// it lives.
//
if (pDeviceInfoSet && (DriverNode->Flags & PDNF_CLEANUP_SOURCE_PATH)) {
szInfFileName = NULL;
szInfFileName = pStringTableStringFromId(pDeviceInfoSet->StringTable,
DriverNode->InfFileName);
if (*szInfFileName) {
RemoveCDMDirectory(szInfFileName);
}
}
MyFree(DriverNode);
DriverNode = NextNode;
}
}
PTSTR
GetFullyQualifiedMultiSzPathList(
IN PCTSTR PathList
)
/*++
Routine Description:
This routine takes a list of semicolon-delimited directory paths, and returns a
newly-allocated buffer containing a multi-sz list of those paths, fully qualified.
The buffer returned from this routine must be freed with MyFree().
Arguments:
PathList - list of directories to be converted.
Return Value:
If the function succeeds, the return value is a pointer to the allocated buffer
containing the multi-sz list.
If failure (due to out-of-memory), the return value is NULL.
--*/
{
TCHAR PathListBuffer[MAX_PATH + 1]; // extra char 'cause this is a multi-sz list
PTSTR CurPath, CharPos, NewBuffer, TempPtr;
DWORD RequiredSize;
//
// First, convert this semicolon-delimited list into a multi-sz list.
//
lstrcpyn(PathListBuffer, PathList,SIZECHARS(PathListBuffer));
RequiredSize = DelimStringToMultiSz(PathListBuffer,
SIZECHARS(PathListBuffer),
TEXT(';')
);
RequiredSize = (RequiredSize * MAX_PATH * sizeof(TCHAR)) + sizeof(TCHAR);
if(!(NewBuffer = MyMalloc(RequiredSize * sizeof(TCHAR)))) {
return NULL;
}
//
// Now fill in the buffer with the fully-qualified directory paths.
//
CharPos = NewBuffer;
for(CurPath = PathListBuffer; *CurPath; CurPath += (lstrlen(CurPath) + 1)) {
RequiredSize = GetFullPathName(CurPath,
MAX_PATH,
CharPos,
&TempPtr
);
if(!RequiredSize || (RequiredSize >= MAX_PATH)) {
//
// If we start failing because MAX_PATH isn't big enough anymore, we
// wanna know about it!
//
MYASSERT(RequiredSize < MAX_PATH);
MyFree(NewBuffer);
return NULL;
}
CharPos += (RequiredSize + 1);
}
*(CharPos++) = TEXT('\0'); // add extra NULL to terminate the multi-sz list.
//
// Trim this buffer down to just the size required (this should never fail, but
// it's no big deal if it does).
//
if(TempPtr = MyRealloc(NewBuffer, (DWORD)((PBYTE)CharPos - (PBYTE)NewBuffer))) {
return TempPtr;
}
return NewBuffer;
}
BOOL
InitMiniIconList(
VOID
)
/*++
Routine Description:
This routine initializes the global mini-icon list, including setting up
the synchronization lock. When this global structure is no longer needed,
DestroyMiniIconList must be called.
Arguments:
None.
Return Value:
If the function succeeds, the return value is TRUE, otherwise it is FALSE.
--*/
{
ZeroMemory(&GlobalMiniIconList, sizeof(MINI_ICON_LIST));
return InitializeSynchronizedAccess(&GlobalMiniIconList.Lock);
}
BOOL
DestroyMiniIconList(
VOID
)
/*++
Routine Description:
This routine destroys the global mini-icon list created by a call to
InitMiniIconList.
Arguments:
None.
Return Value:
If the function succeeds, the return value is TRUE, otherwise it is FALSE.
--*/
{
if(LockMiniIconList(&GlobalMiniIconList)) {
DestroyMiniIcons();
DestroySynchronizedAccess(&GlobalMiniIconList.Lock);
return TRUE;
}
return FALSE;
}
DWORD
GetModuleEntryPoint(
IN HKEY hk, OPTIONAL
IN LPCTSTR RegistryValue,
IN LPCTSTR DefaultProcName,
OUT HINSTANCE *phinst,
OUT FARPROC *pEntryPoint,
OUT HANDLE *pFusionContext,
OUT BOOL *pMustAbort, OPTIONAL
IN PSETUP_LOG_CONTEXT LogContext, OPTIONAL
IN HWND Owner, OPTIONAL
IN CONST GUID *DeviceSetupClassGuid, OPTIONAL
IN SetupapiVerifyProblem Problem,
IN LPCTSTR DeviceDesc, OPTIONAL
IN DWORD DriverSigningPolicy,
IN DWORD NoUI,
IN OUT HCATADMIN *hCatAdmin OPTIONAL
)
/*++
Routine Description:
This routine is used to retrieve the procedure address of a specified
function in a specified module.
Arguments:
hk - Optionally, supplies an open registry key that contains a value entry
specifying the module (and optionally, the entry point) to be retrieved.
If this parameter is not specified (set to INVALID_HANDLE_VALUE), then
the RegistryValue parameter is interpreted as the data itself, instead
of the value containing the entry.
RegistryValue - If hk is supplied, this specifies the name of the registry
value that contains the module and entry point information. Otherwise,
it contains the actual data specifying the module/entry point to be
used.
DefaultProcName - Supplies the name of a default procedure to use if one
is not specified in the registry value.
phinst - Supplies the address of a variable that receives a handle to the
specified module, if it is successfully loaded and the entry point found.
pEntryPoint - Supplies the address of a function pointer that receives the
specified entry point in the loaded module.
pFusionContext - Supplies a handle to a fusion context for the dll
if the dll has a manifest, NULL otherwise.
pMustAbort - Optionally, supplies the address of a boolean variable that is
set upon return to indicate whether a failure (i.e., return code other
than NO_ERROR) should abort the device installer action underway. This
variable is always set to FALSE when the function succeeds.
If this argument is not supplied, then the arguments below are ignored.
LogContext - Optionally, supplies the log context to be used when logging
entries into the setupapi logfile. Not used if pMustAbort isn't
specified.
Owner - Optionally, supplies window to own driver signing dialogs, if any.
Not used if pMustAbort isn't specified.
DeviceSetupClassGuid - Optionally, supplies the address of a GUID that
indicates the device setup class associated with this operation. This
is used for retrieval of validation platform information, as well as
for retrieval of the DeviceDesc to be used for driver signing errors
(if the caller doesn't specify a DeviceDesc). Not used if pMustAbort
isn't specified.
Problem - Supplies the problem type to use if driver signing error occurs.
Not used if pMustAbort isn't specified.
DeviceDesc - Optionally, supplies the device description to use if driver
signing error occurs. Not used if pMustAbort isn't specified.
DriverSigningPolicy - Supplies policy to be employed if a driver signing
error is encountered. Not used if pMustAbort isn't specified.
NoUI - Set to true if driver signing popups are to be suppressed (e.g.,
because the user has previously responded to a warning dialog and
elected to proceed. Not used if pMustAbort isn't specified.
hCatAdmin - optionally, supplies the address of an HCATADMIN handle. If
the handle pointed to is NULL, a handle will be acquired (if possible)
via CryptCATAdminAcquireContext and returned to the caller. If the
handle pointed to is non-NULL, then that handle will be used for any
validation done via this routine. If the pointer itself is NULL, then
an hCatAdmin will be acquired for the duration of this call, and
released before returning.
NOTE: it is the caller's responsibility to free the crypto context
handle returned by this routine by calling CryptCATAdminReleaseContext.
This handle may be opened in either success or failure cases, so the
caller must check for non-NULL returned handle in both cases.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the specified value entry could not be found, the return value is
ERROR_DI_DO_DEFAULT.
If any other error is encountered, an ERROR_* code is returned.
Remarks:
This function is useful for loading a class installer or property provider,
and receiving the procedure address specified. The syntax of the registry
entry is: value=dll[,proc name] where dll is the name of the module to load,
and proc name is an optional procedure to search for. If proc name is not
specified, the procedure specified by DefaultProcName will be used.
--*/
{
DWORD Err = ERROR_INVALID_DATA; // relevent only if we execute 'finally' due to exception
DWORD RegDataType, BufferSize;
TCHAR TempBuffer[MAX_PATH];
TCHAR ModulePath[MAX_PATH];
SPFUSIONINSTANCE spFusionInstance;
#if UNICODE
//
// this used to be ModulePath reused... to reduce chance of breaking anything, kept size the same
// I've seperated this out as we want ModulePath for logging
//
CHAR ProcBuffer[MAX_PATH*sizeof(TCHAR)];
#endif
PTSTR StringPtr;
PSTR ProcName; // ANSI-only, because it's used for GetProcAddress.
PSP_ALTPLATFORM_INFO_V2 ValidationPlatform;
PTSTR LocalDeviceDesc;
*phinst = NULL;
*pEntryPoint = NULL;
*pFusionContext = NULL;
if(pMustAbort) {
*pMustAbort = FALSE;
}
if(hk != INVALID_HANDLE_VALUE) {
//
// See if the specified value entry is present (and of the right data type).
//
BufferSize = sizeof(TempBuffer);
if((RegQueryValueEx(hk,
RegistryValue,
NULL,
&RegDataType,
(PBYTE)TempBuffer,
&BufferSize) != ERROR_SUCCESS) ||
(RegDataType != REG_SZ)) {
return ERROR_DI_DO_DEFAULT;
}
} else {
//
// Copy the specified data into the buffer as if we'd just retrieved it from
// the registry.
//
BufferSize = (lstrlen(RegistryValue) + 1) * sizeof(TCHAR);
CopyMemory(TempBuffer, RegistryValue, BufferSize);
}
lstrcpyn(ModulePath, SystemDirectory, MAX_PATH);
//
// Find the beginning of the entry point name, if present.
//
for(StringPtr = TempBuffer + ((BufferSize / sizeof(TCHAR)) - 2);
StringPtr >= TempBuffer;
StringPtr--) {
if(*StringPtr == TEXT(',')) {
*(StringPtr++) = TEXT('\0');
break;
}
//
// If we hit a double-quote mark, then set the character pointer
// to the beginning of the string so we'll terminate the search.
//
if(*StringPtr == TEXT('\"')) {
StringPtr = TempBuffer;
}
}
if(StringPtr > TempBuffer) {
//
// We encountered a comma in the string. Scan forward from that point
// to ensure that there aren't any leading spaces in the entry point
// name.
//
for(; (*StringPtr && IsWhitespace(StringPtr)); StringPtr++);
if(!(*StringPtr)) {
//
// Then there was no entry point given after all.
//
StringPtr = TempBuffer;
}
}
pSetupConcatenatePaths(ModulePath, TempBuffer, MAX_PATH, NULL);
//
// If requested, check the digital signature of this module before loading
// it.
//
if(pMustAbort) {
//
// Retrieve validation information relevant to this device setup class.
//
LocalDeviceDesc = NULL;
IsInfForDeviceInstall(LogContext,
DeviceSetupClassGuid,
NULL,
DeviceDesc ? NULL : &LocalDeviceDesc,
&ValidationPlatform,
NULL,
NULL
);
Err = _VerifyFile(LogContext,
hCatAdmin,
NULL,
NULL,
NULL,
0,
pSetupGetFileTitle(ModulePath),
ModulePath,
NULL,
NULL,
FALSE,
ValidationPlatform,
(VERIFY_FILE_USE_OEM_CATALOGS | VERIFY_FILE_NO_DRIVERBLOCKED_CHECK),
NULL,
NULL,
NULL,
NULL
);
if(Err != NO_ERROR) {
if(!pSetupHandleFailedVerification(Owner,
Problem,
ModulePath,
DeviceDesc ? DeviceDesc : LocalDeviceDesc,
DriverSigningPolicy,
NoUI,
Err,
LogContext,
NULL,
NULL)) {
//
// The operation should be aborted.
//
*pMustAbort = TRUE;
}
}
//
// Free buffers we may have retrieved when calling
// IsInfForDeviceInstall().
//
if(LocalDeviceDesc) {
MyFree(LocalDeviceDesc);
}
if(ValidationPlatform) {
MyFree(ValidationPlatform);
}
if(*pMustAbort) {
MYASSERT(Err != NO_ERROR);
return Err;
}
}
try {
*pFusionContext = spFusionContextFromModule(ModulePath);
spFusionEnterContext(*pFusionContext,&spFusionInstance);
if(!(*phinst = LoadLibrary(ModulePath))) {
Err = GetLastError();
if (LogContext) {
WriteLogEntry(
LogContext,
DRIVER_LOG_ERROR | SETUP_LOG_BUFFER,
MSG_LOG_MOD_LOADFAIL_ERROR,
NULL,
ModulePath);
WriteLogError(
LogContext,
DRIVER_LOG_ERROR,
Err);
}
leave;
}
//
// We've successfully loaded the module, now get the entry point.
// (GetProcAddress is an ANSI-only API, so if we're compiled UNICODE,
// we have to convert the proc name to ANSI here.
//
#ifdef UNICODE
ProcName = ProcBuffer;
#endif
if(StringPtr > TempBuffer) {
//
// An entry point was specified in the value entry--use it instead
// of the default provided.
//
#ifdef UNICODE
WideCharToMultiByte(CP_ACP,
0,
StringPtr,
-1,
ProcName,
sizeof(ProcBuffer),
NULL,
NULL
);
#else // !UNICODE
ProcName = StringPtr;
#endif // !UNICODE
} else {
//
// No entry point was specified--use default.
//
#ifdef UNICODE
WideCharToMultiByte(CP_ACP,
0,
DefaultProcName,
-1,
ProcName,
sizeof(ProcBuffer),
NULL,
NULL
);
#else // !UNICODE
ProcName = (PSTR)DefaultProcName;
#endif // !UNICODE
}
if(!(*pEntryPoint = (FARPROC)GetProcAddress(*phinst, ProcName))) {
Err = GetLastError();
FreeLibrary(*phinst);
*phinst = NULL;
if (LogContext) {
WriteLogEntry(
LogContext,
DRIVER_LOG_ERROR | SETUP_LOG_BUFFER,
MSG_LOG_MOD_PROCFAIL_ERROR,
NULL,
ModulePath,
(StringPtr > TempBuffer ? StringPtr : DefaultProcName));
WriteLogError(
LogContext,
DRIVER_LOG_ERROR,
Err);
}
leave;
}
if (LogContext) {
WriteLogEntry(
LogContext,
DRIVER_LOG_VERBOSE1,
MSG_LOG_MOD_LIST_PROC,
NULL,
ModulePath,
(StringPtr > TempBuffer ? StringPtr : DefaultProcName));
}
Err = NO_ERROR;
} finally {
if(Err && *phinst) {
FreeLibrary(*phinst);
*phinst = NULL;
}
spFusionLeaveContext(&spFusionInstance);
if(Err != NO_ERROR) {
spFusionKillContext(*pFusionContext);
*pFusionContext = NULL;
}
}
return Err;
}
DWORD
pSetupGuidFromString(
IN PCTSTR GuidString,
OUT LPGUID Guid
)
/*++
Routine Description:
This routine converts the character representation of a GUID into its binary
form (a GUID struct). The GUID is in the following form:
{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}
where 'x' is a hexadecimal digit.
Arguments:
GuidString - Supplies a pointer to the null-terminated GUID string. The
Guid - Supplies a pointer to the variable that receives the GUID structure.
Return Value:
If the function succeeds, the return value is NO_ERROR.
If the function fails, the return value is RPC_S_INVALID_STRING_UUID.
--*/
{
TCHAR UuidBuffer[GUID_STRING_LEN - 1];
//
// Since we're using a RPC UUID routine, we need to strip off the surrounding
// curly braces first.
//
if(*GuidString++ != TEXT('{')) {
return RPC_S_INVALID_STRING_UUID;
}
lstrcpyn(UuidBuffer, GuidString, SIZECHARS(UuidBuffer));
if((lstrlen(UuidBuffer) != GUID_STRING_LEN - 2) ||
(UuidBuffer[GUID_STRING_LEN - 3] != TEXT('}'))) {
return RPC_S_INVALID_STRING_UUID;
}
UuidBuffer[GUID_STRING_LEN - 3] = TEXT('\0');
return ((UuidFromString(UuidBuffer, Guid) == RPC_S_OK) ? NO_ERROR : RPC_S_INVALID_STRING_UUID);
}
DWORD
pSetupStringFromGuid(
IN CONST GUID *Guid,
OUT PTSTR GuidString,
IN DWORD GuidStringSize
)
/*++
Routine Description:
This routine converts a GUID into a null-terminated string which represents
it. This string is of the form:
{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}
where x represents a hexadecimal digit.
This routine comes from ole32\common\ccompapi.cxx. It is included here to avoid linking
to ole32.dll. (The RPC version allocates memory, so it was avoided as well.)
Arguments:
Guid - Supplies a pointer to the GUID whose string representation is
to be retrieved.
GuidString - Supplies a pointer to character buffer that receives the
string. This buffer must be _at least_ 39 (GUID_STRING_LEN) characters
long.
Return Value:
If success, the return value is NO_ERROR.
if failure, the return value is
--*/
{
CONST BYTE *GuidBytes;
INT i;
if(GuidStringSize < GUID_STRING_LEN) {
return ERROR_INSUFFICIENT_BUFFER;
}
GuidBytes = (CONST BYTE *)Guid;
*GuidString++ = TEXT('{');
for(i = 0; i < sizeof(GuidMap); i++) {
if(GuidMap[i] == '-') {
*GuidString++ = TEXT('-');
} else {
*GuidString++ = szDigits[ (GuidBytes[GuidMap[i]] & 0xF0) >> 4 ];
*GuidString++ = szDigits[ (GuidBytes[GuidMap[i]] & 0x0F) ];
}
}
*GuidString++ = TEXT('}');
*GuidString = TEXT('\0');
return NO_ERROR;
}
BOOL
pSetupIsGuidNull(
IN CONST GUID *Guid
)
{
return IsEqualGUID(Guid, &GUID_NULL);
}
VOID
GetRegSubkeysFromDeviceInterfaceName(
IN OUT PTSTR DeviceInterfaceName,
OUT PTSTR *SubKeyName
)
/*++
Routine Description:
This routine breaks up a device interface path into 2 parts--the symbolic link
name and the (optional) reference string. It then munges the symbolic link
name part into the subkey name as it appears under the interface class key.
NOTE: The algorithm for parsing the device interface name must be kept in sync
with the kernel-mode implementation of IoOpenDeviceInterfaceRegistryKey.
Arguments:
DeviceInterfaceName - Supplies the name of the device interface to be parsed
into registry subkey names. Upon return, this name will have been terminated
at the backslash preceding the reference string (if there is one), and all
backslashes will have been replaced with '#' characters.
SubKeyName - Supplies the address of a character pointer that receives the
address of the reference string (within the DeviceInterfaceName string).
If there is no reference string, this parameter will be filled in with NULL.
Return Value:
none
--*/
{
PTSTR p;
//
// Scan across the name to find the beginning of the refstring component (if
// there is one). The format of the symbolic link name is:
//
// \\?\munged_name[\refstring]
//
MYASSERT(DeviceInterfaceName[0] == TEXT('\\'));
MYASSERT(DeviceInterfaceName[1] == TEXT('\\'));
//
// Allow both '\\.\' and '\\?\' for now, since Memphis currently uses the former.
//
MYASSERT((DeviceInterfaceName[2] == TEXT('?')) || (DeviceInterfaceName[2] == TEXT('.')));
MYASSERT(DeviceInterfaceName[3] == TEXT('\\'));
p = _tcschr(&(DeviceInterfaceName[4]), TEXT('\\'));
if(p) {
*p = TEXT('\0');
*SubKeyName = p + 1;
} else {
*SubKeyName = NULL;
}
for(p = DeviceInterfaceName; *p; p++) {
if(*p == TEXT('\\')) {
*p = TEXT('#');
}
}
}
LONG
OpenDeviceInterfaceSubKey(
IN HKEY hKeyInterfaceClass,
IN PCTSTR DeviceInterfaceName,
IN REGSAM samDesired,
OUT PHKEY phkResult,
OUT PTSTR OwningDevInstName, OPTIONAL
IN OUT PDWORD OwningDevInstNameSize OPTIONAL
)
/*++
Routine Description:
This routine munges the specified device interface symbolic link name into
a subkey name that is then opened underneath the specified interface class key.
NOTE: This munging algorithm must be kept in sync with the kernel-mode routines
that generate these keys (e.g., IoRegisterDeviceInterface).
Arguments:
hKeyInterfaceClass - Supplies the handle of the currently-open interface class key
under which the device interface subkey is to be opened.
DeviceInterfaceName - Supplies the symbolic link name ('\\?\' form) of the device
interface for which the subkey is to be opened.
samDesired - Specifies the access desired on the key to be opened.
phkResult - Supplies the address of a variable that receives the registry handle,
if successfully opened.
OwningDevInstName - Optionally, supplies a character buffer that receives the name
of the device instance that owns this interface.
OwningDevInstNameSize - Optionally, supplies the address of a variable that, on input,
contains the size of the OwningDevInstName buffer (in bytes). Upon return, it
receives that actual number of bytes stored in OwningDevInstName (including
terminating NULL).
Return Value:
If success, the return value is ERROR_SUCCESS.
if failure, the return value is either ERROR_NOT_ENOUGH_MEMORY, ERROR_MORE_DATA, or
ERROR_NO_SUCH_INTERFACE_DEVICE.
--*/
{
DWORD BufferLength;
LONG Err;
PTSTR TempBuffer = NULL, RefString;
TCHAR NoRefStringSubKeyName[2];
HKEY hKey;
DWORD RegDataType;
Err = ERROR_SUCCESS;
hKey = INVALID_HANDLE_VALUE;
try {
//
// We need to allocate a temporary buffer to hold the symbolic link name while we munge it.
//
BufferLength = (lstrlen(DeviceInterfaceName) + 1) * sizeof(TCHAR);
if(!(TempBuffer = MyMalloc(BufferLength))) {
Err = ERROR_NOT_ENOUGH_MEMORY;
goto clean0;
}
memcpy(TempBuffer, DeviceInterfaceName, BufferLength);
//
// Parse this device interface name into the (munged) symbolic link name and
// (optional) refstring.
//
GetRegSubkeysFromDeviceInterfaceName(TempBuffer, &RefString);
//
// Now open the symbolic link subkey under the interface class key.
//
if(ERROR_SUCCESS != RegOpenKeyEx(hKeyInterfaceClass,
TempBuffer,
0,
KEY_READ,
&hKey)) {
//
// Ensure the key handle is still invalid, so we won't try to free it.
//
hKey = INVALID_HANDLE_VALUE;
Err = ERROR_NO_SUCH_DEVICE_INTERFACE;
goto clean0;
}
//
// If the caller requested it, retrieve the device instance that owns this interface.
//
if(OwningDevInstName) {
Err = RegQueryValueEx(hKey,
pszDeviceInstance,
NULL,
&RegDataType,
(LPBYTE)OwningDevInstName,
OwningDevInstNameSize
);
if((Err != ERROR_SUCCESS) || (RegDataType != REG_SZ)) {
if(Err != ERROR_MORE_DATA) {
Err = ERROR_NO_SUCH_DEVICE_INTERFACE;
}
goto clean0;
}
}
//
// Now open up the subkey representing the particular 'instance' of this interface
// (this is based on the refstring).
//
if(RefString) {
//
// Back up the pointer one character. We know we're somewhere within TempBuffer
// (but not at the beginning) so this is safe.
//
RefString--;
} else {
RefString = NoRefStringSubKeyName;
NoRefStringSubKeyName[1] = TEXT('\0');
}
*RefString = TEXT('#');
if(ERROR_SUCCESS != RegOpenKeyEx(hKey,
RefString,
0,
samDesired,
phkResult)) {
Err = ERROR_NO_SUCH_DEVICE_INTERFACE;
goto clean0;
}
clean0:
; // Nothing to do.
} except(EXCEPTION_EXECUTE_HANDLER) {
Err = ERROR_INVALID_PARAMETER;
//
// Access the following variables so that the compiler will respect statement
// ordering w.r.t. their assignment.
//
TempBuffer = TempBuffer;
hKey = hKey;
}
if(TempBuffer) {
MyFree(TempBuffer);
}
if(hKey != INVALID_HANDLE_VALUE) {
RegCloseKey(hKey);
}
return Err;
}
LONG
AddOrGetGuidTableIndex(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN CONST GUID *ClassGuid,
IN BOOL AddIfNotPresent
)
/*++
Routine Description:
This routine retrieves the index of a class GUID within the devinfo set's GUID
list (optionally, adding the GUID if not already present).
This is used to allow DWORD comparisons instead of 16-byte GUID comparisons
(and to save space).
Arguments:
DeviceInfoSet - Supplies a pointer to the device information set containing the
list of class GUIDs for which an index is to be retrieved.
InterfaceClassGuid - Supplies a pointer to the GUID for which an index is to
be added/retrieved.
AddIfNotPresent - If TRUE, the class GUID will be added to the list if it's not
already there.
Return Value:
If success, the return value is an index into the devinfo set's GuidTable array.
If failure, the return value is -1. If adding, this indicates an out-of-memory
condition. If simply retrieving, then this indicates that the GUID is not in
the list.
--*/
{
LONG i;
LPGUID NewGuidList;
for(i = 0; (DWORD)i < DeviceInfoSet->GuidTableSize; i++) {
if(IsEqualGUID(ClassGuid, &(DeviceInfoSet->GuidTable[i]))) {
return i;
}
}
if(AddIfNotPresent) {
if(DeviceInfoSet->GuidTable) {
NewGuidList = MyRealloc(DeviceInfoSet->GuidTable, (i + 1) * sizeof(GUID));
} else {
NewGuidList = MyMalloc(sizeof(GUID));
}
if(NewGuidList) {
CopyMemory(&(NewGuidList[i]),
ClassGuid,
sizeof(GUID)
);
DeviceInfoSet->GuidTable = NewGuidList;
DeviceInfoSet->GuidTableSize = i + 1;
return i;
} else {
//
// We couldn't allocate/grow the list; return -1 indicating an out-of-memory condition.
//
return -1;
}
} else {
//
// We didn't find the interface class GUID in our list, and we aren't supposed
// to add it.
//
return -1;
}
}
PINTERFACE_CLASS_LIST
AddOrGetInterfaceClassList(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PDEVINFO_ELEM DevInfoElem,
IN LONG InterfaceClassGuidIndex,
IN BOOL AddIfNotPresent
)
/*++
Routine Description:
This routine retrieves the interface device list of the specified class that
is 'owned' by the specified devinfo element. This list can optionally be
created if it doesn't already exist.
Arguments:
DeviceInfoSet - Supplies a pointer to the device information set containing the
devinfo element for which an interface device list is to be retrieved.
DevInfoElem - Supplies a pointer to the devinfo element for which an interface
device list is to be retrieved.
InterfaceClassGuidIndex - Supplies the index of the interface class GUID within
the hdevinfo set's InterfaceClassGuidList array.
AddIfNotPresent - If TRUE, then a new interface device list of the specified class
will be created for this devinfo element, if it doesn't already exist.
Return Value:
If successful, the return value is a pointer to the requested interface device list
for this devinfo element.
If failure, the return value is NULL. If AddIfNotPresent is TRUE, then this
indicates an out-of-memory condition, otherwise, it indicates that the requested
interface class list was not present for the devinfo element.
--*/
{
DWORD i;
PINTERFACE_CLASS_LIST NewClassList;
for(i = 0; i < DevInfoElem->InterfaceClassListSize; i++) {
if(DevInfoElem->InterfaceClassList[i].GuidIndex == InterfaceClassGuidIndex) {
return (&(DevInfoElem->InterfaceClassList[i]));
}
}
//
// The requested interface class list doesn't presently exist for this devinfo element.
//
if(AddIfNotPresent) {
if(DevInfoElem->InterfaceClassList) {
NewClassList = MyRealloc(DevInfoElem->InterfaceClassList, (i + 1) * sizeof(INTERFACE_CLASS_LIST));
} else {
NewClassList = MyMalloc(sizeof(INTERFACE_CLASS_LIST));
}
if(NewClassList) {
ZeroMemory(&(NewClassList[i]), sizeof(INTERFACE_CLASS_LIST));
NewClassList[i].GuidIndex = InterfaceClassGuidIndex;
DevInfoElem->InterfaceClassList = NewClassList;
DevInfoElem->InterfaceClassListSize = i + 1;
return (&(DevInfoElem->InterfaceClassList[i]));
} else {
//
// We couldn't allocate/grow this list; return NULL indicating an out-of-memory condition.
//
return NULL;
}
} else {
//
// We aren't supposed to add the class list if it doesn't already exist.
//
return NULL;
}
}
BOOL
InterfaceDeviceDataFromNode(
IN PINTERFACE_DEVICE_NODE InterfaceDeviceNode,
IN CONST GUID *InterfaceClassGuid,
OUT PSP_DEVICE_INTERFACE_DATA InterfaceDeviceData
)
/*++
Routine Description:
This routine fills in a PSP_DEVICE_INTERFACE_DATA structure based
on the information in the supplied interface device node.
Note: The supplied InterfaceDeviceData structure must have its cbSize
field filled in correctly, or the call will fail.
Arguments:
InterfaceDeviceNode - Supplies the address of the interface device node
to be used in filling in the interface device data buffer.
InterfaceClassGuid - Supplies a pointer to the class GUID for this
interface device.
InterfaceDeviceData - Supplies the address of the buffer to retrieve
the interface device data.
Return Value:
If the function succeeds, the return value is TRUE, otherwise, it
is FALSE.
--*/
{
if(InterfaceDeviceData->cbSize != sizeof(SP_DEVICE_INTERFACE_DATA)) {
return FALSE;
}
CopyMemory(&(InterfaceDeviceData->InterfaceClassGuid),
InterfaceClassGuid,
sizeof(GUID)
);
InterfaceDeviceData->Flags = InterfaceDeviceNode->Flags;
InterfaceDeviceData->Reserved = (ULONG_PTR)InterfaceDeviceNode;
return TRUE;
}
PDEVINFO_ELEM
FindDevInfoElemForInterfaceDevice(
IN PDEVICE_INFO_SET DeviceInfoSet,
IN PSP_DEVICE_INTERFACE_DATA InterfaceDeviceData
)
/*++
Routine Description:
This routine searches through all elements of a device information
set, looking for one that corresponds to the devinfo element pointer
stored in the OwningDevInfoElem backpointer of the interface device
node referenced in the Reserved field of the interface device data. If a
match is found, a pointer to the device information element is returned.
Arguments:
DeviceInfoSet - Specifies the set to be searched.
InterfaceDeviceData - Supplies a pointer to the interface device data
for which the corresponding devinfo element is to be returned.
Return Value:
If a device information element is found, the return value is a
pointer to that element, otherwise, the return value is NULL.
--*/
{
PDEVINFO_ELEM DevInfoElem;
PINTERFACE_DEVICE_NODE InterfaceDeviceNode;
if(InterfaceDeviceData->cbSize != sizeof(SP_DEVICE_INTERFACE_DATA)) {
return NULL;
}
//
// The Reserved field contains a pointer to the underlying interface device node.
//
InterfaceDeviceNode = (PINTERFACE_DEVICE_NODE)(InterfaceDeviceData->Reserved);
for(DevInfoElem = DeviceInfoSet->DeviceInfoHead;
DevInfoElem;
DevInfoElem = DevInfoElem->Next) {
if(DevInfoElem == InterfaceDeviceNode->OwningDevInfoElem) {
return DevInfoElem;
}
}
return NULL;
}
DWORD
MapCrToSpError(
IN CONFIGRET CmReturnCode,
IN DWORD Default
)
/*++
Routine Description:
This routine maps some CM error return codes to setup api (Win32) return codes,
and maps everything else to the value specied by Default.
Arguments:
CmReturnCode - Specifies the ConfigMgr return code to be mapped.
Default - Specifies the default value to use if no explicit mapping applies.
Return Value:
Setup API (Win32) error code.
--*/
{
switch(CmReturnCode) {
case CR_SUCCESS :
return NO_ERROR;
case CR_CALL_NOT_IMPLEMENTED :
return ERROR_CALL_NOT_IMPLEMENTED;
case CR_OUT_OF_MEMORY :
return ERROR_NOT_ENOUGH_MEMORY;
case CR_INVALID_POINTER :
return ERROR_INVALID_USER_BUFFER;
case CR_INVALID_DEVINST :
return ERROR_NO_SUCH_DEVINST;
case CR_INVALID_DEVICE_ID :
return ERROR_INVALID_DEVINST_NAME;
case CR_ALREADY_SUCH_DEVINST :
return ERROR_DEVINST_ALREADY_EXISTS;
case CR_INVALID_REFERENCE_STRING :
return ERROR_INVALID_REFERENCE_STRING;
case CR_INVALID_MACHINENAME :
return ERROR_INVALID_MACHINENAME;
case CR_REMOTE_COMM_FAILURE :
return ERROR_REMOTE_COMM_FAILURE;
case CR_MACHINE_UNAVAILABLE :
return ERROR_MACHINE_UNAVAILABLE;
case CR_NO_CM_SERVICES :
return ERROR_NO_CONFIGMGR_SERVICES;
case CR_ACCESS_DENIED :
return ERROR_ACCESS_DENIED;
case CR_NOT_DISABLEABLE:
return ERROR_NOT_DISABLEABLE;
default :
return Default;
}
}
LPQUERY_SERVICE_LOCK_STATUS GetServiceLockStatus(
IN SC_HANDLE SCMHandle
)
/*++
Routine Description:
Obtain service lock status - called when service is locked
Arguments:
SCMHandle - supplies a handle to the SCM to lock
Return Value:
NULL if failed (GetLastError contains error) otherwise buffer
allocated by MyMalloc
--*/
{
PBYTE Buffer = NULL;
LPQUERY_SERVICE_LOCK_STATUS LockStatus = NULL;
DWORD BufferSize = sizeof(QUERY_SERVICE_LOCK_STATUS)+MAX_PATH;
DWORD ReqBufferSize = 0;
Buffer = MyMalloc(BufferSize);
while(Buffer) {
LockStatus = (LPQUERY_SERVICE_LOCK_STATUS)Buffer;
if(QueryServiceLockStatus(SCMHandle,LockStatus,BufferSize,&ReqBufferSize)) {
return LockStatus;
}
if(GetLastError()!=ERROR_INSUFFICIENT_BUFFER) {
MyFree(LockStatus);
return NULL;
}
Buffer = MyRealloc(LockStatus,ReqBufferSize);
}
if(LockStatus) {
MyFree(LockStatus);
}
SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return NULL;
}
DWORD
pAcquireSCMLock(
IN SC_HANDLE SCMHandle,
OUT SC_LOCK *pSCMLock,
IN PSETUP_LOG_CONTEXT LogContext
)
/*++
Routine Description:
This routine attempts to lock the SCM database. If it is already locked it will retry
ACQUIRE_SCM_LOCK_ATTEMPTS times at intervals of ACQUIRE_SCM_LOCK_INTERVAL.
Arguments:
SCMHandle - supplies a handle to the SCM to lock
pSCMLock - receives the lock handle
Return Value:
NO_ERROR if the lock is acquired, otherwise a Win32 error code
Remarks:
The value of *pSCMLock is guaranteed to be NULL if the lock is not acquired
--*/
{
DWORD Err;
ULONG Attempts = ACQUIRE_SCM_LOCK_ATTEMPTS;
LPQUERY_SERVICE_LOCK_STATUS LockStatus = NULL;
MYASSERT(pSCMLock);
*pSCMLock = NULL;
retry:
while((*pSCMLock = LockServiceDatabase(SCMHandle)) == NULL && Attempts > 0) {
//
// Check if the error is that someone else has locked the SCM
//
if((Err = GetLastError()) == ERROR_SERVICE_DATABASE_LOCKED) {
Attempts--;
//
// Sleep for specified time
//
Sleep(ACQUIRE_SCM_LOCK_INTERVAL);
} else {
//
// Unrecoverable error occured
//
break;
}
}
if(!*pSCMLock) {
Err = GetLastError();
if(Err == ERROR_SERVICE_DATABASE_LOCKED) {
LockStatus = GetServiceLockStatus(SCMHandle);
if(LockStatus && !LockStatus->fIsLocked) {
MYASSERT(LockStatus->fIsLocked);
MyFree(LockStatus);
//
// just became free, may as well try again
//
goto retry;
} else if(LockStatus) {
WriteLogEntry(LogContext,
SETUP_LOG_ERROR,
MSG_LOG_SCM_LOCKED_INFO,
NULL,
LockStatus->lpLockOwner,
LockStatus->dwLockDuration);
MyFree(LockStatus);
} else {
WriteLogEntry(LogContext,
SETUP_LOG_ERROR,
MSG_LOG_SCM_LOCKED_INFO,
NULL,
TEXT("?"),
0);
}
}
//
// We have been unable to lock the SCM
//
return Err;
}
return NO_ERROR;
}
DWORD
pSetupAcquireSCMLock(
IN SC_HANDLE SCMHandle,
OUT SC_LOCK *pSCMLock
)
/*++
Routine Description:
variation of pAcquireSCMLock used by SysSetup
See pAcquireSCMLock
--*/
{
return pAcquireSCMLock(SCMHandle,pSCMLock,NULL);
}
DWORD
InvalidateHelperModules(
IN HDEVINFO DeviceInfoSet,
IN PSP_DEVINFO_DATA DeviceInfoData, OPTIONAL
IN DWORD Flags
)
/*++
Routine Description:
This routine resets the list of 'helper modules' (class installer, property
page providers, and co-installers), and either frees them immediately or
migrates the module handles to the devinfo set's list of things to clean up
when the HDEVINFO is destroyed.
Arguments:
DeviceInfoSet - Supplies a handle to the device information set containing
a list of 'helper' modules to be invalidated.
DeviceInfoData - Optionally, specifies a particular device information
element containing a list of 'helper' modules to be invalidated. If
this parameter is not specified, then the list of modules for the
set itself will be invalidated.
Flags - Supplies flags that control the behavior of this routine. May be
a combination of the following values:
IHM_COINSTALLERS_ONLY - If this flag is set, only the co-installers list
will be invalidated. Otherwise, the class
installer and property page providers will also
be invalidated.
IHM_FREE_IMMEDIATELY - If this flag is set, then the modules will be
freed immediately. Otherwise, the modules will
be added to the HDEVINFO set's list of things to
clean up at handle close time.
Return Value:
If successful, the return value is NO_ERROR, otherwise it is ERROR_NOT_ENOUGH_MEMORY.
(This routine cannot fail if the IHM_FREE_IMMEDIATELY flag is set.)
--*/
{
PDEVICE_INFO_SET pDeviceInfoSet;
DWORD Err, i;
PDEVINFO_ELEM DevInfoElem;
PDEVINSTALL_PARAM_BLOCK InstallParamBlock;
DWORD NumModulesToInvalidate;
PMODULE_HANDLE_LIST_NODE NewModuleHandleNode;
BOOL UnlockDevInfoElem;
LONG CoInstallerIndex;
SPFUSIONINSTANCE spFusionInstance;
if(!(pDeviceInfoSet = AccessDeviceInfoSet(DeviceInfoSet))) {
//
// The handle's no longer valid--the user must've already destroyed the
// set. We have nothing to do.
//
return NO_ERROR;
}
Err = NO_ERROR;
UnlockDevInfoElem = FALSE;
DevInfoElem = NULL;
NewModuleHandleNode = NULL;
try {
//
// If we're invalidating helper modules for a particular devinfo element,
// then find that element.
//
if(DeviceInfoData) {
if(!(DevInfoElem = FindAssociatedDevInfoElem(pDeviceInfoSet,
DeviceInfoData,
NULL))) {
//
// The element must've been deleted--we've nothing to do.
//
goto clean0;
}
InstallParamBlock = &(DevInfoElem->InstallParamBlock);
} else {
InstallParamBlock = &(pDeviceInfoSet->InstallParamBlock);
}
//
// Count the number of module handles we need to free/migrate.
//
if(InstallParamBlock->CoInstallerCount == -1) {
NumModulesToInvalidate = 0;
} else {
MYASSERT(InstallParamBlock->CoInstallerCount >= 0);
NumModulesToInvalidate = (DWORD)(InstallParamBlock->CoInstallerCount);
}
if(!(Flags & IHM_COINSTALLERS_ONLY)) {
if(InstallParamBlock->hinstClassInstaller) {
NumModulesToInvalidate++;
}
if(InstallParamBlock->hinstClassPropProvider) {
NumModulesToInvalidate++;
}
if(InstallParamBlock->hinstDevicePropProvider) {
NumModulesToInvalidate++;
}
if(InstallParamBlock->hinstBasicPropProvider) {
NumModulesToInvalidate++;
}
}
if(NumModulesToInvalidate) {
//
// If we can't unload these modules at this time, then create a node to store
// these module handles until the devinfo set is destroyed.
//
if(!(Flags & IHM_FREE_IMMEDIATELY)) {
NewModuleHandleNode = MyMalloc(offsetof(MODULE_HANDLE_LIST_NODE, ModuleList)
+ (NumModulesToInvalidate * sizeof(MODULE_HANDLE_LIST_INSTANCE))
);
if(!NewModuleHandleNode) {
Err = ERROR_NOT_ENOUGH_MEMORY;
goto clean0;
}
}
//
// Give the class installers/co-installers a DIF_DESTROYPRIVATEDATA
// notification. NOTE: We don't unlock the HDEVINFO set here, so the
// class/co-installers can't make any calls where nesting level > 1
// is disallowed. This means that SetupDiSelectDevice, for example,
// will fail if the class installer tries to call it now. This is
// necessary, because otherwise it would deadlock.
//
if(DevInfoElem) {
//
// (Also, lock down the devinfo element, so that the class/co-installers
// can't make any 'dangerous' calls (e.g., SetupDiDeleteDeviceInfo),
// during the clean-up notification.)
//
if(!(DevInfoElem->DiElemFlags & DIE_IS_LOCKED)) {
DevInfoElem->DiElemFlags |= DIE_IS_LOCKED;
UnlockDevInfoElem = TRUE;
}
}
_SetupDiCallClassInstaller(DIF_DESTROYPRIVATEDATA,
DeviceInfoSet,
DeviceInfoData,
CALLCI_CALL_HELPERS
);
//
// Clear the flag we set above...
//
if(UnlockDevInfoElem) {
DevInfoElem->DiElemFlags &= ~DIE_IS_LOCKED;
UnlockDevInfoElem = FALSE;
}
//
// Store the module handles in the node we allocated, and link it into the
// list of module handles associated with this devinfo set.
//
i = 0;
if(!(Flags & IHM_COINSTALLERS_ONLY)) {
//
// Either free the modules now, or store them in our 'to do' list...
//
if(Flags & IHM_FREE_IMMEDIATELY) {
if(InstallParamBlock->hinstClassInstaller) {
spFusionEnterContext(InstallParamBlock->ClassInstallerFusionContext,
&spFusionInstance);
FreeLibrary(InstallParamBlock->hinstClassInstaller);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(InstallParamBlock->ClassInstallerFusionContext);
}
if(InstallParamBlock->hinstClassPropProvider) {
spFusionEnterContext(InstallParamBlock->ClassEnumPropPagesFusionContext,
&spFusionInstance);
FreeLibrary(InstallParamBlock->hinstClassPropProvider);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(InstallParamBlock->ClassEnumPropPagesFusionContext);
}
if(InstallParamBlock->hinstDevicePropProvider) {
spFusionEnterContext(InstallParamBlock->DeviceEnumPropPagesFusionContext,
&spFusionInstance);
FreeLibrary(InstallParamBlock->hinstDevicePropProvider);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(InstallParamBlock->DeviceEnumPropPagesFusionContext);
}
if(InstallParamBlock->hinstBasicPropProvider) {
spFusionEnterContext(InstallParamBlock->EnumBasicPropertiesFusionContext,
&spFusionInstance);
FreeLibrary(InstallParamBlock->hinstBasicPropProvider);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(InstallParamBlock->EnumBasicPropertiesFusionContext);
}
} else {
if(InstallParamBlock->hinstClassInstaller) {
NewModuleHandleNode->ModuleList[i].ModuleHandle = InstallParamBlock->hinstClassInstaller;
NewModuleHandleNode->ModuleList[i++].FusionContext = InstallParamBlock->ClassInstallerFusionContext;
}
if(InstallParamBlock->hinstClassPropProvider) {
NewModuleHandleNode->ModuleList[i].ModuleHandle = InstallParamBlock->hinstClassPropProvider;
NewModuleHandleNode->ModuleList[i++].FusionContext = InstallParamBlock->ClassEnumPropPagesFusionContext;
}
if(InstallParamBlock->hinstDevicePropProvider) {
NewModuleHandleNode->ModuleList[i].ModuleHandle = InstallParamBlock->hinstDevicePropProvider;
NewModuleHandleNode->ModuleList[i++].FusionContext = InstallParamBlock->DeviceEnumPropPagesFusionContext;
}
if(InstallParamBlock->hinstBasicPropProvider) {
NewModuleHandleNode->ModuleList[i].ModuleHandle = InstallParamBlock->hinstBasicPropProvider;
NewModuleHandleNode->ModuleList[i++].FusionContext = InstallParamBlock->EnumBasicPropertiesFusionContext;
}
}
}
for(CoInstallerIndex = 0;
CoInstallerIndex < InstallParamBlock->CoInstallerCount;
CoInstallerIndex++)
{
if(Flags & IHM_FREE_IMMEDIATELY) {
spFusionEnterContext(InstallParamBlock->CoInstallerList[CoInstallerIndex].CoInstallerFusionContext,
&spFusionInstance);
FreeLibrary(InstallParamBlock->CoInstallerList[CoInstallerIndex].hinstCoInstaller);
spFusionLeaveContext(&spFusionInstance);
spFusionKillContext(InstallParamBlock->CoInstallerList[CoInstallerIndex].CoInstallerFusionContext);
} else {
NewModuleHandleNode->ModuleList[i].ModuleHandle =
InstallParamBlock->CoInstallerList[CoInstallerIndex].hinstCoInstaller;
NewModuleHandleNode->ModuleList[i++].FusionContext =
InstallParamBlock->CoInstallerList[CoInstallerIndex].CoInstallerFusionContext;
}
}
//
// Unless we're freeing these modules immediately, our modules-to-free list
// index should now match the number of modules we're supposed to be
// invalidating.
//
MYASSERT((Flags & IHM_FREE_IMMEDIATELY) || (i == NumModulesToInvalidate));
if(!(Flags & IHM_FREE_IMMEDIATELY)) {
NewModuleHandleNode->ModuleCount = NumModulesToInvalidate;
NewModuleHandleNode->Next = pDeviceInfoSet->ModulesToFree;
pDeviceInfoSet->ModulesToFree = NewModuleHandleNode;
//
// Now, clear the node pointer, so we won't try to free it if we hit an exception.
//
NewModuleHandleNode = NULL;
}
//
// Clear all the module handles (and entry points). They will be retrieved
// anew the next time they're needed.
//
if(!(Flags & IHM_COINSTALLERS_ONLY)) {
InstallParamBlock->hinstClassInstaller = NULL;
InstallParamBlock->ClassInstallerEntryPoint = NULL;
InstallParamBlock->ClassInstallerFusionContext = NULL;
InstallParamBlock->hinstClassPropProvider = NULL;
InstallParamBlock->ClassEnumPropPagesEntryPoint = NULL;
InstallParamBlock->ClassEnumPropPagesFusionContext = NULL;
InstallParamBlock->hinstDevicePropProvider = NULL;
InstallParamBlock->DeviceEnumPropPagesEntryPoint = NULL;
InstallParamBlock->DeviceEnumPropPagesFusionContext = NULL;
InstallParamBlock->hinstBasicPropProvider = NULL;
InstallParamBlock->EnumBasicPropertiesEntryPoint = NULL;
InstallParamBlock->EnumBasicPropertiesFusionContext = NULL;
}
if(InstallParamBlock->CoInstallerCount != -1) {
if(InstallParamBlock->CoInstallerList) {
MyFree(InstallParamBlock->CoInstallerList);
InstallParamBlock->CoInstallerList = NULL;
}
}
}
//
// Set the co-installer count back to -1, even if their weren't any co-installers
// to unload. That will ensure that we'll re-load the co-installers for the next
// class installer request we receive.
//
InstallParamBlock->CoInstallerCount = -1;
clean0: ; // nothing to do.
} except(EXCEPTION_EXECUTE_HANDLER) {
//
// We should never encounter an exception, but if we do, just make sure we
// do any necessary clean-up. Don't return an error in this case--the only
// error this routine is supposed to return is out-of-memory.
//
if(UnlockDevInfoElem) {
MYASSERT(DevInfoElem);
DevInfoElem->DiElemFlags &= ~DIE_IS_LOCKED;
}
if(NewModuleHandleNode) {
MyFree(NewModuleHandleNode);
}
}
UnlockDeviceInfoSet(pDeviceInfoSet);
return Err;
}
DWORD
DoInstallActionWithParams(
IN DI_FUNCTION InstallFunction,
IN HDEVINFO DeviceInfoSet,
IN PSP_DEVINFO_DATA DeviceInfoData, OPTIONAL
IN OUT PSP_CLASSINSTALL_HEADER ClassInstallParams, OPTIONAL
IN DWORD ClassInstallParamsSize,
IN DWORD Flags
)
/*++
Routine Description:
This routine performs a requested installation action, using the specified
class install parameters. Any existing class install parameters are
preserved.
Arguments:
InstallFunction - Specifies the DIF_* action to be performed.
DeviceInfoSet - Supplies a handle to the device information set for which
the installation action is to be performed.
DeviceInfoData - Optionally, supplies the address of a device information
structure specifying a particular element for which the installation
action is to be performed.
ClassInstallParams - Optionally, supplies the address of a class install
parameter buffer to be used for this action. If this parameter is not
specified, then no class install params will be available to the class
installer during this call (even if there were pre-existing parameters
coming into this function).
ClassInstallParamsSize - Supplies the size, in bytes, of the ClassInstallParams
buffer, or zero if ClassInstallParams is not specified.
Flags - Supplies flags that control the behavior of this routine. May be
a combination of the following values:
INSTALLACTION_CALL_CI - Call the class installer for this action request.
INSTALLACTION_NO_DEFAULT - Don't perform the default action (if this flag
is specified without INSTALLACTION_CALL_CI, then this routine is a
no-op).
Return Value:
If the request was handled successfully, the return value is NO_ERROR.
If the request was not handled (but no error occurred), the return value is
ERROR_DI_DO_DEFAULT.
Otherwise, the return value is a Win32 error code indicating the cause of
failure.
--*/
{
PBYTE OldCiParams;
DWORD OldCiParamsSize, Err;
SP_PROPCHANGE_PARAMS PropChangeParams;
SP_DEVINSTALL_PARAMS DevInstallParams;
DWORD FlagsToClear;
//
// Retrieve any existing class install parameters, then write out
// parameters for DIF_PROPERTYCHANGE.
//
OldCiParams = NULL;
OldCiParamsSize = 0;
while(!SetupDiGetClassInstallParams(DeviceInfoSet,
DeviceInfoData,
(PSP_CLASSINSTALL_HEADER)OldCiParams,
OldCiParamsSize,
&OldCiParamsSize)) {
Err = GetLastError();
//
// Before going any further, free our existing buffer (if there is one).
//
if(OldCiParams) {
MyFree(OldCiParams);
OldCiParams = NULL;
}
if(Err == ERROR_INSUFFICIENT_BUFFER) {
//
// Allocate a buffer of the size required, and try again.
//
MYASSERT(OldCiParamsSize >= sizeof(SP_CLASSINSTALL_HEADER));
if(!(OldCiParams = MyMalloc(OldCiParamsSize))) {
Err = ERROR_NOT_ENOUGH_MEMORY;
goto clean0;
}
((PSP_CLASSINSTALL_HEADER)OldCiParams)->cbSize = sizeof(SP_CLASSINSTALL_HEADER);
} else {
//
// Treat any other error as if there are no class install params
// (since ERROR_NO_CLASSINSTALL_PARAMS is really the only error
// we should ever see here anyway).
//
OldCiParamsSize = 0;
break;
}
}
//
// Retrieve the device install params for the set or element we're working with.
//
DevInstallParams.cbSize = sizeof(SP_DEVINSTALL_PARAMS);
if(!SetupDiGetDeviceInstallParams(DeviceInfoSet,
DeviceInfoData,
&DevInstallParams)) {
Err = GetLastError();
goto clean0;
}
FlagsToClear = 0;
//
// It's possible that the class install params we just retrieved are 'turned off'
// (i.e., the DI_CLASSINSTALLPARAMS bit is cleared). Check for that condition now,
// so we can restore the parameters to the same state later.
//
if(OldCiParams && !(DevInstallParams.Flags & DI_CLASSINSTALLPARAMS)) {
FlagsToClear |= DI_CLASSINSTALLPARAMS;
}
//
// If the caller doesn't want us to do the default action, then check to see whether
// we need to temporarily set the DI_NODI_DEFAULTACTION flag.
//
if((Flags & INSTALLACTION_NO_DEFAULT) &&
!(DevInstallParams.Flags & DI_NODI_DEFAULTACTION)) {
FlagsToClear |= DI_NODI_DEFAULTACTION;
DevInstallParams.Flags |= DI_NODI_DEFAULTACTION;
if(!SetupDiSetDeviceInstallParams(DeviceInfoSet,
DeviceInfoData,
&DevInstallParams)) {
Err = GetLastError();
goto clean0;
}
}
if(!SetupDiSetClassInstallParams(DeviceInfoSet,
DeviceInfoData,
ClassInstallParams,
ClassInstallParamsSize)) {
Err = GetLastError();
goto clean1;
}
//
// OK, now call the class installer.
//
if(_SetupDiCallClassInstaller(InstallFunction,
DeviceInfoSet,
DeviceInfoData,
(Flags & INSTALLACTION_CALL_CI) ? (CALLCI_LOAD_HELPERS | CALLCI_CALL_HELPERS) : 0)) {
//
// mission accomplished
//
Err = NO_ERROR;
} else {
Err = GetLastError();
}
//
// Save the class install params results in the ClassInstallParams
// value that was passed in.
//
if (ClassInstallParams) {
SetupDiGetClassInstallParams(DeviceInfoSet,
DeviceInfoData,
ClassInstallParams,
ClassInstallParamsSize,
NULL);
}
//
// Restore the previous class install params.
//
SetupDiSetClassInstallParams(DeviceInfoSet,
DeviceInfoData,
(PSP_CLASSINSTALL_HEADER)OldCiParams,
OldCiParamsSize
);
clean1:
if(FlagsToClear) {
if(SetupDiGetDeviceInstallParams(DeviceInfoSet,
DeviceInfoData,
&DevInstallParams)) {
DevInstallParams.Flags &= ~FlagsToClear;
SetupDiSetDeviceInstallParams(DeviceInfoSet,
DeviceInfoData,
&DevInstallParams
);
}
}
clean0:
if(OldCiParams) {
MyFree(OldCiParams);
}
return Err;
}
BOOL
GetBestDeviceDesc(
IN HDEVINFO DeviceInfoSet,
IN PSP_DEVINFO_DATA DeviceInfoData, OPTIONAL
OUT PTSTR DeviceDescBuffer
)
/*++
Routine Description:
This routine retrieves the best possible description to be displayed for
the specified devinfo set or element (e.g., for driver signing popups). We
will try to retrieve this string by doing the following things (in order)
until one of them succeeds:
1. If there's a selected driver, retrieve the DeviceDesc in that
driver node.
2. If this is for a device information element, then use devnode's
DeviceDesc property.
3. Retrieve the description of the class (via
SetupDiGetClassDescription).
4. Use the (localized) string "Unknown driver software package".
ASSUMES THAT THE CALLING ROUTINE HAS ALREADY ACQUIRED THE LOCK!
Arguments:
DeviceInfoSet - Supplies a handle to the device information set for which
a description is to be retrieved (unless DeviceInfoData is also
supplied, in which case we retrieve the description for that particular
element instead.
DeviceInfoData - Optionally, supplies the device information element for
which a description is to be retrieved.
DeviceDescBuffer - Supplies the address of a character buffer that must be
at least LINE_LEN characters long. Upon successful return, this buffer
will be filled in with a device description
Return Value:
TRUE if some description was retrieved, FALSE otherwise.
--*/
{
SP_DRVINFO_DATA DriverInfoData;
GUID ClassGuid;
BOOL b;
//
// First, see if there's a selected driver for this device information set
// or element.
//
DriverInfoData.cbSize = sizeof(SP_DRVINFO_DATA);
if(SetupDiGetSelectedDriver(DeviceInfoSet, DeviceInfoData, &DriverInfoData)) {
//
// Copy the description into the caller-supplied buffer and return.
//
lstrcpy(DeviceDescBuffer, DriverInfoData.Description);
return TRUE;
}
//
// OK, next try to retrieve the DeviceDesc property (if we're working on a
// device information element.
//
if(DeviceInfoData) {
if(SetupDiGetDeviceRegistryProperty(DeviceInfoSet,
DeviceInfoData,
SPDRP_DEVICEDESC,
NULL,
(PBYTE)DeviceDescBuffer,
LINE_LEN * sizeof(TCHAR),
NULL)) {
return TRUE;
}
}
//
// Next, try to retrieve the class's friendly name.
//
if(DeviceInfoData) {
CopyMemory(&ClassGuid, &(DeviceInfoData->ClassGuid), sizeof(GUID));
} else {
b = SetupDiGetDeviceInfoListClass(DeviceInfoSet, &ClassGuid);
MYASSERT(b);
if(!b) {
return FALSE;
}
}
if(SetupDiGetClassDescription(&ClassGuid,
DeviceDescBuffer,
LINE_LEN,
NULL)) {
return TRUE;
} else {
//
// We have a class that isn't already installed. Therefore, we just
// give it a generic description.
//
if(LoadString(MyDllModuleHandle,
IDS_UNKNOWN_DRIVER,
DeviceDescBuffer,
LINE_LEN)) {
return TRUE;
}
}
return FALSE;
}
BOOL
GetDecoratedModelsSection(
IN PSETUP_LOG_CONTEXT LogContext, OPTIONAL
IN PLOADED_INF Inf,
IN PINF_LINE MfgListLine,
IN PSP_ALTPLATFORM_INFO_V2 AltPlatformInfo, OPTIONAL
OUT PTSTR DecoratedModelsSection OPTIONAL
)
/*++
Routine Description:
This routine examines each (optional) TargetDecoration field within the
specified manufacturer's entry in the [Manufacturer] section, to see if any
are applicable to the current OS. If so, the most-appropriate one (based
on OS major and minor version) is chosen, and the TargetDecoration string
is appended to the manufacturer's models section name, and returned to the
caller.
The format of the TargetDecoration field is as follows:
NT[architecture][.[OSMajorVer][.[OSMinorVer][.[ProductType][.[SuiteMask]]]]]
Where:
architecture may be x86, IA64, AXP64, or AMD64.
OSMajorVer is the OS major version (e.g., for Whistler, it's 5)
OSMinorVer is the OS minor version (e.g., for Whistler, it's 1)
ProductType indicates the type of product, and may be one of the following
values (as defined in winnt.h):
VER_NT_WORKSTATION 0x0000001
VER_NT_DOMAIN_CONTROLLER 0x0000002
VER_NT_SERVER 0x0000003
SuiteMask is a combination of the following flags identifying the product
suites available on the system (as defined in winnt.h):
VER_SUITE_SMALLBUSINESS 0x00000001
VER_SUITE_ENTERPRISE 0x00000002
VER_SUITE_BACKOFFICE 0x00000004
VER_SUITE_COMMUNICATIONS 0x00000008
VER_SUITE_TERMINAL 0x00000010
VER_SUITE_SMALLBUSINESS_RESTRICTED 0x00000020
VER_SUITE_EMBEDDEDNT 0x00000040
VER_SUITE_DATACENTER 0x00000080
VER_SUITE_SINGLEUSERTS 0x00000100
Refer to the discussion in the SDK for the OSVERSIONINFOEX structure for
more information.
THIS ROUTINE DOES NOT DO LOCKING ON THE INF!!!
Arguments:
LogContext - optionally, supplies the log context to use if an error is
encountered (e.g., decorated section name is too long)
Inf - supplies a pointer to the inf descriptor for the loaded device INF.
MfgListLine - supplies a pointer to the line descriptor for the
manufacturer's entry within the [Manufacturer] section. THIS LINE MUST
BE CONTAINED WITHIN THE SPECIFIED INF!!
AltPlatformInfo - optionally, supplies alternate platform information to be
used when selecting the most-appropriate models section.
NOTE: If this parameter is supplied, then we must do our own version
comparisons, as VerifyVersionInfo() has no clue about non-native
matters. This also means that we do not take into account either
ProductType or SuiteMask in our comparison.
DecoratedModelsSection - upon successful return, receives the decorated
models section name based on the most-appropriate TargetDecoration
field in the manufacturer's entry.
This character buffer must be at least MAX_SECT_NAME_LEN characters.
Return Value:
If an applicable TargetDecoration entry was found (thus
DecoratedModelsSection was filled in), the return value is TRUE.
Otherwise, the return value is FALSE.
--*/
{
#define DEC_INCLUDES_ARCHITECTURE 4
#define DEC_INCLUDES_PRODUCTTYPE 2
#define DEC_INCLUDES_SUITEMASK 1
DWORD CurFieldIndex;
PCTSTR CurTargetDecoration, ModelsSectionName;
PCTSTR BestTargetDecoration = NULL;
INT SectionNameLen;
TCHAR DecBuffer[MAX_SECT_NAME_LEN];
PTSTR CurDecPtr, NextDecPtr;
DWORD BestMajorVer = 0, BestMinorVer = 0;
DWORD BestDecIncludesMask = 0;
DWORD CurMajorVer, CurMinorVer;
BYTE ProductType;
WORD SuiteMask;
INT TempInt;
DWORD CurDecIncludesMask;
BOOL NewBestFound;
OSVERSIONINFOEX OsVersionInfoEx;
DWORDLONG ConditionMask;
DWORD TypeMask;
DWORD Platform;
PCTSTR NtArchSuffix;
//
// Set OsVersionInfoEx size field to zero as a flag to indicate that
// structure initialization is necessary if we end up needing to call
// VerifyVersionInfo later.
//
OsVersionInfoEx.dwOSVersionInfoSize = 0;
//
// Determine which platform we should be looking for...
//
Platform = AltPlatformInfo ? AltPlatformInfo->Platform
: OSVersionInfo.dwPlatformId;
//
// ...as well as which OS/architecture decoration. (Note that we skip the
// first character of the platform suffix, since we don't want the
// leading '.')
//
if(AltPlatformInfo) {
switch(AltPlatformInfo->ProcessorArchitecture) {
case PROCESSOR_ARCHITECTURE_INTEL :
NtArchSuffix = &(pszNtX86Suffix[1]);
break;
case PROCESSOR_ARCHITECTURE_ALPHA :
NtArchSuffix = &(pszNtAlphaSuffix[1]);
break;
case PROCESSOR_ARCHITECTURE_IA64 :
NtArchSuffix = &(pszNtIA64Suffix[1]);
break;
case PROCESSOR_ARCHITECTURE_ALPHA64 :
NtArchSuffix = &(pszNtAXP64Suffix[1]);
break;
case PROCESSOR_ARCHITECTURE_AMD64 :
NtArchSuffix = &(pszNtAMD64Suffix[1]);
break;
default:
//
// Unknown/invalid architecture
//
return FALSE;
}
} else {
NtArchSuffix = &(pszNtPlatformSuffix[1]);
}
//
// TargetDecoration fields start at field index 2...
//
for(CurFieldIndex = 2;
CurTargetDecoration = InfGetField(Inf, MfgListLine, CurFieldIndex, NULL);
CurFieldIndex++)
{
//
// Copy the TargetDecoration into a scratch buffer so we can extract
// the various fields from it.
//
lstrcpyn(DecBuffer, CurTargetDecoration, SIZECHARS(DecBuffer));
//
// First part is traditional per-OS/architecture decoration.
//
CurMajorVer = CurMinorVer = 0;
CurDecIncludesMask = 0;
CurDecPtr = _tcschr(DecBuffer, TEXT('.'));
if(CurDecPtr) {
*CurDecPtr = TEXT('\0');
}
if(Platform == VER_PLATFORM_WIN32_NT) {
//
// We're on NT, so first try the NT architecture-specific
// extension, then the generic NT extension.
//
if(!lstrcmpi(DecBuffer, NtArchSuffix)) {
CurDecIncludesMask |= DEC_INCLUDES_ARCHITECTURE;
} else if(lstrcmpi(DecBuffer, &(pszNtSuffix[1]))) {
//
// TargetDecoration isn't applicable for this OS/architecture.
// Skip it and continue on to the next one.
//
continue;
}
} else {
//
// We're on Win9x, so try the Windows-specific extension
//
if(lstrcmpi(DecBuffer, &(pszWinSuffix[1]))) {
//
// TargetDecoration isn't applicable for this OS.
// Skip it and continue on to the next one.
//
continue;
}
}
//
// If we get to here, then the decoration is applicable to the
// OS/architecture under which we're running (or for which alt platform
// info was specified)
//
if(CurDecPtr) {
//
// Version info is included--extract the supplied components and
// use VerifyVersionInfo to see if they're valid for the OS version
// under which we're running.
//
//
// Get major version...
//
NextDecPtr = _tcschr(++CurDecPtr, TEXT('.'));
if(NextDecPtr) {
*NextDecPtr = TEXT('\0');
}
if(!pAToI(CurDecPtr, &TempInt) || (TempInt < 0)) {
continue;
}
CurMajorVer = (DWORD)TempInt;
if(NextDecPtr) {
CurDecPtr = NextDecPtr + 1;
} else {
//
// No more fields to retrieve--assume minor version of 0.
//
CurMinorVer = 0;
goto AllFieldsRetrieved;
}
//
// Get minor version...
//
NextDecPtr = _tcschr(CurDecPtr, TEXT('.'));
if(NextDecPtr) {
*NextDecPtr = TEXT('\0');
}
if(!pAToI(CurDecPtr, &TempInt) || (TempInt < 0)) {
continue;
}
CurMinorVer = (DWORD)TempInt;
//
// If minor version is supplied, then major version must be
// supplied as well.
//
if(CurMinorVer && !CurMajorVer) {
continue;
}
if(NextDecPtr && !AltPlatformInfo) {
CurDecPtr = NextDecPtr + 1;
} else {
//
// No more fields to retrieve
//
goto AllFieldsRetrieved;
}
//
// Get product type
//
NextDecPtr = _tcschr(CurDecPtr, TEXT('.'));
if(NextDecPtr) {
*NextDecPtr = TEXT('\0');
}
if(!pAToI(CurDecPtr, &TempInt) ||
(TempInt < 0) || (TempInt > 0xff)) {
continue;
}
ProductType = (BYTE)TempInt;
if(ProductType) {
CurDecIncludesMask |= DEC_INCLUDES_PRODUCTTYPE;
}
if(NextDecPtr) {
CurDecPtr = NextDecPtr + 1;
} else {
//
// No more fields to retrieve
//
goto AllFieldsRetrieved;
}
//
// Get suite mask. If we find another '.' in the TargetDecoration
// field, this indicates additional fields we don't know about
// (e.g., a future version of setupapi has added more fields, say,
// for service pack info). Since we don't know how to interpret
// these additional fields, an entry containing them must be
// skipped.
//
if(_tcschr(CurDecPtr, TEXT('.'))) {
continue;
}
if(!pAToI(CurDecPtr, &TempInt) ||
(TempInt < 0) || (TempInt > 0xffff)) {
continue;
}
SuiteMask = (WORD)TempInt;
if(SuiteMask) {
CurDecIncludesMask |= DEC_INCLUDES_SUITEMASK;
}
AllFieldsRetrieved :
if(AltPlatformInfo) {
//
// We're doing a non-native driver search, so we're on our own
// to do version comparison...
//
if((AltPlatformInfo->MajorVersion < CurMajorVer) ||
((AltPlatformInfo->MajorVersion == CurMajorVer) &&
(AltPlatformInfo->MinorVersion < CurMinorVer))) {
//
// The alternate platform info is for an older (lower-
// versioned) OS than the current TargetDecoration.
//
continue;
}
} else {
//
// We're doing native driver searching, we can use the handy
// API, VerifyVersionInfo.
//
if(!OsVersionInfoEx.dwOSVersionInfoSize) {
//
// First time we've needed to call VerifyVersionInfo--must
// initialize the structure first...
//
ZeroMemory(&OsVersionInfoEx, sizeof(OsVersionInfoEx));
OsVersionInfoEx.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
}
TypeMask = 0;
ConditionMask = 0;
OsVersionInfoEx.dwMajorVersion = CurMajorVer;
OsVersionInfoEx.dwMinorVersion = CurMinorVer;
if(CurMajorVer) {
TypeMask |= (VER_MAJORVERSION | VER_MINORVERSION);
VER_SET_CONDITION(ConditionMask,
VER_MAJORVERSION,
VER_GREATER_EQUAL
);
VER_SET_CONDITION(ConditionMask,
VER_MINORVERSION,
VER_GREATER_EQUAL
);
}
if(CurDecIncludesMask & DEC_INCLUDES_PRODUCTTYPE) {
OsVersionInfoEx.wProductType = ProductType;
TypeMask |= VER_PRODUCT_TYPE;
VER_SET_CONDITION(ConditionMask,
VER_PRODUCT_TYPE,
VER_EQUAL
);
} else {
OsVersionInfoEx.wProductType = 0;
}
if(CurDecIncludesMask & DEC_INCLUDES_SUITEMASK) {
OsVersionInfoEx.wSuiteMask = SuiteMask;
TypeMask |= VER_SUITENAME;
VER_SET_CONDITION(ConditionMask,
VER_SUITENAME,
VER_AND
);
} else {
OsVersionInfoEx.wSuiteMask = 0;
}
//
// Only call VerifyVersionInfo if one or more criteria were
// supplied (otherwise, assume this TargetDecoration is applicable)
//
if(TypeMask) {
if(!VerifyVersionInfo(&OsVersionInfoEx, TypeMask, ConditionMask)) {
//
// TargetDecoration isn't applicable to current OS version.
//
continue;
}
}
}
}
//
// If we get to here, we have an applicable TargetDecoration--see if
// it's the best one we've seen thus far...
//
NewBestFound = FALSE;
if((CurMajorVer > BestMajorVer) ||
((CurMajorVer == BestMajorVer) && (CurMinorVer > BestMinorVer))) {
//
// Newer version
//
NewBestFound = TRUE;
} else if((CurMajorVer == BestMajorVer) && (CurMinorVer == BestMinorVer)) {
//
// Version is same as current best. Is it as-specific or more so?
// NOTE: we update on "as-specific" (i.e., equal) matches to catch
// the case where our only applicable decoration is "NT". In that
// case, our best and current version is "0.0", and our masks are
// both zero as well.
//
if(CurDecIncludesMask >= BestDecIncludesMask) {
NewBestFound = TRUE;
}
}
if(NewBestFound) {
BestTargetDecoration = CurTargetDecoration;
BestMajorVer = CurMajorVer;
BestMinorVer = CurMinorVer;
BestDecIncludesMask = CurDecIncludesMask;
}
}
if(!BestTargetDecoration) {
//
// No applicable TargetDecoration was found.
//
return FALSE;
}
//
// Construct the decorated section name by appending the TargetDecoration
// to the models section name.
//
if(!(ModelsSectionName = InfGetField(Inf, MfgListLine, 1, NULL))) {
//
// Should never happen
//
MYASSERT(ModelsSectionName);
return FALSE;
}
lstrcpyn(DecoratedModelsSection, ModelsSectionName, MAX_SECT_NAME_LEN);
SectionNameLen = lstrlen(DecoratedModelsSection);
//
// Do we have enough space left for decoration + '.' + terminating NULL?
//
if((MAX_SECT_NAME_LEN - SectionNameLen) < (lstrlen(BestTargetDecoration) + 2)) {
//
// Decorated section name exceeds maximum length of a section name!
//
WriteLogEntry(
LogContext,
DRIVER_LOG_ERROR,
MSG_LOG_DEC_MODELS_SEC_TOO_LONG,
NULL,
ModelsSectionName,
BestTargetDecoration,
MAX_SECT_NAME_LEN
);
return FALSE;
}
DecoratedModelsSection[SectionNameLen++] = TEXT('.');
lstrcpy(&(DecoratedModelsSection[SectionNameLen]), BestTargetDecoration);
return TRUE;
}