Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

897 lines
30 KiB

/*++
Copyright (C) Microsoft Corporation, 1993 - 1999
Module Name:
p12843dl.c
Abstract:
This module contains utility code used by 1284.3 Data Link.
Author:
Robbie Harris (Hewlett-Packard) 10-September-1998
Environment:
Kernel mode
Revision History :
--*/
#include "pch.h"
UCHAR Dot3_StartOfFrame1 = 0x55;
UCHAR Dot3_StartOfFrame2 = 0xaa;
UCHAR Dot3_EndOfFrame1 = 0x00;
UCHAR Dot3_EndOfFrame2 = 0xff;
NTSTATUS
ParDot3Connect(
IN PPDO_EXTENSION Pdx
)
{
NTSTATUS Status = STATUS_SUCCESS;
ULONG ParFwdSkip = 0, ParRevSkip = 0;
ULONG ParResetChannel = (ULONG)~0, ParResetByteCount = 4, ParResetByte = 0;
ULONG ParSkipDefault = 0;
ULONG ParResetChannelDefault = (ULONG)~0;
// If an MLC device hangs we can sometimes wake it up by wacking it with
// 4 Zeros sent to the reset channel (typically 78 or 0x4E). Make this
// configurable via registry setting.
ULONG ParResetByteCountDefault = 4; // from MLC spec
ULONG ParResetByteDefault = 0; // from MLC spec
BOOLEAN bConsiderEppDangerous = FALSE;
DD((PCE)Pdx,DDT,"ParDot3Connect: enter\n");
if (P12843DL_OFF == Pdx->P12843DL.DataLinkMode) {
DD((PCE)Pdx,DDT,"ParDot3Connect: Neither Dot3 or MLC are supported - FAIL request\n");
return STATUS_UNSUCCESSFUL;
}
if (Pdx->P12843DL.bEventActive) {
DD((PCE)Pdx,DDT,"ParDot3Connect: Already connected - FAIL request\n");
return STATUS_UNSUCCESSFUL;
}
// Let's get a Device Id so we can pull settings for this device
ParTerminate(Pdx);
{ // local block
PCHAR buffer = NULL;
ULONG bufferLength;
UCHAR resultString[MAX_ID_SIZE];
ANSI_STRING AnsiIdString;
UNICODE_STRING UnicodeTemp;
RTL_QUERY_REGISTRY_TABLE paramTable[6];
UNICODE_STRING Dot3Key;
USHORT Dot3NameSize;
NTSTATUS status;
RtlZeroMemory(resultString, MAX_ID_SIZE);
// ask the device how large of a buffer is needed to hold it's raw device id
if ( Pdx->Ieee1284Flags & ( 1 << Pdx->Ieee1284_3DeviceId ) ) {
buffer = Par3QueryDeviceId(Pdx, NULL, 0, &bufferLength, FALSE, TRUE);
} else{
buffer = Par3QueryDeviceId(Pdx, NULL, 0, &bufferLength, FALSE, FALSE);
}
if( !buffer ) {
DD((PCE)Pdx,DDT,"ParDot3Connect - Couldn't alloc pool for DevId - FAIL request\n");
return STATUS_UNSUCCESSFUL;
}
DD((PCE)Pdx,DDT,"ParDot3Connect - 1284 ID string = <%s>\n",buffer);
// extract the part of the ID that we want from the raw string
// returned by the hardware
Status = ParPnpGetId( buffer, BusQueryDeviceID, (PCHAR)resultString, NULL );
StringSubst( (PCHAR)resultString, ' ', '_', (USHORT)strlen((const PCHAR)resultString) );
DD((PCE)Pdx,DDT,"ParDot3Connect: resultString Post StringSubst = <%s>\n",resultString);
// were we able to extract the info that we want from the raw ID string?
if( !NT_SUCCESS(Status) ) {
DD((PCE)Pdx,DDT,"ParDot3Connect - Call to ParPnpGetId Failed - FAIL request\n");
if( buffer ) {
ExFreePool( buffer );
}
return STATUS_UNSUCCESSFUL;
}
// Does the ID that we just retrieved from the device match the one
// that we previously saved in the device extension?
if(0 != strcmp( (const PCHAR)Pdx->DeviceIdString, (const PCHAR)resultString)) {
DD((PCE)Pdx,DDT,"ParDot3Connect - strcmp shows NO MATCH\n");
// DVDF - we may want to trigger a reenumeration since we know that the device changed
}
// Ok, now we have what we need to look in the registry
// and pull some prefs.
RtlZeroMemory(&paramTable[0], sizeof(paramTable));
paramTable[0].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[0].Name = (PWSTR)L"ParFwdSkip";
paramTable[0].EntryContext = &ParFwdSkip;
paramTable[0].DefaultType = REG_DWORD;
paramTable[0].DefaultData = &ParSkipDefault;
paramTable[0].DefaultLength = sizeof(ULONG);
paramTable[1].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[1].Name = (PWSTR)L"ParRevSkip";
paramTable[1].EntryContext = &ParRevSkip;
paramTable[1].DefaultType = REG_DWORD;
paramTable[1].DefaultData = &ParSkipDefault;
paramTable[1].DefaultLength = sizeof(ULONG);
paramTable[2].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[2].Name = (PWSTR)L"ParRC";
paramTable[2].EntryContext = &ParResetChannel;
paramTable[2].DefaultType = REG_DWORD;
paramTable[2].DefaultData = &ParResetChannelDefault;
paramTable[2].DefaultLength = sizeof(ULONG);
paramTable[3].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[3].Name = (PWSTR)L"ParRBC";
paramTable[3].EntryContext = &ParResetByteCount;
paramTable[3].DefaultType = REG_DWORD;
paramTable[3].DefaultData = &ParResetByteCountDefault;
paramTable[3].DefaultLength = sizeof(ULONG);
paramTable[4].Flags = RTL_QUERY_REGISTRY_DIRECT;
paramTable[4].Name = (PWSTR)L"ParRBD";
paramTable[4].EntryContext = &ParResetByte;
paramTable[4].DefaultType = REG_DWORD;
paramTable[4].DefaultData = &ParResetByteDefault;
paramTable[4].DefaultLength = sizeof(ULONG);
Dot3Key.Buffer = NULL;
Dot3Key.Length = 0;
Dot3NameSize = sizeof(L"Dot3\\") + sizeof(UNICODE_NULL);
Dot3Key.MaximumLength = (USHORT)( Dot3NameSize + (sizeof(resultString) * sizeof(WCHAR)) );
Dot3Key.Buffer = ExAllocatePool(PagedPool,
Dot3Key.MaximumLength);
if( !Dot3Key.Buffer ) {
DD((PCE)Pdx,DDT,"ParDot3Connect - ExAllocatePool for Registry Check failed - FAIL request\n");
if( buffer ) {
ExFreePool( buffer );
}
return STATUS_UNSUCCESSFUL;
}
DD((PCE)Pdx,DDT,"ParDot3Connect: ready to Zero buffer, &Dot3Key= %x , MaximumLength=%d\n",&Dot3Key, Dot3Key.MaximumLength);
RtlZeroMemory(Dot3Key.Buffer, Dot3Key.MaximumLength);
status = RtlAppendUnicodeToString(&Dot3Key, (PWSTR)L"Dot3\\");
ASSERT( NT_SUCCESS(status) );
DD((PCE)Pdx,DDT,"ParDot3Connect:\"UNICODE\" Dot3Key S = <%S>\n",Dot3Key.Buffer);
DD((PCE)Pdx,DDT,"ParDot3Connect:\"UNICODE\" Dot3Key wZ = <%wZ>\n",&Dot3Key);
DD((PCE)Pdx,DDT,"ParDot3Connect:\"RAW\" resultString string = <%s>\n",resultString);
RtlInitAnsiString(&AnsiIdString,(const PCHAR)resultString);
status = RtlAnsiStringToUnicodeString(&UnicodeTemp,&AnsiIdString,TRUE);
if( NT_SUCCESS( status ) ) {
DD((PCE)Pdx,DDT,"ParDot3Connect:\"UNICODE\" UnicodeTemp = <%S>\n",UnicodeTemp.Buffer);
Dot3Key.Buffer[(Dot3NameSize / sizeof(WCHAR)) - 1] = UNICODE_NULL;
DD((PCE)Pdx,DDT,"ParDot3Connect:\"UNICODE\" Dot3Key (preappend) = <%S>\n",Dot3Key.Buffer);
status = RtlAppendUnicodeStringToString(&Dot3Key, &UnicodeTemp);
if( NT_SUCCESS( status ) ) {
DD((PCE)Pdx,DDT,"ParDot3Connect: ready to call RtlQuery...\n");
Status = RtlQueryRegistryValues( RTL_REGISTRY_CONTROL, Dot3Key.Buffer, &paramTable[0], NULL, NULL);
DD((PCE)Pdx,DDT,"ParDot3Connect: RtlQueryRegistryValues Status = %x\n",Status);
}
RtlFreeUnicodeString(&UnicodeTemp);
}
if( Dot3Key.Buffer ) {
ExFreePool (Dot3Key.Buffer);
}
// no longer needed
ExFreePool(buffer);
if (!NT_SUCCESS(Status)) {
// registry read failed
DD((PCE)Pdx,DDT,"ParDot3Connect: No Periph Defaults in Registry\n");
DD((PCE)Pdx,DDT,"ParDot3Connect: No Periph Defaults in Registry\n");
// registry read failed, use defaults and consider EPP to be dangerous
ParRevSkip = ParFwdSkip = ParSkipDefault;
bConsiderEppDangerous = TRUE;
}
DD((PCE)Pdx,DDT,"ParDot3Connect: pre IeeeNegotiateBestMode\n");
// if we don't have registry overrides then use what the
// peripheral told us otherwise stick with defaults.
if (ParSkipDefault == ParRevSkip) {
ParRevSkip = Pdx->P12843DL.RevSkipMask;
} else {
Pdx->P12843DL.RevSkipMask = (USHORT)ParRevSkip;
}
if (ParSkipDefault == ParFwdSkip) {
ParFwdSkip = Pdx->P12843DL.FwdSkipMask;
} else {
Pdx->P12843DL.FwdSkipMask = (USHORT)ParFwdSkip;
}
if( bConsiderEppDangerous ) {
ParFwdSkip |= EPP_ANY;
ParRevSkip |= EPP_ANY;
}
Status = IeeeNegotiateBestMode(Pdx, (USHORT)ParRevSkip, (USHORT)ParFwdSkip);
if( !NT_SUCCESS(Status) ) {
DD((PCE)Pdx,DDT,"ParDot3Connect - Peripheral Negotiation Failed - FAIL dataLink connect\n");
return Status;
}
Pdx->ForwardInterfaceAddress = Pdx->P12843DL.DataChannel;
if (Pdx->P12843DL.DataLinkMode == P12843DL_MLC_DL) {
if (ParResetChannel != ParResetChannelDefault) {
Pdx->P12843DL.ResetByte = (UCHAR) ParResetByte & 0xff;
Pdx->P12843DL.ResetByteCount = (UCHAR) ParResetByteCount & 0xff;
if (ParResetChannel == PAR_COMPATIBILITY_RESET) {
Pdx->P12843DL.fnReset = ParMLCCompatReset;
} else {
// Max ECP channel is 127 so let's mask off bogus bits.
Pdx->P12843DL.ResetChannel = (UCHAR) ParResetChannel & 0x7f;
Pdx->P12843DL.fnReset = ParMLCECPReset;
}
}
}
if (Pdx->P12843DL.fnReset) {
DD((PCE)Pdx,DDT,"ParDot3Connect: MLCReset is supported on %x\n",Pdx->P12843DL.ResetChannel);
Status = ((PDOT3_RESET_ROUTINE) (Pdx->P12843DL.fnReset))(Pdx);
} else {
DD((PCE)Pdx,DDT,"ParDot3Connect - MLCReset is not supported\n");
Status = ParSetFwdAddress(Pdx);
}
if( !NT_SUCCESS(Status) ) {
DD((PCE)Pdx,DDT,"ParDot3Connect - Couldn't Set Address - FAIL request\n");
return Status;
}
// Check to make sure we are ECP, BECP, or EPP
DD((PCE)Pdx,DDT,"ParDot3Connect: pre check of ECP, BECP, EPP\n");
if (afpForward[Pdx->IdxForwardProtocol].ProtocolFamily != FAMILY_BECP &&
afpForward[Pdx->IdxForwardProtocol].ProtocolFamily != FAMILY_ECP &&
afpForward[Pdx->IdxForwardProtocol].ProtocolFamily != FAMILY_EPP) {
DD((PCE)Pdx,DDT,"ParDot3Connect - We did not reach ECP or EPP - FAIL request\n");
return STATUS_UNSUCCESSFUL;
}
} // end local block
if (Pdx->P12843DL.DataLinkMode == P12843DL_DOT3_DL) {
DD((PCE)Pdx,DDT,"ParDot3Connect - P12843DL_DOT3_DL\n");
Pdx->P12843DL.fnRead = arpReverse[Pdx->IdxReverseProtocol].fnRead;
Pdx->P12843DL.fnWrite = afpForward[Pdx->IdxForwardProtocol].fnWrite;
Pdx->fnRead = ParDot3Read;
Pdx->fnWrite = ParDot3Write;
}
DD((PCE)Pdx,DDT,"ParDot3Connect - Exit with status %x\n",Status);
return Status;
}
VOID
ParDot3CreateObject(
IN PPDO_EXTENSION Pdx,
IN PCHAR DOT3DL,
IN PCHAR DOT3C
)
{
Pdx->P12843DL.DataLinkMode = P12843DL_OFF;
Pdx->P12843DL.fnReset = NULL;
DD((PCE)Pdx,DDT,"ParDot3CreateObject - DOT3DL [%s] DOT3C\n",DOT3DL, DOT3C);
if (DOT3DL) {
ULONG dataChannel;
ULONG pid = 0x285; // pid for dot4
// Only use the first channel.
if( !String2Num(&DOT3DL, ',', &dataChannel) ) {
dataChannel = 77;
DD((PCE)Pdx,DDT,"ParDot3CreateObject - No DataChannel Defined\n");
}
if( DOT3C ) {
if (!String2Num(&DOT3C, ',', &pid)) {
pid = 0x285;
DD((PCE)Pdx,DDT,"ParDot3CreateObject - No CurrentPID Defined\n");
}
DD((PCE)Pdx,DDT,"ParDot3CreateObject - .3 mode is ON\n");
}
Pdx->P12843DL.DataChannel = (UCHAR)dataChannel;
Pdx->P12843DL.CurrentPID = (USHORT)pid;
Pdx->P12843DL.DataLinkMode = P12843DL_DOT3_DL;
DD((PCE)Pdx,DDT,"ParDot3CreateObject - Data [%x] CurrentPID [%x]\n",Pdx->P12843DL.DataChannel, Pdx->P12843DL.CurrentPID);
}
if (Pdx->P12843DL.DataLinkMode == P12843DL_OFF) {
DD((PCE)Pdx,DDT,"ParDot3CreateObject - DANGER: .3 mode is OFF\n");
}
}
VOID
ParDot4CreateObject(
IN PPDO_EXTENSION Pdx,
IN PCHAR DOT4DL
)
{
Pdx->P12843DL.DataLinkMode = P12843DL_OFF;
Pdx->P12843DL.fnReset = NULL;
DD((PCE)Pdx,DDT,"ParDot3CreateObject: DOT4DL [%s]\n",DOT4DL);
if (DOT4DL) {
UCHAR numValues = StringCountValues( (PCHAR)DOT4DL, ',' );
ULONG dataChannel, resetChannel, ResetByteCount;
DD((PCE)Pdx,DDT,"ParDot3CreateObject: numValues [%d]\n",numValues);
if (!String2Num(&DOT4DL, ',', &dataChannel)) {
dataChannel = 77;
DD((PCE)Pdx,DDT,"ParDot4CreateObject: No DataChannel Defined.\r\n");
}
if ((String2Num(&DOT4DL, ',', &resetChannel)) && (numValues > 1)) {
if (resetChannel == -1) {
Pdx->P12843DL.fnReset = ParMLCCompatReset;
} else {
Pdx->P12843DL.fnReset = ParMLCECPReset;
}
DD((PCE)Pdx,DDT,"ParDot4CreateObject: ResetChannel Defined.\r\n");
} else {
Pdx->P12843DL.fnReset = NULL;
DD((PCE)Pdx,DDT,"ParDot4CreateObject: No ResetChannel Defined.\r\n");
}
if ((!String2Num(&DOT4DL, 0, &ResetByteCount)) && (numValues > 2)) {
ResetByteCount = 4;
DD((PCE)Pdx,DDT,"ParDot4CreateObject: No ResetByteCount Defined.\r\n");
}
Pdx->P12843DL.DataChannel = (UCHAR)dataChannel;
Pdx->P12843DL.ResetChannel = (UCHAR)resetChannel;
Pdx->P12843DL.ResetByteCount = (UCHAR)ResetByteCount;
Pdx->P12843DL.DataLinkMode = P12843DL_DOT4_DL;
DD((PCE)Pdx,DDT,"ParDot4CreateObject: .4DL mode is ON.\r\n");
DD((PCE)Pdx,DDT,"ParDot4CreateObject: Data [%x] Reset [%x] Bytes [%x]\r\n",
Pdx->P12843DL.DataChannel,
Pdx->P12843DL.ResetChannel,
Pdx->P12843DL.ResetByteCount);
}
#if DBG
if (Pdx->P12843DL.DataLinkMode == P12843DL_OFF) {
DD((PCE)Pdx,DDT,"ParDot4CreateObject: DANGER: .4DL mode is OFF.\r\n");
}
#endif
}
VOID
ParMLCCreateObject(
IN PPDO_EXTENSION Pdx,
IN PCHAR CMDField
)
{
Pdx->P12843DL.DataLinkMode = P12843DL_OFF;
Pdx->P12843DL.fnReset = NULL;
if (CMDField)
{
Pdx->P12843DL.DataChannel = 77;
Pdx->P12843DL.DataLinkMode = P12843DL_MLC_DL;
DD((PCE)Pdx,DDT,"ParMLCCreateObject: MLC mode is on.\r\n");
}
#if DBG
if (Pdx->P12843DL.DataLinkMode == P12843DL_OFF)
{
DD((PCE)Pdx,DDT,"ParMLCCreateObject: DANGER: MLC mode is OFF.\r\n");
}
#endif
}
VOID
ParDot3DestroyObject(
IN PPDO_EXTENSION Pdx
)
{
Pdx->P12843DL.DataLinkMode = P12843DL_OFF;
}
NTSTATUS
ParDot3Disconnect(
IN PPDO_EXTENSION Pdx
)
{
if (Pdx->P12843DL.DataLinkMode == P12843DL_DOT3_DL) {
Pdx->fnRead = arpReverse[Pdx->IdxReverseProtocol].fnRead;
Pdx->fnWrite = afpForward[Pdx->IdxForwardProtocol].fnWrite;
}
Pdx->P12843DL.bEventActive = FALSE;
Pdx->P12843DL.Event = 0;
return STATUS_SUCCESS;
}
VOID
ParDot3ParseModes(
IN PPDO_EXTENSION Pdx,
IN PCHAR DOT3M
)
{
ULONG fwd = 0;
ULONG rev = 0;
DD((PCE)Pdx,DDT,"ParDot3ParseModes: DOT3M [%s]\n",DOT3M);
if (DOT3M) {
UCHAR numValues = StringCountValues((PCHAR)DOT3M, ',');
if (numValues != 2) {
// The periph gave me bad values. I'm not gonna read
// them. I will set the defaults to the lowest
// common denominator.
DD((PCE)Pdx,DDT,"ParDot3ParseModes: Malformed 1284.3M field.\r\n");
Pdx->P12843DL.FwdSkipMask = (USHORT) PAR_FWD_MODE_SKIP_MASK;
Pdx->P12843DL.RevSkipMask = (USHORT) PAR_REV_MODE_SKIP_MASK;
return;
}
// Only use the first channel.
if (!String2Num(&DOT3M, ',', &fwd)) {
fwd = (USHORT) PAR_FWD_MODE_SKIP_MASK;
DD((PCE)Pdx,DDT,"ParDot3ParseModes: Couldn't read fwd of 1284.3M.\r\n");
}
if (!String2Num(&DOT3M, ',', &rev)) {
rev = (USHORT) PAR_REV_MODE_SKIP_MASK;
DD((PCE)Pdx,DDT,"ParDot3ParseModes: Couldn't read rev of 1284.3M.\r\n");
}
}
Pdx->P12843DL.FwdSkipMask = (USHORT) fwd;
Pdx->P12843DL.RevSkipMask = (USHORT) rev;
}
NTSTATUS
ParDot3Read(
IN PPDO_EXTENSION Pdx,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT PULONG BytesTransferred
)
{
NTSTATUS Status;
UCHAR ucScrap1;
UCHAR ucScrap2[2];
USHORT usScrap1;
ULONG bytesToRead;
ULONG bytesTransferred;
USHORT Dot3CheckSum;
USHORT Dot3DataLen;
// ================================== Read the first byte of SOF
bytesToRead = 1;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap1, bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
// ================================== Check the first byte of SOF
if (!NT_SUCCESS(Status) || ucScrap1 != Dot3_StartOfFrame1)
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
// ================================== Read the second byte of SOF
bytesToRead = 1;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap1, bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
// ================================== Check the second byte of SOF
if (!NT_SUCCESS(Status) || ucScrap1 != Dot3_StartOfFrame2)
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
// ================================== Read the PID (Should be in Big Endian)
bytesToRead = 2;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &usScrap1, bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
// ================================== Check the PID
if (!NT_SUCCESS(Status) || usScrap1 != Pdx->P12843DL.CurrentPID)
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
// ================================== Read the DataLen
bytesToRead = 2;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap2[0], bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
Dot3DataLen = (USHORT)((USHORT)(ucScrap2[0]<<8 | ucScrap2[1]));
// ================================== Check the DataLen
if (!NT_SUCCESS(Status))
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
// ================================== Read the Checksum
bytesToRead = 2;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap2[0], bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
Dot3CheckSum = (USHORT)(ucScrap2[0]<<8 | ucScrap2[1]);
// ================================== Check the DataLen
if (!NT_SUCCESS(Status))
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, Buffer, BufferSize, BytesTransferred);
if (!NT_SUCCESS(Status))
{
DD((PCE)Pdx,DDE,"ParDot3Read: Data Read Failed. We're Hosed!\n");
return(Status);
}
// LengthOfData field from the Frame header is really the number of bytes of ClientData - 1
if ( ((ULONG)Dot3DataLen + 1) > BufferSize)
{
// buffer overflow - abort operation
DD((PCE)Pdx,DDE,"ParDot3Read: Bad 1284.3DL Data Len. Buffer overflow. We're Hosed!\n");
return STATUS_BUFFER_OVERFLOW;
}
// Check Checksum
{
USHORT pid = Pdx->P12843DL.CurrentPID;
USHORT checkSum;
// 2's complement sum in 32 bit accumulator
ULONG sum = pid + Dot3DataLen + Dot3CheckSum;
// fold 32 bit sum into 16 bits
while( sum >> 16 ) {
sum = (sum & 0xffff) + (sum >> 16);
}
// take 1's complement of folded sum - this should be Zero if there were no errors
checkSum = (USHORT)(0xffff & ~sum);
if( checkSum != 0 ) {
DD((PCE)Pdx,DDE,"ParDot3Read: Bad 1284.3DL Checksum. We're Hosed!\n");
return STATUS_DEVICE_PROTOCOL_ERROR;
}
}
// ================================== Read the first byte of EOF
bytesToRead = 1;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap1, bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
// ================================== Check the first byte of EOF
if (!NT_SUCCESS(Status) || ucScrap1 != Dot3_EndOfFrame1)
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
// ================================== Read the second byte of EOF
bytesToRead = 1;
bytesTransferred = 0;
do
{
Status = ((PPROTOCOL_READ_ROUTINE) Pdx->P12843DL.fnRead)(Pdx, &ucScrap1, bytesToRead, &bytesTransferred);
}
while(NT_SUCCESS(Status) && bytesTransferred != bytesToRead);
// ================================== Check the second byte of EOF
if (!NT_SUCCESS(Status) || ucScrap1 != Dot3_EndOfFrame2)
{
DD((PCE)Pdx,DDE,"ParDot3Read: Header Read Failed. We're Hosed!\n");
*BytesTransferred = 0;
return(Status);
}
return Status;
}
NTSTATUS
ParDot3Write(
IN PPDO_EXTENSION Pdx,
IN PVOID Buffer,
IN ULONG BufferSize,
OUT PULONG BytesTransferred
)
{
NTSTATUS Status;
ULONG frameBytesTransferred;
ULONG bytesToWrite;
USHORT scrap1;
USHORT scrap2;
USHORT scrapHigh;
USHORT scrapLow;
PUCHAR p;
// valid range for data payload per Frame is 1..64K
if( (BufferSize < 1) || (BufferSize > 64*1024) ) {
return STATUS_INVALID_PARAMETER;
};
// ========================= Write out first Byte of SOF
bytesToWrite = 1;
frameBytesTransferred = 0;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &Dot3_StartOfFrame1, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check first Byte of SOF
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
// ========================= Write out second Byte of SOF
bytesToWrite = 1;
frameBytesTransferred = 0;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &Dot3_StartOfFrame2, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check second Byte of SOF
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
// ========================= Write out PID (which should be in Big Endian already)
bytesToWrite = 2;
frameBytesTransferred = 0;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &Pdx->P12843DL.CurrentPID, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check PID
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
// ========================= Write out Length of Data
bytesToWrite = 2;
frameBytesTransferred = 0;
scrap1 = (USHORT) (BufferSize - 1);
scrapLow = (UCHAR) (scrap1 & 0xff);
scrapHigh = (UCHAR) (scrap1 >> 8);
p = (PUCHAR)&scrap2;
*p++ = (UCHAR)scrapHigh;
*p = (UCHAR)scrapLow;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &scrap2, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check Length of Data
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
// ========================= Write out Checksum
bytesToWrite = 2;
frameBytesTransferred = 0;
{
USHORT pid = Pdx->P12843DL.CurrentPID;
USHORT dataLengthMinusOne = (USHORT)(BufferSize - 1);
USHORT checkSum;
// 2's complement sum in 32 bit accumulator
ULONG sum = pid + dataLengthMinusOne;
// fold 32 bit sum into 16 bits
while( sum >> 16 ) {
sum = (sum & 0xffff) + (sum >> 16);
}
// final checksum is 1's complement of folded sum
checkSum = (USHORT)(0xffff & ~sum);
scrap1 = checkSum;
}
// send checksum big-endian
scrapLow = (UCHAR)(scrap1 & 0xff);
scrapHigh = (UCHAR)(scrap1 >> 8);
p = (PUCHAR)&scrap2;
*p++ = (UCHAR)scrapHigh;
*p = (UCHAR)scrapLow;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &scrap2, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check Checksum
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, Buffer, BufferSize, BytesTransferred);
if (NT_SUCCESS(Status))
{
// ========================= Write out first Byte of EOF
bytesToWrite = 1;
frameBytesTransferred = 0;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &Dot3_EndOfFrame1, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check first Byte of EOF
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
// ========================= Write out second Byte of EOF
bytesToWrite = 1;
frameBytesTransferred = 0;
do
{
Status = ((PPROTOCOL_WRITE_ROUTINE) Pdx->P12843DL.fnWrite)(Pdx, &Dot3_EndOfFrame2, bytesToWrite, &frameBytesTransferred);
}
while(NT_SUCCESS(Status) && frameBytesTransferred != bytesToWrite);
// ========================= Check second Byte of EOF
if (!NT_SUCCESS(Status))
{
*BytesTransferred = 0;
return(Status);
}
}
return Status;
}
NTSTATUS
ParMLCCompatReset(
IN PPDO_EXTENSION Pdx
)
{
NTSTATUS Status = STATUS_SUCCESS;
UCHAR Reset[256]; // Reset should not require more than 256 chars
const ULONG ResetLen = Pdx->P12843DL.ResetByteCount;
ULONG BytesWritten;
DD((PCE)Pdx,DDT,"ParMLCCompatReset: Start\n");
if (Pdx->P12843DL.DataLinkMode != P12843DL_MLC_DL &&
Pdx->P12843DL.DataLinkMode != P12843DL_DOT4_DL)
{
DD((PCE)Pdx,DDT,"ParMLCCompatReset: not MLC.\n");
return STATUS_SUCCESS;
}
ParTerminate(Pdx);
// Sending NULLs for reset
DD((PCE)Pdx,DDT,"ParMLCCompatReset: Zeroing Reset Bytes.\n");
RtlFillMemory(Reset, ResetLen, Pdx->P12843DL.ResetByte);
DD((PCE)Pdx,DDT,"ParMLCCompatReset: Sending Reset Bytes.\n");
// Don't use the Dot3Write since we are in MLC Mode.
Status = SppWrite(Pdx, Reset, ResetLen, &BytesWritten);
if (!NT_SUCCESS(Status) || BytesWritten != ResetLen)
{
DD((PCE)Pdx,DDE,"ParMLCCompatReset: FAIL. Write Failed\n");
return Status;
}
DD((PCE)Pdx,DDT,"ParMLCCompatReset: Reset Bytes were sent.\n");
return Status;
}
NTSTATUS
ParMLCECPReset(
IN PPDO_EXTENSION Pdx
)
{
NTSTATUS Status = STATUS_SUCCESS;
UCHAR Reset[256]; // Reset should not require more than 256 chars
const ULONG ResetLen = Pdx->P12843DL.ResetByteCount;
ULONG BytesWritten;
DD((PCE)Pdx,DDT,"ParMLCECPReset: Start\n");
if (Pdx->P12843DL.DataLinkMode != P12843DL_MLC_DL &&
Pdx->P12843DL.DataLinkMode != P12843DL_DOT4_DL)
{
DD((PCE)Pdx,DDT,"ParMLCECPReset: not MLC.\n");
return STATUS_SUCCESS;
}
Status = ParReverseToForward(Pdx);
Pdx->ForwardInterfaceAddress = Pdx->P12843DL.ResetChannel;
Status = ParSetFwdAddress(Pdx);
if (!NT_SUCCESS(Status)) {
DD((PCE)Pdx,DDE,"ParMLCECPReset: FAIL. Couldn't Set Reset Channel\n");
return Status;
}
// Sending NULLs for reset
DD((PCE)Pdx,DDT,"ParMLCECPReset: Zeroing Reset Bytes.\n");
RtlFillMemory(Reset, ResetLen, Pdx->P12843DL.ResetByte);
DD((PCE)Pdx,DDT,"ParMLCECPReset: Sending Reset Bytes.\n");
// Don't use the Dot3Write since we are in MLC Mode.
Status = afpForward[Pdx->IdxForwardProtocol].fnWrite(Pdx, Reset, ResetLen, &BytesWritten);
if (!NT_SUCCESS(Status) || BytesWritten != ResetLen) {
DD((PCE)Pdx,DDE,"ParMLCECPReset: FAIL. Write Failed\n");
return Status;
}
DD((PCE)Pdx,DDT,"ParMLCECPReset: Reset Bytes were sent.\n");
Pdx->ForwardInterfaceAddress = Pdx->P12843DL.DataChannel;
Status = ParSetFwdAddress(Pdx);
if (!NT_SUCCESS(Status)) {
DD((PCE)Pdx,DDE,"ParMLCECPReset: FAIL. Couldn't Set Data Channel\n");
return Status;
}
return Status;
}