Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1355 lines
28 KiB

// StructureWapperHelpers.cpp
//
//////////////////////////////////////////////////////////////////////
//***************************************************************************
//
// judyp May 1999
//
//***************************************************************************
#include "stdafx.h"
#pragma warning (disable : 4786)
#pragma warning (disable : 4275)
#include <iostream>
#include <strstream>
#include <fstream>
#include <string>
#include <sstream>
#include <map>
#include <list>
using namespace std;
#include <tchar.h>
#include <windows.h>
#ifdef NONNT5
typedef unsigned long ULONG_PTR;
#endif
#include <wmistr.h>
#include <guiddef.h>
#include <initguid.h>
#include <evntrace.h>
#include <WTYPES.H>
#include "t_string.h"
#include "Persistor.h"
#include "Logger.h"
#include "TCOData.h"
#include "Utilities.h"
#include "StructureWrappers.h"
#include "StructureWapperHelpers.h"
#include "ConstantMap.h"
extern CConstantMap g_ConstantMap;
static TCHAR g_tcNl = _T('\n');
static TCHAR g_tcCR = 0x0d;
static TCHAR g_tcLF = 0x0a;
#ifdef _UNICODE
static TCHAR g_tcDQuote[] = _T("\"");
static TCHAR g_atcNL[] = {0x0d, 0x0a, 0x00};
#else
static TCHAR g_atcNL[] = {g_tcNl};
static TCHAR g_tcDQuote = _T('"');
#endif
// Why we are not using formatted input:
#if 0
From: Phil Lucido (Exchange)
Sent: Friday, April 16, 1999 10:34 AM
To: Judy Powell
Cc: Visual C++ Special Interest Group
Subject: RE: Wide character output via wfstream from the "Standard Library"
using VC 6 Enterprise Edition SP2 on NT4 SP4
It looks like our iostreams implementation for wide-char streams is actually wide-char
in memory, multibyte chars on disk. The reason you get an empty file is because wctomb
is failing on 0xfeff.
This should work more like the stdio stuff, where a text mode wide-char stream writes
multibyte chars to a file, but binary mode writes the raw unicode.
We get our C++ Library implementation from Dinkumware (P.J. Plauger). I'll check with
him to see about changing this implementation so binary mode wide-char iostream is
compatible with wide-char stdio.
...Phil
#endif
//////////////////////////////////////////////////////////////////////
// Helpers
//////////////////////////////////////////////////////////////////////
void LogFileModeOut(t_ostream &ros, ULONG LogFileMode)
{
// EVENT_TRACE_FILE_MODE_NONE 0x0000 // logfile is off
// EVENT_TRACE_FILE_MODE_SEQUENTIAL 0x0001 // log sequentially
// EVENT_TRACE_FILE_MODE_CIRCULAR 0x0002 // log in circular manner
// EVENT_TRACE_FILE_MODE_NEWFILE 0x0004 // log to new file if full
// EVENT_TRACE_REAL_TIME_MODE 0x0100 // real time mode on
// EVENT_TRACE_DELAY_OPEN_FILE_MODE 0x0200 // delay opening file
// EVENT_TRACE_BUFFERING_MODE 0x0400 // buffering mode only
t_string tsOut;
// @#$ENUM: says that we are not storing a literal value.
tsOut = _T("\"LogFileMode:@#$ENUM:");
PutALine(ros, tsOut.c_str());
bool bFirstOut = true;
// Values we anticipate.
if (LogFileMode == 0)
{
tsOut = _T("0");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
if (LogFileMode & EVENT_TRACE_FILE_MODE_NONE)
{
tsOut = _T("EVENT_TRACE_FILE_MODE_NONE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
if (LogFileMode & EVENT_TRACE_FILE_MODE_SEQUENTIAL)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FILE_MODE_SEQUENTIAL");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FILE_MODE_SEQUENTIAL");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_FILE_MODE_CIRCULAR)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FILE_MODE_CIRCULAR");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FILE_MODE_CIRCULAR");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_FILE_MODE_NEWFILE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FILE_MODE_NEWFILE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FILE_MODE_NEWFILE");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_REAL_TIME_MODE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_REAL_TIME_MODE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_REAL_TIME_MODE");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_DELAY_OPEN_FILE_MODE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_DELAY_OPEN_FILE_MODE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_DELAY_OPEN_FILE_MODE");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_PRIVATE_LOGGER_MODE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_PRIVATE_LOGGER_MODE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_PRIVATE_LOGGER_MODE");
PutALine(ros, tsOut.c_str());
}
}
if (LogFileMode & EVENT_TRACE_BUFFERING_MODE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_BUFFERING_MODE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_BUFFERING_MODE");
PutALine(ros, tsOut.c_str());
}
}
// A value we did not anticipate.
ULONG uExpected =
EVENT_TRACE_FILE_MODE_NONE |
EVENT_TRACE_FILE_MODE_SEQUENTIAL |
EVENT_TRACE_FILE_MODE_CIRCULAR |
EVENT_TRACE_FILE_MODE_NEWFILE |
EVENT_TRACE_REAL_TIME_MODE |
EVENT_TRACE_DELAY_OPEN_FILE_MODE |
EVENT_TRACE_BUFFERING_MODE |
EVENT_TRACE_PRIVATE_LOGGER_MODE;
if ((uExpected | LogFileMode) != uExpected)
{
if (bFirstOut)
{
tsOut = _T("@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & LogFileMode, true);
}
else
{
tsOut = _T("|@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & LogFileMode, true);
}
}
tsOut = g_tcDQuote;
tsOut += g_atcNL;
PutALine(ros, tsOut.c_str());
}
void EnableFlagsOut(t_ostream &ros, ULONG EnableFlags)
{
// EVENT_TRACE_FLAG_PROCESS 0x00000001 // process start & end
// EVENT_TRACE_FLAG_THREAD 0x00000002 // thread start & end
// EVENT_TRACE_FLAG_IMAGE_LOAD 0x00000004 // image load
// EVENT_TRACE_FLAG_DISK_IO 0x00000100 // physical disk IO
// EVENT_TRACE_FLAG_DISK_FILE_IO 0x00000200 // requires disk IO
// EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS 0x00001000 // all page faults
// EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS 0x00002000 // hard faults only
// EVENT_TRACE_FLAG_NETWORK_TCPIP 0x00010000 // tcpip send & receive
//
// Pre-defined Enable flags for everybody else
//
// EVENT_TRACE_FLAG_PRIVATE 0xC0000000 // Private buffering
// EVENT_TRACE_FLAG_EXTENSION 0x80000000 // indicates more flags
// EVENT_TRACE_FLAG_FORWARD_WMI 0x40000000 // Can forward to WMI
// EVENT_TRACE_FLAG_ENABLE_RESERVE1 0x20000000 // Reserved
// EVENT_TRACE_FLAG_ENABLE_RESERVE2 0x10000000 // Reserved
t_string tsOut;
// @#$ENUM: says that we are not storing a literal value.
tsOut = _T("\"EnableFlags:@#$ENUM:");
PutALine(ros, tsOut.c_str());
bool bFirstOut = true;
if (EnableFlags == 0)
{
tsOut = _T("0");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
if (EnableFlags & EVENT_TRACE_FLAG_PROCESS)
{
tsOut = _T("EVENT_TRACE_FLAG_PROCESS");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
if (EnableFlags & EVENT_TRACE_FLAG_THREAD)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_THREAD");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_THREAD");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_THREAD)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_THREAD");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_THREAD");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_IMAGE_LOAD)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_IMAGE_LOAD");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_IMAGE_LOAD");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_DISK_IO)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_DISK_IO");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_DISK_IO");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_DISK_FILE_IO)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_DISK_FILE_IO");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_DISK_FILE_IO");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_NETWORK_TCPIP)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_NETWORK_TCPIP");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_NETWORK_TCPIP");
PutALine(ros, tsOut.c_str());
}
}
#if 0
if (EnableFlags & EVENT_TRACE_FLAG_PRIVATE)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_PRIVATE");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_PRIVATE");
PutALine(ros, tsOut.c_str());
}
}
#endif
if (EnableFlags & EVENT_TRACE_FLAG_EXTENSION)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_EXTENSION");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_EXTENSION");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_FORWARD_WMI)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_FORWARD_WMI");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_FORWARD_WMI");
PutALine(ros, tsOut.c_str());
}
}
#if 0
if (EnableFlags & EVENT_TRACE_FLAG_ENABLE_RESERVE1)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_ENABLE_RESERVE1");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_ENABLE_RESERVE1");
PutALine(ros, tsOut.c_str());
}
}
if (EnableFlags & EVENT_TRACE_FLAG_ENABLE_RESERVE2)
{
if (bFirstOut)
{
tsOut = _T("EVENT_TRACE_FLAG_ENABLE_RESERVE2");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|EVENT_TRACE_FLAG_ENABLE_RESERVE2");
PutALine(ros, tsOut.c_str());
}
}
#endif
ULONG uExpected =
EVENT_TRACE_FLAG_PROCESS |
EVENT_TRACE_FLAG_THREAD |
EVENT_TRACE_FLAG_IMAGE_LOAD |
EVENT_TRACE_FLAG_DISK_IO |
EVENT_TRACE_FLAG_DISK_FILE_IO |
EVENT_TRACE_FLAG_MEMORY_PAGE_FAULTS |
EVENT_TRACE_FLAG_MEMORY_HARD_FAULTS |
EVENT_TRACE_FLAG_NETWORK_TCPIP |
EVENT_TRACE_FLAG_EXTENSION |
EVENT_TRACE_FLAG_FORWARD_WMI;
if ((uExpected | EnableFlags) != uExpected)
{
if (bFirstOut)
{
tsOut = _T("@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & EnableFlags, true);
}
else
{
tsOut = _T("|@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & EnableFlags, true);
}
}
tsOut = g_tcDQuote;
tsOut += g_atcNL;
PutALine(ros, tsOut.c_str());
}
// "Wnode.Flags:@#$ENUM:WNODE_FLAG_ALL_DATA"
void WnodeFlagsOut(t_ostream &ros, ULONG WnodeFlags)
{
t_string tsOut;
// @#$ENUM: says that we are not storing a literal value.
tsOut = _T("\"Wnode.Flags:@#$ENUM:");
PutALine(ros, tsOut.c_str());
bool bFirstOut = true;
if (WnodeFlags & WNODE_FLAG_TRACED_GUID)
{
if (bFirstOut)
{
tsOut = _T("WNODE_FLAG_TRACED_GUID");
PutALine(ros, tsOut.c_str());
bFirstOut = false;
}
else
{
tsOut = _T("|WNODE_FLAG_TRACED_GUID");
PutALine(ros, tsOut.c_str());
}
}
ULONG uExpected =
WNODE_FLAG_TRACED_GUID;
if ((uExpected | WnodeFlags) != uExpected)
{
if (bFirstOut)
{
tsOut = _T("@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & WnodeFlags, true);
}
else
{
tsOut = _T("|@#$UNKNOWNVALUE:0x");
PutALine(ros, tsOut.c_str());
PutAULONGVar(ros, ~uExpected & WnodeFlags, true);
}
}
tsOut = g_tcDQuote;
tsOut += g_atcNL;
PutALine(ros, tsOut.c_str());
}
// We print out a GUID in the form:
// "{0000cbd1-0011-11d0-0d00-00aa006d010a}"
// typedef struct _GUID
// {
// DWORD Data1;
// WORD Data2;
// WORD Data3;
// BYTE Data4[8];
// } GUID;
// Data4 specifies an array of 8 bytes. The first 2 bytes contain
// the third group of 4 hexadecimal digits. The remaining 6 bytes
// contain the final 12 hexadecimal digits. We have separate
// logic for acsii and unicode for Data4.
void GUIDOut(t_ostream &ros, GUID Guid)
{
t_string tsOut;
t_strstream strStream;
strStream << _T("{");
strStream.fill(_T('0'));
strStream.width(8);
strStream.flags(ros.flags() | ios_base::right);
strStream << hex << Guid.Data1;
strStream << _T("-");
strStream.width(4);
strStream << hex << Guid.Data2;
strStream << _T("-");
strStream << hex << Guid.Data3;
strStream << _T("-");
// Data4 specifies an array of 8 bytes. The first 2 bytes contain
// the third group of 4 hexadecimal digits. The remaining 6 bytes
// contain the final 12 hexadecimal digits.
#ifndef _UNICODE
int i;
strStream.width(1);
BYTE Byte;
int Int;
for (i = 0; i < 2; i++)
{
Byte = Guid.Data4[i];
Byte = Byte >> 4;
Int = Byte;
strStream << hex << Int;
Byte = Guid.Data4[i];
Byte = 0x0f & Byte;
Int = Byte;
strStream << hex << Int;
}
strStream << _T("-");
strStream.width(1);
for (i = 2; i < 8; i++)
{
BYTE Byte = Guid.Data4[i];
Byte = Byte >> 4;
Int = Byte;
strStream << hex << Int;
Byte = Guid.Data4[i];
Byte = 0x0f & Byte;
Int = Byte;
strStream << hex << Int;
}
#else
int i;
for (i = 0; i < 2; i++)
{
TCHAR tc = Guid.Data4[i];
// For some reason the width is reset each time through the
// loop to be one.
strStream.width(2);
strStream << hex << tc;
}
strStream << _T("-");
BYTE Byte;
strStream.width(1);
for (i = 2; i < 8; i++)
{
Byte = Guid.Data4[i];
Byte = Byte >> 4;
strStream << hex << Byte;
Byte = Guid.Data4[i];
Byte = 0x0f & Byte;
strStream << hex << Byte;
}
#endif
strStream << _T("}");
strStream >> tsOut;
PutALine(ros, tsOut.c_str() , -1);
}
void LARGE_INTEGEROut(t_ostream &ros, LARGE_INTEGER Large)
{
t_string tsOut;
tsOut = _T("{0x");
PutALine(ros, tsOut.c_str() , -1);
LONG Long = Large.u.HighPart;
PutALONGVar(ros, Large.u.HighPart,true);
DWORD DWord = Large.u.LowPart;
PutADWORDVar(ros, DWord);
tsOut = _T("}");
PutALine(ros, tsOut.c_str() , -1);
}
void InitializeTCHARVar(t_string &rtsValue , void *pVar)
{
TCHAR **pTCHAR = reinterpret_cast<TCHAR **> (pVar);
if (rtsValue.length() > 0)
{
// Null string.
if (case_insensitive_compare(rtsValue,_T("@#$STRING_NULL")) == 0)
{
*pTCHAR = NULL;
}
// Empty string.
else if (case_insensitive_compare(rtsValue,_T("@#$STRING_EMPTY")) == 0)
{
*pTCHAR = NewTCHAR(_T(""));
}
else // Just a string.
{
*pTCHAR = NewTCHAR(rtsValue.c_str());
}
}
else // Empty string.
{
*pTCHAR = NewTCHAR(_T(""));
}
}
//"EVENT_TRACE_FILE_MODE_NEWFILE|EVENT_TRACE_REAL_TIME_MODE|@#$UNKNOWNVALUE:0x20"
//"EVENT_TRACE_FLAG_IMAGE_LOAD|EVENT_TRACE_FLAG_DISK_IO|@#$UNKNOWNVALUE:0x20"
void InitializeEnumVar(t_string &rtsValue , void *pVar)
{
ULONG *pULong = reinterpret_cast<ULONG *> (pVar);
*pULong = 0;
int nEndPos;
int nBegPos = 0;
int nSubstrLen;
t_string tsTemp;
CONSTMAP::iterator Iterator;
bool bDone = false;
while (!bDone)
{
nEndPos = rtsValue.find(_T("|"), nBegPos);
if (nEndPos == t_string::npos)
{
bDone = true;
nEndPos = rtsValue.length();
}
nSubstrLen = nEndPos - nBegPos;
tsTemp = rtsValue.substr(nBegPos, nSubstrLen);
Iterator = g_ConstantMap.m_Map.find(tsTemp);
if (Iterator == g_ConstantMap.m_Map.end())
{
// Had better be @#$UNKNOWNVALUE:0x
if (tsTemp.compare(0, 18, _T("@#$UNKNOWNVALUE:0x")) == 0)
{
tsTemp = rtsValue.substr(nBegPos + 18);
ULONG ulTemp;
InitializeULONGVar(tsTemp , (void *) &ulTemp, true);
*pULong |= ulTemp;
}
}
else
{
*pULong |= (*Iterator).second;
}
nBegPos = nEndPos + 1;
}
}
// Expect HANDLEs to be in the form 0xnnnnnnnn
void InitializeHandleVar(t_string &rtsValue , void *pVar)
{
HANDLE *pHandle = reinterpret_cast<HANDLE *> (pVar);
HANDLE handle;
t_strstream strStream;
t_string tsTemp;
tsTemp = rtsValue.substr(2);
strStream << tsTemp;
strStream >> handle;
*pHandle = handle;
}
void InitializeULONGVar(t_string &rtsValue , void *pVar, bool bHex )
{
ULONG *pULong = reinterpret_cast<ULONG *> (pVar);
ULONG uLong;
t_strstream strStream;
strStream << rtsValue;
if (bHex)
{
strStream >> hex >> uLong;
}
else
{
strStream >> uLong;
}
*pULong = uLong;
}
void InitializeLONGVar(t_string &rtsValue , void *pVar)
{
LONG *pLong = reinterpret_cast<LONG *> (pVar);
LONG Long;
t_strstream strStream;
strStream << rtsValue;
strStream >> Long;
*pLong = Long;
}
t_istream &GetAChar(t_istream &ris,TCHAR &tc)
{
#ifndef _UNICODE
tc = ris.get();
return ris;
#else
char *pChar = (char *) &tc;
pChar[0] = ris.get();
pChar[1] = ris.get();
return ris;
#endif
}
// See note at top of this file to understand why we are not using
// formatted input.
// We are reading in a wide character file one byte at a time and
// creating our two byte characters from each two byte sequence.
t_istream &GetALine(t_istream &ris,TCHAR *tcBuffer, int nBufferSize)
{
#ifndef _UNICODE
t_istream &r = ris.getline(tcBuffer,nBufferSize - 1,_T('\n'));
// Docs for getline say that it sould eat the new line. It does
// not, and it does even worse. It returns a 0x0d which we delete.
// This should work even when getline does
// what the docs say it will.
int n = _tcsclen(tcBuffer) - 1;
if (tcBuffer[n] == 0x0d)
{
tcBuffer[n] = _T('\0');
}
return r;
#else
char *pChar = (char *) tcBuffer;
bool bSkipNext = false;
bool bEOL = false;
int intIn1;
int intIn2;
int i = 0;
int count = 0;
while (1)
{
intIn1 = ris.get();
if (ris.eof())
{
break;
}
intIn2 = ris.get();
if (intIn1 == 0x0d && intIn2 == 0x0)
{
// Found 0x0d so eat the 0x0a.
intIn1 = ris.get();
intIn2 = ris.get();
tcBuffer[i / 2] = _T('\0');
break;
}
else
{
pChar[i++] = intIn1;
pChar[i++] = intIn2;
}
}
if (i == 0)
{
tcBuffer[0] = _T('\0');
}
return ris;
#endif
}
// See note at top of this file to understand why we are not using
// formatted input.
// We are writing out a wide character file one byte at a time.
// nBufferSize is the number of TCHARS not size in bytes.
// if nBufferSize == -1 tcBuffer better be a null terminated string.
// Will handle a unicode string with "proper" and "inproper" newlines.
t_ostream &PutALine(t_ostream &ros,const TCHAR *tcBuffer, int nBufferSize)
{
#ifndef _UNICODE
// return ros << tcBuffer;
const char *pBuffer = tcBuffer;
int nSize = nBufferSize;
if (nBufferSize == -1)
{
nSize = _tcsclen(tcBuffer);
}
for (int i = 0; i < nSize; i++)
{
int intOut = pBuffer[i];
if (intOut == 0x0a && pBuffer[i - 1] != 0x0d)
{
ros.put(0x0d);
}
ros.put(intOut);
}
return ros;
#else
char *pBuffer = (char *) tcBuffer;
int nSize = nBufferSize;
if (nBufferSize == -1)
{
nSize = _tcsclen(tcBuffer);
}
for (int i = 0; i < nSize * 2; i++)
{
int intOut = pBuffer[i];
if (intOut == 0x0a && pBuffer[i - 2] != 0x0d)
{
ros.put(0x0d);
ros.put(0x0);
}
ros.put(intOut);
}
return ros;
#endif
}
// Hex flavor not tested for non-unicode.
t_ostream &PutALONGVar(t_ostream &ros, LONG l, bool bHex)
{
#ifndef _UNICODE
if (bHex)
{
TCHAR f = ros.fill(_T('0'));
int w = ros.width(8);
int fl = ros.flags(ros.flags() | ios_base::right);
ros << hex << l;
ros.fill(f);
ros.width(w);
ros.flags(fl);
return ros << dec;
}
else
{
return ros << l;
}
#else
t_string tsTemp;
t_strstream strStream;
if (bHex)
{
strStream.width(8);
strStream.fill('0');
strStream.flags(ios_base::right);
strStream << hex << l;
}
else
{
strStream << l;
}
strStream >> tsTemp;
PutALine(ros, tsTemp.c_str() , -1);
return ros;
#endif
}
t_ostream &PutAULONG64Var(t_ostream &ros, ULONG64 ul64)
{
ULONG *lArray = (ULONG *) &ul64;
PutAULONGVar( ros, lArray[0], true);
PutAULONGVar( ros, lArray[1], true);
return ros;
}
t_ostream &PutAULONGVar(t_ostream &ros, ULONG ul, bool bHex)
{
#ifndef _UNICODE
if (bHex)
{
TCHAR f = ros.fill(_T('0'));
int w = ros.width(8);
int fl = ros.flags(ros.flags() | ios_base::right);
ros << hex << ul;
ros.fill(f);
ros.width(w);
ros.flags(fl);
return ros << dec;
}
else
{
return ros << ul;
}
#else
t_string tsTemp;
t_strstream strStream;
if (bHex)
{
strStream.width(8);
strStream.fill('0');
strStream.flags(ios_base::right);
strStream << hex << ul;
}
else
{
strStream << ul;
}
strStream >> tsTemp;
PutALine(ros, tsTemp.c_str() , -1);
return ros;
#endif
}
t_ostream &PutADWORDVar(t_ostream &ros, DWORD dw)
{
#ifndef _UNICODE
TCHAR f = ros.fill(_T('0'));
int w = ros.width(8);
int fl = ros.flags(ros.flags() | ios_base::right);
ros << hex << dw;
ros.fill(f);
ros.width(w);
ros.flags(fl);
return ros << dec;
#else
t_string tsTemp;
t_strstream strStream;
strStream.width(8);
strStream.fill('0');
strStream.flags(ios_base::right);
strStream << hex << dw;
strStream >> tsTemp;
PutALine(ros, tsTemp.c_str() , -1);
return ros;
#endif
}
void InitializeGUIDVar(t_string &rtsValue , void *pVar)
{
GUID *pGUID = reinterpret_cast<GUID *> (pVar);
if (rtsValue.length() > 0 && case_insensitive_compare(rtsValue,_T("@#$NA")) != 0)
{
wGUIDFromString(rtsValue.c_str(), pGUID);
}
else
{
RtlZeroMemory(pGUID, sizeof(GUID));
}
}
// *** Following routine copied from WMI\MofCheck. to convert
// a guid string to a GUID.
// The routines below were blantenly stolen without remorse from the ole
// sources in \nt\private\ole32\com\class\compapi.cxx. They are copied here
// so that WMI doesn't need to load in ole32 only to convert a guid string
// into its binary representation.
//
//+-------------------------------------------------------------------------
//
// Function: HexStringToDword (private)
//
// Synopsis: scan lpsz for a number of hex digits (at most 8); update lpsz
// return value in Value; check for chDelim;
//
// Arguments: [lpsz] - the hex string to convert
// [Value] - the returned value
// [cDigits] - count of digits
//
// Returns: TRUE for success
//
//--------------------------------------------------------------------------
BOOL HexStringToDword(LPCTSTR lpsz, DWORD * RetValue,
int cDigits, WCHAR chDelim)
{
int Count;
DWORD Value;
Value = 0;
for (Count = 0; Count < cDigits; Count++, lpsz++)
{
if (*lpsz >= '0' && *lpsz <= '9')
Value = (Value << 4) + *lpsz - '0';
else if (*lpsz >= 'A' && *lpsz <= 'F')
Value = (Value << 4) + *lpsz - 'A' + 10;
else if (*lpsz >= 'a' && *lpsz <= 'f')
Value = (Value << 4) + *lpsz - 'a' + 10;
else
return(FALSE);
}
*RetValue = Value;
if (chDelim != 0)
return *lpsz++ == chDelim;
else
return TRUE;
}
//+-------------------------------------------------------------------------
//
// Function: wUUIDFromString (internal)
//
// Synopsis: Parse UUID such as 00000000-0000-0000-0000-000000000000
//
// Arguments: [lpsz] - Supplies the UUID string to convert
// [pguid] - Returns the GUID.
//
// Returns: TRUE if successful
//
//--------------------------------------------------------------------------
BOOL wUUIDFromString(LPCTSTR lpsz, LPGUID pguid)
{
DWORD dw;
if (!HexStringToDword(lpsz, &pguid->Data1, sizeof(DWORD)*2, '-'))
return FALSE;
lpsz += sizeof(DWORD)*2 + 1;
if (!HexStringToDword(lpsz, &dw, sizeof(WORD)*2, '-'))
return FALSE;
lpsz += sizeof(WORD)*2 + 1;
pguid->Data2 = (WORD)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(WORD)*2, '-'))
return FALSE;
lpsz += sizeof(WORD)*2 + 1;
pguid->Data3 = (WORD)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[0] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, '-'))
return FALSE;
lpsz += sizeof(BYTE)*2+1;
pguid->Data4[1] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[2] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[3] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[4] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[5] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[6] = (BYTE)dw;
if (!HexStringToDword(lpsz, &dw, sizeof(BYTE)*2, 0))
return FALSE;
lpsz += sizeof(BYTE)*2;
pguid->Data4[7] = (BYTE)dw;
return TRUE;
}
//+-------------------------------------------------------------------------
//
// Function: wGUIDFromString (internal)
//
// Synopsis: Parse GUID such as {00000000-0000-0000-0000-000000000000}
//
// Arguments: [lpsz] - the guid string to convert
// [pguid] - guid to return
//
// Returns: TRUE if successful
//
//--------------------------------------------------------------------------
BOOL wGUIDFromString(LPCTSTR lpsz, LPGUID pguid)
{
if (*lpsz == '{' )
lpsz++;
if(wUUIDFromString(lpsz, pguid) != TRUE)
return FALSE;
lpsz +=36;
if (*lpsz == '}' )
lpsz++;
if (*lpsz != '\0') // check for zero terminated string - test bug #18307
{
return FALSE;
}
return TRUE;
}
int case_insensitive_compare(t_string &r1, t_string &r2)
{
t_string tsTemp1;
t_string tsTemp2;
tsTemp1 = r1.c_str();
tsTemp2 = r2.c_str();
int i;
for (i = 0; i < tsTemp1.length(); i++)
{
tsTemp1.replace(i,1,1, toupper(tsTemp1[i]));
}
for (i = 0; i < tsTemp2.length(); i++)
{
tsTemp2.replace(i,1,1, toupper(tsTemp2[i]));
}
return tsTemp1.compare(tsTemp2);
}
int case_insensitive_compare(TCHAR *p, t_string &r2)
{
if (p == NULL)
{
return -1;
}
t_string tsTemp;
tsTemp = p;
return case_insensitive_compare(tsTemp, r2);
}
int case_insensitive_compare(t_string &r1,TCHAR *p )
{
if (p == NULL)
{
return 1;
}
t_string tsTemp;
tsTemp = p;
return case_insensitive_compare(r1, tsTemp);
}
int case_insensitive_compare(TCHAR *p1,TCHAR *p2)
{
if (!p1 && !p2)
{
return 0;
}
else if (!p1)
{
return -1;
} else if (!p2)
{
return 1;
}
int l1 = _tcslen(p1);
int l2 = _tcslen(p2);
int nCompare = _tcsnicmp(p1,p2,_MIN(l1,l2));
if (nCompare == 0)
{
if (l1 == l2)
{
return 0;
}
else if (l1 < l2)
{
return -1;
}
else
{
return 1;
}
}
else
{
return nCompare;
}
}