Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

622 lines
18 KiB

/*************************************************************************
* *
* ENCODE.C *
* *
* Copyright (C) Microsoft Corporation 1990-1994 *
* All Rights reserved. *
* *
**************************************************************************
* *
* Module Intent *
* General encoding & decoding techniques *
* *
**************************************************************************
* *
* Current Owner: BinhN *
* *
**************************************************************************
* *
* Released by Development: (date) *
* *
*************************************************************************/
#include <mvopsys.h>
#include <mem.h>
#include <mvsearch.h>
#include "common.h"
#include "index.h"
/* Structure to access bits and bytes of a DWORD */
typedef struct {
unsigned short w1;
unsigned short w2;
} TWOWORD;
typedef struct {
unsigned char b1;
unsigned char b2;
unsigned char b3;
unsigned char b4;
} FOURBYTE;
typedef union {
unsigned long dwVal;
TWOWORD dw;
FOURBYTE fb;
} WORDLONG;
#define HI_WORD(p) (((WORDLONG FAR *)&p)->dw.w2)
#define LO_WORD(p) (((WORDLONG FAR *)&p)->dw.w1)
#define BYTE1(p) (((WORDLONG FAR *)&p)->fb.b4)
#define BYTE2(p) (((WORDLONG FAR *)&p)->fb.b3)
#define BYTE3(p) (((WORDLONG FAR *)&p)->fb.b2)
#define BYTE4(p) (((WORDLONG FAR *)&p)->fb.b1)
/*************************************************************************
*
* INTERNAL PRIVATE FUNCTIONS
*
* All of them should be declared near
*
*************************************************************************/
PRIVATE LPB PASCAL NEAR LongValPack (LPB, DWORD);
PRIVATE LPB PASCAL NEAR LongValUnpack (LPB, LPDW);
/*************************************************************************
*
* INTERNAL PUBLIC FUNCTIONS
*
* All of them should be declared far, unless we know they belong to
* the same segment. They should be included in some include files
*
*************************************************************************/
PUBLIC CB PASCAL NEAR CbBytePack(LPB, DWORD);
PUBLIC CB PASCAL NEAR OccurrencePack (LPB, LPOCC, WORD);
PUBLIC CB PASCAL NEAR CbCopySortPackedOcc (LPB, LPB, WORD);
PUBLIC void PASCAL NEAR OccurrenceUnpack(LPOCC, LPB, OCCF);
PUBLIC CBIT PASCAL NEAR CbitBitsDw (DWORD);
/*************************************************************************
*
* @doc INTERNAL INDEX
*
* @func LPB PASCAL NEAR | LongValPack |
* The function packs and writes out an encoded 4-bytes value.
* The encoding scheme is as followed:
* - High 3 bit: used to tell how many bytes are to follow
* the current byte
* - The packed value
* Ex:
* 0x1 will be output as 0x1
* 0x1F 0x1F
* 0x2F 0x202F (0010 0000 0010 1111)
*
* @parm LPB | lpbOut |
* Pointer to the output buffer
*
* @parm DWORD | dwVal |
* 4-bytes value to be packed and emitted
*
* @rdesc
* The buffer pointer is advanced and returned.
*
* @comm No validity check is done for the the output buffer
*************************************************************************/
PRIVATE LPB PASCAL NEAR LongValPack (LPB lpbOut, DWORD dwVal)
{
if (HI_WORD(dwVal) > 0x1fff) {
*lpbOut++ = 4 << 5; // 4 bytes follow this byte
goto Copy4Bytes;
}
if (HI_WORD(dwVal) > 0x001f) {
BYTE1(dwVal) |= 3 << 5; /* 3 bytes follows this byte */
goto Copy4Bytes;
}
if (HI_WORD(dwVal) > 0 || LO_WORD(dwVal) > 0x1fff) {
BYTE2(dwVal) |= 2 << 5; /* 2 bytes follows this byte */
goto Copy3Bytes;
}
if (LO_WORD(dwVal) > 0x001f) {
BYTE3(dwVal) |= 1 << 5; /* 1 bytes follows this byte */
goto Copy2Bytes;
}
else
goto Copy1Bytes;
Copy4Bytes:
*lpbOut ++ = BYTE1(dwVal);
Copy3Bytes:
*lpbOut ++ = BYTE2(dwVal);
Copy2Bytes:
*lpbOut ++ = BYTE3(dwVal);
Copy1Bytes:
*lpbOut ++ = BYTE4(dwVal);
return lpbOut;
}
/*************************************************************************
*
* @doc INTERNAL INDEX
*
* @func LPB PASCAL NEAR | LongValUnpack |
* This is the reverse on LongValPack. Given a buffer containing
* a packed 4-byte value, the function will unpack and return the
* value. The pointer to the input buffer is updated and returned
*
* @parm LPB | lpbIn |
* Input buffer containing the packed value
*
* @parm LPDW | lpdw |
* Place to store the unpacked value
*
* @rdesc The new updated input buffer pointer
*
* @comm No validity check for lpbIn is done because of speed
*
*************************************************************************/
PRIVATE LPB PASCAL NEAR LongValUnpack (LPB lpbIn, LPDW lpdw)
{
DWORD dwVal = 0;
register int cbByteCopied;
/* Get the number of bytes to be copied */
cbByteCopied = *lpbIn >> 5;
*lpbIn &= 0x1f;
switch (cbByteCopied) {
case 4:
lpbIn++;
case 3:
BYTE1(dwVal) = *lpbIn++;
case 2:
BYTE2(dwVal) = *lpbIn++;
case 1:
BYTE3(dwVal) = *lpbIn++;
case 0:
BYTE4(dwVal) = *lpbIn++;
}
*lpdw = dwVal;
return lpbIn;
}
/*************************************************************************
*
* @doc INTERNAL INDEX
*
* @func CB PASCAL NEAR | OccurrencePack |
* Packs and emits all occurrence's fields
*
* @parm LPB | lpbOut |
* Place to store the packed occurrence's fields
*
* @parm LPOCC | lpOccIn |
* Pointer to occurrence structure
*
* @parm WORD | occf |
* Occurrence flags telling which fields are present
*
* @rdesc The number of bytes written
*
*************************************************************************/
PUBLIC CB PASCAL NEAR OccurrencePack (register LPB lpbOut, LPOCC lpOccIn,
register WORD occf)
{
DWORD dwVal;
LPB lpbSaved = lpbOut;
while (occf) {
if (occf & OCCF_FIELDID) {
dwVal = lpOccIn->dwFieldId;
occf &= ~OCCF_FIELDID;
}
else if (occf & OCCF_TOPICID) {
dwVal = lpOccIn->dwTopicID;
occf &= ~OCCF_TOPICID;
}
else if (occf & OCCF_COUNT) {
dwVal = lpOccIn->dwCount;
occf &= ~OCCF_COUNT;
}
else if (occf & OCCF_OFFSET) {
dwVal = lpOccIn->dwOffset;
occf &= ~OCCF_OFFSET;
}
else if (occf & OCCF_LENGTH) {
dwVal = lpOccIn->wWordLen;
occf &= ~OCCF_LENGTH;
}
else {
break;
}
if (HI_WORD(dwVal) > 0x1fff) {
*lpbOut++ = 4 << 5; // 4 bytes follow this byte
goto Copy4Bytes;
}
if (HI_WORD(dwVal) > 0x001f) {
BYTE1(dwVal) |= 3 << 5; /* 3 bytes follows this byte */
goto Copy4Bytes;
}
if (HI_WORD(dwVal) > 0 || LO_WORD(dwVal) > 0x1fff) {
BYTE2(dwVal) |= 2 << 5; /* 2 bytes follows this byte */
goto Copy3Bytes;
}
if (LO_WORD(dwVal) > 0x001f) {
BYTE3(dwVal) |= 1 << 5; /* 1 bytes follows this byte */
goto Copy2Bytes;
}
else
goto Copy1Bytes;
#if 1
Copy4Bytes:
*lpbOut ++ = BYTE1(dwVal);
Copy3Bytes:
*lpbOut ++ = BYTE2(dwVal);
Copy2Bytes:
*lpbOut ++ = BYTE3(dwVal);
Copy1Bytes:
*lpbOut ++ = BYTE4(dwVal);
}
return (CB)(lpbOut - lpbSaved);
#else
Copy4Bytes:
*(LPDW)lpbOut = dwVal;
lpbOut += 4;
continue;
Copy3Bytes:
*lpbOut ++ = BYTE2(dwVal);
Copy2Bytes:
*(LPW)lpbOut = LO_WORD(dwVal);
lpbOut += 2;
continue;
Copy1Bytes:
*lpbOut ++ = BYTE4(dwVal);
continue;
}
#endif
return (CB)(lpbOut - lpbSaved);
}
/*************************************************************************
* @doc INTERNAL INDEX
*
* @func CB PASCAL NEAR | CbCopySortPackedOcc |
* Copy the packed occurrence structure
*
* @parm LPB | lpbDst |
* Pointer to destination buffer
* @parm LPB | lpbSrc |
* Pointer to source buffer
* @parm WORD | uiNumOcc |
* Number of occurrence fields (>= 1)
* @rdesc
* return the number of bytes copied
*************************************************************************/
PUBLIC CB PASCAL NEAR CbCopySortPackedOcc (LPB lpbDst, LPB lpbSrc,
WORD uiNumOcc)
{
register int cbByteCopied;
LPB lpbSaved = lpbDst;
do {
for (cbByteCopied = *lpbSrc >> 5; cbByteCopied >= 0; cbByteCopied--)
*lpbDst++ = *lpbSrc++;
uiNumOcc--;
} while (uiNumOcc > 0);
return (CB)(lpbDst - lpbSaved);
}
PUBLIC void PASCAL NEAR OccurrenceUnpack(LPOCC lpOccOut,
register LPB lpbIn, register OCCF occf)
{
DWORD dwVal = 0;
LPDW lpdw;
register int cbByteCopied;
while (occf)
{
DWORD dwTmp;
if (occf & OCCF_FIELDID) {
lpdw = &lpOccOut->dwFieldId;
occf &= ~OCCF_FIELDID;
}
else if (occf & OCCF_TOPICID) {
lpdw = &lpOccOut->dwTopicID;
occf &= ~OCCF_TOPICID;
}
else if (occf & OCCF_COUNT) {
lpdw = &lpOccOut->dwCount;
occf &= ~OCCF_COUNT;
}
else if (occf & OCCF_OFFSET) {
lpdw = &lpOccOut->dwOffset;
occf &= ~OCCF_OFFSET;
}
else if (occf & OCCF_LENGTH) {
dwTmp = lpOccOut->wWordLen;
lpdw = &dwTmp;
occf &= ~OCCF_LENGTH;
}
else {
break;
}
dwVal = 0;
/* Get the number of bytes to be copied */
cbByteCopied = *lpbIn >> 5;
*lpbIn &= 0x1f;
#if 1
switch (cbByteCopied) {
case 4:
lpbIn++;
case 3:
BYTE1(dwVal) = *lpbIn++;
case 2:
BYTE2(dwVal) = *lpbIn++;
case 1:
BYTE3(dwVal) = *lpbIn++;
case 0:
BYTE4(dwVal) = *lpbIn++;
}
#else
switch (cbByteCopied) {
case 4:
lpbIn++;
case 3:
dwVal = *(LPDW)lpbIn;
lpbIn += 4;
break;
case 2:
BYTE1(dwVal) = *lpbIn++;
case 1:
LO_WORD(dwVal) = *(LPW)lpbIn;
lpbIn += 2;
break;
case 0:
BYTE4(dwVal) = *lpbIn++;
}
#endif
*lpdw = dwVal;
}
}
PUBLIC CBIT PASCAL NEAR CbitBitsDw (DWORD dwVal)
{
register WORD wVal; //Value to be scanned
register WORD cBitCount; // Number of bit
if (HI_WORD(dwVal)) {
/* We will look at the hi-word only, but add 16 to the result */
cBitCount = 16;
wVal = HI_WORD(dwVal);
}
else {
/* We look at the lo-word only */
cBitCount = 0;
wVal = LO_WORD(dwVal);
}
/* Now do the shift */
while (wVal) {
cBitCount++;
wVal >>= 1;
}
return cBitCount;
}
// - - - - - - - - -
// This function figures out how best to encode a set of values. It
// uses an array of statistics about the data in order to make this
// determination. The array conveys to the algorithm the number of
// values that require a particular number of bits to represent. For
// the "fixed" and "bell" schemes, this is all the information that's
// needed in order to make a judgment as to which scheme is best.
//
// The inner workings of this are bitching hard to understand, so you
// should probably read any occurence compression external documentation
// you can find before you try to tackle this function.
//
// - - - - - - - - -
//
// Information about the "bitstream" scheme:
//
// The number of bits necessary to encode the values using the
// "bitstream" scheme is spoon-fed into the algorithm via a parameter,
// because it's not possible to derive this value using the statistics
// array.
//
// - - - - - - - - -
//
// Information about the "bell" scheme:
//
// Here's a bell grid, which I hope will provide some documentation as
// to the characteristics of the bell scheme. It is possible to figure
// out how many bits a given sample will take to encode, given a
// particular bell "center" value, but the algorithm is complicated and
// non-intuitive.
//
// Bell Center
//
// 0 1 2 3 4 5 ... 31
// +--------------------------------------------- ... ------
// 0 | 1(c) 2 3 4 5 6 ... 32
// 1 | 2(c) 2(c) 3 4 5 6 ... 32
// 2 | 4 3(c) 3(c) 4 5 6 ... 32
// Size in 3 | 6 5 4(c) 4(c) 5 6 ... 32
// bits of 4 | 8 7 6 5(c) 5(c) 6 ... 32
// value to 5 | 10 9 8 7 6(c) 6(c) .. 32
// encode 6 | 12 11 10 9 8 7(c) .. 32
// 7 | 14 13 12 11 10 9 ... 32
// 8 | 16 15 14 13 12 11 ... 32
// 9 | 18 17 16 15 14 13 ... 32
// .. . .. .. .. .. .. .. ... ..
// 32 | 64 63 62 61 60 59 ... 33(c)
//
// The numbers in this table represent the number of bits necessary to
// encode a given value, using a given bell center. The "(c)" represents
// the point of minimum waste. There are two of these for each "center".
// The waste at (c) is guaranteed to be exactly one bit.
//
// It's would be possible for the bell center to be equal to 32, but this
// would mess up my life since I only store center values in 5 bits, and
// 32 would take 6 bits. Upon examination, though, it can be shown that
// there are no cases where a ceiling value of 32 is any better than a
// ceiling value of 31, so I can rule out 32.
//
// - - - - - - - - -
//
// Information about the "fixed" scheme:
//
// The "center" as calculated by this algorithm is the number of bits
// necessary to represent the largest value in the sample.
//
// Since this value can be 32, but I'm only using 5 bits to store center
// values, I subtract one from this value, which I will add back in
// during decompression. This means that I can't store zero, size
// 0 - 1 = -1, which is 31 if we've got a 5-bit quantity. So I don't
// allow the fixed scheme to use zero as a center. If the best value
// comes up as zero, I make it one instead.
// - - - - - - - - -
PUBLIC void NEAR PASCAL VGetBestScheme(
LPCKEY lpckey, // Output compression key.
LRGDW lrgdwStats, // Each dword (N) in this array at
// a given array index (M) represents
// a count of the number of values in
// the sample that require M bits to
// store. If (lrgdwStats[6] == 17),
// there were 17 values in the sample
// that required 6 bits to store.
DWORD lcbitRawBitstreamBits, // This is lcbitBITSTREAM_ILLEGAL if
// bitstream packing is not allowed,
// else it is equal to the number of
// bits necessary to encode all of
// the values using bitstream
// encoding.
int fNoFixedScheme) // Set if we don't want fixed scheme
{
register short iStats; // Scratch index.
DWORD argdwBellBits[ // This is used to compute bell
cbitCENTER_MAX]; // values. Its sole purpose is to
// save a bunch of multiplies that
// I'd have to do if it didn't exist.
DWORD lcbitBell; // Total number of bits used if I
// adopt the bell scheme to encode
// this sample.
DWORD lcbitFixed; // Total number of bits used if I
// adopt the fixed scheme to encode
// this sample.
DWORD lcbitBitstream; // Total number of bits used if I
// adopt the scheme scheme to encode
// this sample.
DWORD lcTotalEncodedValues; // The total number of values that I
// have to encode.
short idwCeiling; // The size of "lrgdwStats" if you
// trim off all of the high-end zero
// elements.
short idwBellCeiling; // This is "idwCeiling" unless the
// value of "idwCeiling" is
// cbitCENTER_MAX, in which case
// it's "idwCeiling - 1".
CBIT cbitBellCenter; // This will be the best "center"
// value found for the bell scheme.
CBIT cbitFixedCenter; // This will be the "center" value for
// the "fixed" scheme.
//
// Determine the value of "idwCeiling", which is used to trim off
// consecutive zero values at the top end of the statistics
// array.
//
for (iStats = cbitCENTER_MAX - 1; iStats >= 0; iStats--)
if (lrgdwStats[iStats])
break;
idwCeiling = iStats + 1;
//
// Initialize variables used in bell computation.
//
for (iStats = 0; iStats < idwCeiling; iStats++)
argdwBellBits[iStats] = lrgdwStats[iStats] *
(DWORD)(iStats * 2 + 1);
lcbitBell = (DWORD)-1L;
cbitBellCenter = 0;
lcTotalEncodedValues = 0L;
idwBellCeiling = (idwCeiling == cbitCENTER_MAX) ?
cbitCENTER_MAX - 1 : idwCeiling;
//
// Each pass through the following loop generates a value,
// "lcbitBellTotal", which is equal to the number of bits
// necessary to encode all of the values, using a "center" value
// equal to the loop index ("iStats"). This value is checked
// against "lcbitBell", if it's less it becomes the new
// "lcbitBell", and the center is stored in "cbitBellCenter".
//
for (iStats = 0; iStats < idwBellCeiling; iStats++) {
DWORD lcbitBellTotal;
register short i;
lcTotalEncodedValues += lrgdwStats[iStats];
lcbitBellTotal = 0L;
for (i = 0; i <= iStats; i++) { // Adjust values below center.
lcbitBellTotal += argdwBellBits[i];
argdwBellBits[i] += lrgdwStats[i];
}
for (; i < idwCeiling; i++) { // Adjust values above center.
argdwBellBits[i] -= lrgdwStats[i];
lcbitBellTotal += argdwBellBits[i];
}
if (lcbitBellTotal < lcbitBell) {
lcbitBell = lcbitBellTotal;
cbitBellCenter = iStats;
}
}
//
// As of this point the best bell center is stored in
// "cbitBellCenter", although given the obscurity of the logic in
// the above loop you might have to take my word for it. The
// number of bits necessary to bell encode the values using
// "cbitBellCenter" as the center is in "lcbitBell".
//
// This next bit of code figures out which scheme to use, and
// sets up the returned compression key ("lpckey") with this
// result.
//
lcbitBell += cbitWASTED_BELL;
cbitFixedCenter = (idwCeiling <= 1) ? 1 : idwCeiling - 1;
lcbitFixed = (DWORD)cbitFixedCenter * // Get total "fixed" bits.
lcTotalEncodedValues + cbitWASTED_FIXED;
lcbitBitstream = (lcbitRawBitstreamBits ==
lcbitBITSTREAM_ILLEGAL) ?
(DWORD)-1L : // Get total "bitstream" bits.
lcbitRawBitstreamBits + cbitWASTED_BITSTREAM;
if ((lcbitFixed <= lcbitBell && fNoFixedScheme == FALSE) &&
(lcbitFixed <= lcbitBitstream)) {
lpckey->cschScheme = CSCH_FIXED; // Best scheme was
lpckey->ucCenter = // "fixed". Note
(BYTE)(cbitFixedCenter - 1); // the "- 1".
} else if (lcbitBitstream <= lcbitBell)
lpckey->cschScheme = CSCH_NONE; // Best scheme was
// "bitstream".
else {
lpckey->cschScheme = CSCH_BELL; // Best scheme was
lpckey->ucCenter = // "bell".
(BYTE)cbitBellCenter;
}
}