Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1777 lines
58 KiB

/*************************************************************************
* *
* PERMIND2.C *
* *
* Copyright (C) Microsoft Corporation 1990-1994 *
* All Rights reserved. *
* *
**************************************************************************
* *
* Module Intent *
* This is the final stage of the index building process. This module *
* converts the input data into a permanent B-Tree file. *
* *
* Stem node structure: *
* CbLeft |* Word | PointerToNode *| Slack *
* *
* Leaf node structure: *
* NxtBlkPtr|CbLeft|*Word|FieldId|TopicCnt|PointerToNode|DataSize*|Slack *
* *
* Data node structure: *
* |* Topic | OccBlkCnt |* OccBlk *| *| Slack *
* *
* Fields between |* *| repeat based on count values *
* *
**************************************************************************
* *
* Current Owner: BinhN *
* *
**************************************************************************/
#include <mvopsys.h>
#include <mem.h>
#include <memory.h>
#include <math.h>
#include <orkin.h>
#include <mvsearch.h>
#include "common.h"
#include "index.h"
#ifdef _DEBUG
static BYTE NEAR s_aszModule[] = __FILE__; /* Used by error return functions.*/
#endif
/*************************************************************************
*
* PRIVATE PUBLIC FUNCTIONS
*
* All of them should be declared far, unless we know they belong to
* the same segment. They should be included in some include file
*
*************************************************************************/
PUBLIC HRESULT FAR PASCAL BuildBTree (HFPB, _LPIPB, LPB, HFPB, LPSTR);
PUBLIC PNODEINFO FAR PASCAL AllocBTreeNode (_LPIPB);
PUBLIC VOID PASCAL FAR FreeBTreeNode (PNODEINFO pNode);
PUBLIC int FAR PASCAL PrefixCompressWord (LPB, LPB, LPB, int);
PUBLIC HRESULT FAR PASCAL FWriteBits(PFILEDATA, DWORD, BYTE);
PUBLIC DWORD FAR PASCAL WriteDataNode (_LPIPB, DWORD, PHRESULT);
/*************************************************************************
*
* PRIVATE PRIVATE FUNCTIONS
*
*************************************************************************/
PRIVATE HRESULT NEAR PASCAL AddRecordToLeaf (_LPIPB);
PRIVATE HRESULT NEAR PASCAL AddRecordToStem (_LPIPB, LPB);
PRIVATE int NEAR PASCAL CompressDword (PFILEDATA, DWORD);
PRIVATE HRESULT NEAR PASCAL WriteStemNode (_LPIPB, PNODEINFO);
PRIVATE HRESULT NEAR PASCAL WriteLeafNode (_LPIPB);
PRIVATE HRESULT NEAR PASCAL FlushAllNodes (_LPIPB);
// Compression functions
// PRIVATE HRESULT NEAR PASCAL FAddDword (PFILEDATA, DWORD, CKEY);
PRIVATE HRESULT NEAR PASCAL FWriteBool(PFILEDATA, BOOL);
// This table is used to avoid the calculation "(1L << v) - 1". Instead
// you say "argdwBits[v]", which should be faster. The table is useful
// other places, too.
DWORD argdwBits[] =
{
0x00000000, 0x00000001, 0x00000003, 0x00000007,
0x0000000F, 0x0000001F, 0x0000003F, 0x0000007F,
0x000000FF, 0x000001FF, 0x000003FF, 0x000007FF,
0x00000FFF, 0x00001FFF, 0x00003FFF, 0x00007FFF,
0x0000FFFF, 0x0001FFFF, 0x0003FFFF, 0x0007FFFF,
0x000FFFFF, 0x001FFFFF, 0x003FFFFF, 0x007FFFFF,
0x00FFFFFF, 0x01FFFFFF, 0x03FFFFFF, 0x07FFFFFF,
0x0FFFFFFF, 0x1FFFFFFF, 0x3FFFFFFF, 0x7FFFFFFF,
0xFFFFFFFF,
};
PRIVATE HRESULT PASCAL NEAR WriteBitStreamDWord (PFILEDATA, DWORD, int);
PRIVATE HRESULT PASCAL NEAR WriteFixedDWord (PFILEDATA, DWORD, int);
PRIVATE HRESULT PASCAL NEAR WriteBellDWord (PFILEDATA, DWORD, int);
FENCODE EncodeTable[] =
{
WriteBitStreamDWord,
WriteFixedDWord,
WriteBellDWord,
NULL,
};
#define FAddDword(p,dw,key) (EncodeTable[(key).cschScheme]((p), (dw), (key).ucCenter))
#define SAFE_SLACK 256
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func HRESULT | BuildBTree |
* Allocates required memory and opens input files to create a B-Tree.
* Parses incoming words and calls AddRecordToLeaf to process them.
*
* @parm HFPB | hfpbSysFile |
* If not NULL, handle to an already opened sysfile
*
* @parm _LPIPB | lpipb |
* Pointer to the index parameter block
*
* @parm LPB | lpszTemp |
* Filename of the temporary input file
*
* @parm LPB | lpszPerm |
* Filename of the permanent B-Tree file
*
* @rdesc Returns S_OK on success or errors if failed
*
*************************************************************************/
HRESULT FAR PASCAL BuildBTree (HFPB hfpbFileSys, _LPIPB lpipb,
LPB lpszTemp, HFPB hfpbPerm, LPSTR lszFilename/*IStream *pistmPerm*/)
{
PFILEDATA pOutFile; // Pointer to output data
PFILEDATA pInFile; // Pointer to input data
DWORD dwBytesRead = 0; // Checks for EOF
DWORD dwLeftover; // Used to adjust input buffer
PBTREEDATA pTreeData = &lpipb->BTreeData; // Structure defining BTree
PIH20 pHeader = &pTreeData->Header; // Replacement variable
HRESULT fRet; // Return value
PNODEINFO pNode; // Pointer to current input node
ERRB errb= S_OK;
PHRESULT phr = &errb;
int iIndex; // Index into the compressed key
DWORD dwUniqueTerm = 0; // Callback variable
BOOL fOpenedFile; // TRUE if we have to close the file
// Open input file
pInFile = &lpipb->InFile;
if ((pInFile->fFile = FileOpen (NULL, lpszTemp,
REGULAR_FILE, READ, phr)) == NULL)
return *phr;
// Allocate input buffer
pInFile->dwMax = FILE_BUFFER;
if ((pInFile->hMem =
_GLOBALALLOC (DLLGMEM_ZEROINIT, pInFile->dwMax + SAFE_SLACK)) == NULL)
{
fRet = E_OUTOFMEMORY;
exit0:
FileClose (pInFile->fFile);
if ((lpipb->idxf & KEEP_TEMP_FILE) == 0)
FileUnlink (NULL, lpszTemp, REGULAR_FILE);
return fRet;
}
pInFile->pMem = _GLOBALLOCK (pInFile->hMem);
pInFile->pCurrent = pInFile->pMem;
pOutFile = &lpipb->OutFile;
/* Open subfile if necessary, (and system file if necessary) */
pOutFile->fFile = hfpbPerm;
if ((fOpenedFile = FsTypeFromHfpb(hfpbPerm) != FS_SUBFILE) &&
(pOutFile->fFile = (HANDLE)FileOpen
(hfpbPerm, lszFilename, hfpbPerm ? FS_SUBFILE : REGULAR_FILE,
READ, phr)) == 0)
{
SetErrCode (&fRet, E_FILENOTFOUND);
exit1:
FreeHandle (pInFile->hMem);
goto exit0;
}
// Allocate output buffer, at least enough for one block
pOutFile->dwMax = FILE_BUFFER;
if (pOutFile->dwMax < (LONG)lpipb->BTreeData.Header.dwBlockSize)
pOutFile->dwMax = lpipb->BTreeData.Header.dwBlockSize;
if ((pOutFile->hMem = _GLOBALALLOC (DLLGMEM_ZEROINIT,
pOutFile->dwMax + SAFE_SLACK)) == NULL)
{
fRet = E_OUTOFMEMORY;
exit2:
if (fOpenedFile)
FileClose (hfpbPerm);
goto exit1;
}
pOutFile->pMem = _GLOBALLOCK (pOutFile->hMem);
// Skip 1K to hold header infomation
pOutFile->pCurrent = pOutFile->pMem + FILE_HEADER;
pOutFile->cbLeft = pOutFile->dwMax - FILE_HEADER;
pOutFile->foPhysicalOffset.dwOffset = FILE_HEADER;
pOutFile->ibit = cbitBYTE - 1;
// Allocate first leaf node
if ((pTreeData->rgpNodeInfo[0] = AllocBTreeNode (lpipb)) == NULL)
{
fRet = E_OUTOFMEMORY;
exit3:
FreeHandle (pOutFile->hMem);
goto exit2;
}
pHeader->nidLast = 1;
pHeader->cIdxLevels = 1;
// pNode points to the leaf node structure
pNode = pTreeData->rgpNodeInfo[0];
pNode->Slack = LEAF_SLACK;
// Set the bytes left in node block
pNode->cbLeft = lpipb->BTreeData.Header.dwBlockSize - FOFFSET_SIZE -
sizeof(WORD);
// Set the word length flag
if (lpipb->occf & OCCF_LENGTH)
pTreeData->fOccfLength = 1;
#if 0
// Save some math time if we're doing term-weighting
if (lpipb->idxf & IDXF_NORMALIZE)
{
MEMSET (pTreeData->argbLog, (BYTE)0, cLOG_MAX * sizeof (BYTE));
if ((hLog = _GLOBALALLOC (GMEM_MOVEABLE,
(CB)(cLOG_MAX * sizeof (FLOAT)))) == NULL)
{
fRet = E_OUTOFMEMORY;
goto exit3;
}
pTreeData->lrgrLog = (float FAR *)_GLOBALLOCK (hLog);
}
else
hLog = NULL;
#endif
// Load the input buffer & repeat until all records are processed
pInFile->dwMax = pInFile->cbLeft =
FileRead (pInFile->fFile, pInFile->pMem, pInFile->dwMax, phr);
do
{
// Call the user callback every once in a while
if (!(++dwUniqueTerm % 8192L)
&& (lpipb->CallbackInfo.dwFlags & ERRFLAG_STATUS))
{
PFCALLBACK_MSG pCallbackInfo = &lpipb->CallbackInfo;
CALLBACKINFO Info;
Info.dwPhase = 3;
Info.dwIndex = (DWORD)((float)dwUniqueTerm / lpipb->dwUniqueWord * 100);
fRet = (*pCallbackInfo->MessageFunc)
(ERRFLAG_STATUS, pCallbackInfo->pUserData, &Info);
if (S_OK != fRet)
goto exit4;
}
if ((fRet = AddRecordToLeaf (lpipb)) != S_OK)
goto exit4;
// pInFile->pCurrent points to the record size
// 256 is just an arbitrary number of slack to minimize out of data
// kevynct: pCurrent points to a record length which does not include
// the DWORD record len size, so we add this when checking. Actually, we
// add twice that to be safe.
if (pInFile->cbLeft <= SAFE_SLACK ||
(LONG)(GETLONG ((LPUL)(pInFile->pCurrent)) + 2 * sizeof(DWORD)) >= pInFile->cbLeft)
{
MEMMOVE (pInFile->pMem, pInFile->pCurrent, pInFile->cbLeft);
if ((pInFile->cbLeft += FileRead (pInFile->fFile, pInFile->pMem +
pInFile->cbLeft, pInFile->dwMax - pInFile->cbLeft, phr)) < 0)
{
fRet = *phr;
exit4:
// Free log block used for term-weighting
#if 0
FreeHandle (hLog);
#endif
// Free all node blocks
dwLeftover = 0;
while (pTreeData->rgpNodeInfo[dwLeftover] != NULL)
{
FreeBTreeNode(pTreeData->rgpNodeInfo[dwLeftover++]);
}
goto exit3;
}
pInFile->dwMax = pInFile->cbLeft;
pInFile->pCurrent = pInFile->pMem;
}
} while (fRet == S_OK && pInFile->cbLeft);
// Flush anything left in the output buffer
if ((fRet = FlushAllNodes (lpipb)) != S_OK)
goto exit4;
// Write out the sigma table
if (lpipb->idxf & IDXF_NORMALIZE)
{
pHeader->WeightTabOffset = pOutFile->foPhysicalOffset;
pHeader->WeightTabSize = (LCB)((lpipb->dwMaxTopicId + 1) *
sizeof (SIGMA));
if (FileWrite (pOutFile->fFile, lpipb->wi.hrgsigma,
pHeader->WeightTabSize, phr) != (LONG)pHeader->WeightTabSize)
{
fRet = *phr;
goto exit4;
}
pOutFile->foStartOffset = FoAddDw(pOutFile->foStartOffset,
pHeader->WeightTabSize);
}
// Copy info to header
pHeader->FileStamp = INDEX_STAMP;
pHeader->version = VERCURRENT;
pHeader->occf = lpipb->occf;
pHeader->idxf = lpipb->idxf;
pHeader->lcTopics = lpipb->lcTopics;
pHeader->dwMaxTopicId = lpipb->dwMaxTopicId;
pHeader->dwMaxFieldId = lpipb->dwMaxFieldId;
pHeader->dwMaxWCount = lpipb->dwMaxWCount;
pHeader->dwMaxOffset = lpipb->dwMaxOffset;
pHeader->dwMaxWLen = lpipb->dwMaxWLen;
pHeader->dwTotalWords = lpipb->dwIndexedWord; // Total indexed words
pHeader->dwUniqueWords = lpipb->dwUniqueWord; // Total unique words
pHeader->dwTotal2bWordLen = lpipb->dwTotal2bWordLen;
pHeader->dwTotal3bWordLen = lpipb->dwTotal3bWordLen;
pHeader->dwUniqueWordLen = lpipb->dwTotalUniqueWordLen;
pHeader->ckeyTopicId = lpipb->cKey[CKEY_TOPIC_ID];
pHeader->ckeyOccCount = lpipb->cKey[CKEY_OCC_COUNT];
iIndex = CKEY_OCC_BASE;
if (pHeader->occf & OCCF_COUNT)
pHeader->ckeyWordCount = lpipb->cKey[iIndex++];
if (pHeader->occf & OCCF_OFFSET)
pHeader->ckeyOffset = lpipb->cKey[iIndex];
if (FileSeekWrite (pOutFile->fFile, (LPB)pHeader, MakeFo (0, 0),
sizeof (IH20), phr) != sizeof (IH20))
{
fRet = *phr;
goto exit4;
}
// Call the user callback every once in a while
if (lpipb->CallbackInfo.dwFlags & ERRFLAG_STATUS)
{
PFCALLBACK_MSG pCallbackInfo = &lpipb->CallbackInfo;
CALLBACKINFO Info;
Info.dwPhase = 3;
Info.dwIndex = 100;
fRet = (*pCallbackInfo->MessageFunc)
(ERRFLAG_STATUS, pCallbackInfo->pUserData, &Info);
if (S_OK != fRet)
goto exit4;
}
fRet = S_OK;
goto exit4;
} /* BuildBTree */
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func HRESULT | AddRecordToLeaf |
* Add the record pointed to by pDtreeData->OutFile->pCurrent to the B-Tree
* contained in the structure.
*
* @parm _LPIPB | lpipb |
* Pointer to the index parameter block
*
* @rdesc Returns S_OK on success or errors if failed
*
*************************************************************************/
#ifdef _DEBUG
static BYTE LastWord[4000] = {0};
static BYTE CurWord[4000] = {0};
#endif
HRESULT PASCAL AddRecordToLeaf (_LPIPB lpipb)
{
// Local Replacement Variables
PBTREEDATA pTreeData = &lpipb->BTreeData;
PFILEDATA pOutFile = &lpipb->OutFile; // Output data
PFILEDATA pInFile = &lpipb->InFile; // Input data
HFPB fOutput = pOutFile->fFile; // Output file
HFPB fInput = lpipb->InFile.fFile; // Input file
LPB pInCurPtr = lpipb->InFile.pCurrent; // Input buffer
PNODEINFO pNode;
LPB lpbWord; // Pointer to the word string
OCCF occf = lpipb->occf;
// Working Variables
DWORD dwTopicCount; // Number of topic in record
DWORD dwFieldId;
DWORD dwBlockSize; // Size of the entire occ block
LPB pDest;
WORD uStringSize;
ERRB errb;
// We always start from the leaf node
pNode = pTreeData->rgpNodeInfo[0];
// Set pointer to working buffer
pDest = pNode->pTmpResult;
// Advance input buffer to the word string
pInCurPtr += sizeof (DWORD);
lpbWord = pInCurPtr;
// Insert the word into the buffer
pDest += PrefixCompressWord (pDest, pInCurPtr,
pNode->pLastWord, pTreeData->fOccfLength);
// Get the word length
uStringSize = GETWORD((LPUW)pInCurPtr);
lpipb->dwTotalUniqueWordLen += uStringSize;
// Adjust for the word length storage
uStringSize += sizeof(SHORT);
// Skip the word
pInCurPtr += uStringSize;
#ifdef _DEBUG
STRCPY (LastWord, CurWord);
MEMCPY (CurWord, lpbWord + 2, GETWORD((LPUW)lpbWord));
CurWord[GETWORD((LPUW)lpbWord)] = 0;
if (STRCMP (LastWord, CurWord) > 0)
SetErrCode (NULL, E_ASSERT);
// if (STRCMP (CurWord, "forbidden") == 0)
// _asm int 3;
#endif
// If OccfLength is set skip it now
// (It has already been appended to the compressed word)
if (pTreeData->fOccfLength)
pInCurPtr += CbByteUnpack(&dwBlockSize, pInCurPtr);
// Copy the FieldID
if (occf & OCCF_FIELDID)
{
CbByteUnpack (&dwFieldId, pInCurPtr);
do {
*pDest++ = *pInCurPtr;
} while (*pInCurPtr++ & 0x80);
}
// Get Topic Count
#if 0
CbByteUnpack (&dwTopicCount, pInCurPtr);
do
{
*pDest++ = *pInCurPtr;
} while (*pInCurPtr++ & 0x80);
#else
dwTopicCount = GETLONG((LPUL)pInCurPtr);
pInCurPtr += sizeof(DWORD);
pDest += CbBytePack(pDest, dwTopicCount);
#endif
// Check to see if this entry will fit in the leaf node
// We can't write the data block until we know where the entry
// will be stored. We must add in FOFFSET_SIZE to our current location
// to determine size. We ignore the block size field, so we might encroach
// on the slack by a few bytes.
if (pNode->cbLeft - pNode->Slack < (SHORT)(pDest -pNode->pTmpResult +FOFFSET_SIZE))
{
HRESULT fRet;
if ((fRet = AddRecordToStem (lpipb, lpbWord)) != S_OK)
return(fRet);
// If the prefix count is zero, no problem
// Else we have to re-copy the word, since we are in a new leaf node
if (0 != pNode->pTmpResult[1])
{
dwBlockSize = PrefixCompressWord (pNode->pTmpResult, lpbWord,
pNode->pLastWord, pTreeData->fOccfLength);
pDest = pNode->pTmpResult + dwBlockSize;
if (occf & OCCF_FIELDID)
pDest += CbBytePack (pDest, dwFieldId);
pDest += CbBytePack (pDest, dwTopicCount);
}
}
// Save new word as last word
MEMCPY (pNode->pLastWord, lpbWord, uStringSize + 2);
// Set pointer to beginning of data block
pDest += CopyFileOffset (pDest, pOutFile->foPhysicalOffset);
// Update the bytes left
pInFile->cbLeft -= (LONG) (pInCurPtr - pInFile->pCurrent);
#ifdef _DEBUG
if (pInFile->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Compress data block to output buffer and store it's compressed size
pInFile->pCurrent = pInCurPtr;
if ((dwBlockSize = WriteDataNode (lpipb, dwTopicCount, &errb)) == 0)
return errb;
pDest += CbBytePack (pDest, dwBlockSize);
// Copy the temp buffer to the real node
dwBlockSize = (DWORD)(pDest - pNode->pTmpResult);
MEMCPY (pNode->pCurPtr, pNode->pTmpResult, dwBlockSize);
pNode->pCurPtr += dwBlockSize;
pNode->cbLeft -= (WORD)dwBlockSize;
return S_OK;
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func DWORD | AddRecordToStem |
* Add a key to a stem node, creating/flushing nodes as necessary.
*
* @parm LPB | lpbWord |
* The word to add the the stem node (last word in the full leaf node)
*
* @rdesc S_OK if successful, or errors if failed
*
*************************************************************************/
HRESULT PASCAL AddRecordToStem (_LPIPB lpipb, LPB lpbWord)
{
SHORT CurLevel = 0;
PNODEINFO pStemNode;
PNODEINFO pLastNode;
PBTREEDATA pTreeData = &lpipb->BTreeData;
PNODEINFO pLeafNode = pTreeData->rgpNodeInfo[0];
LPB pLastWord;
int cbTemp;
ERRB errb = S_OK;
HRESULT fRet;
// Move up through stem nodes until space can be found/made
pStemNode = pLeafNode;
do
{
pLastWord = pStemNode->pLastWord;
pStemNode = pTreeData->rgpNodeInfo[++CurLevel];
if (pStemNode == NULL)
{ // Create a new stem node
if ((pStemNode = pTreeData->rgpNodeInfo[CurLevel] =
AllocBTreeNode (lpipb)) == NULL)
return SetErrCode (NULL, E_OUTOFMEMORY);
pStemNode->Slack = STEM_SLACK;
pStemNode->cbLeft = lpipb->BTreeData.Header.dwBlockSize
- sizeof(WORD);
if (++pTreeData->Header.cIdxLevels > MAX_TREE_HEIGHT)
return E_TREETOOBIG;
}
pTreeData->Header.nidLast++;
} while (pStemNode->cbLeft - pStemNode->Slack <
(SHORT)(GETWORD ((LPUW)pLastWord) + sizeof (SHORT) + FOFFSET_SIZE));
// Work back down through the nodes clearing them to disk
while (CurLevel > 1)
{
pLastNode = pTreeData->rgpNodeInfo[--CurLevel];
pLastWord = pLastNode->pLastWord;
// Copy word to stem node
if ((cbTemp = PrefixCompressWord (pStemNode->pCurPtr, pLastWord,
pStemNode->pLastWord, pTreeData->fOccfLength)) == 0)
{
return errb;
}
pStemNode->pCurPtr += cbTemp;
// Update the last word in the stem node
MEMCPY (pStemNode->pLastWord, pLastWord, GETWORD((LPUW)pLastWord)+ 2*sizeof(WORD));
// Set pointer in stem node
CopyFileOffset (pStemNode->pCurPtr,
lpipb->OutFile.foPhysicalOffset);
pStemNode->pCurPtr += FOFFSET_SIZE;
pStemNode->cbLeft -= FOFFSET_SIZE + cbTemp;
#ifdef _DEBUG
if (pStemNode->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
pStemNode = pTreeData->rgpNodeInfo[CurLevel];
if ((fRet = WriteStemNode (lpipb, pStemNode)) != S_OK)
return(fRet);
}
// Clear the leaf node into the first stem node & reset it
// Copy last word to stem node
if ((cbTemp = PrefixCompressWord (pStemNode->pCurPtr,
pLeafNode->pLastWord, pStemNode->pLastWord,
pTreeData->fOccfLength)) == 0)
{
return errb;
}
pStemNode->pCurPtr += cbTemp;
pStemNode->cbLeft -= cbTemp;
#ifdef _DEBUG
if (pStemNode->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Update the last word in the stem node
MEMCPY (pStemNode->pLastWord, pLeafNode->pLastWord,
GETWORD((LPUW)(pLeafNode->pLastWord))+2*sizeof(WORD));
// Set pointer to the leaf node
CopyFileOffset (pStemNode->pCurPtr, lpipb->OutFile.foPhysicalOffset);
pStemNode->pCurPtr += FOFFSET_SIZE;
pStemNode->cbLeft -= FOFFSET_SIZE;
#ifdef _DEBUG
if (pStemNode->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Flush leaf node to output buffer and reset it
return WriteLeafNode (lpipb);
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func int | CompressDword |
* Compresses the input stream into the output buffer using a high
* bit encoding method. If the buffer is full it will be flushed to
* a file.
*
* @parm PFILEDATA | pOutput |
* Pointer to output buffer info
*
* @parm LPDWORD | pSrc |
* Pointer to the uncompressed input stream
*
* @rdesc Returns the number of compressed bytes buffered
*
*************************************************************************/
int PASCAL CompressDword (PFILEDATA pOutput, DWORD dwValue)
{
LPB pDest = pOutput->pCurrent;
int cBytes = 0; // Count of compressed bytes
ERRB errb;
// Any room left in output buffer?
if (sizeof(DWORD) * 2 >= pOutput->cbLeft)
{
DWORD dwSize;
FileWrite (pOutput->fFile, pOutput->pMem,
(dwSize = (DWORD)(pDest - pOutput->pMem)), &errb);
pDest = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
while (dwValue)
{
*pDest = (BYTE)(dwValue & 0x7F);
cBytes++;
dwValue >>= 7;
if (dwValue != 0)
*pDest |= 0x80;
pDest++;
}
pOutput->pCurrent = pDest;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, (DWORD)cBytes);
pOutput->cbLeft -= cBytes;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
return cBytes;
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func DWORD | WriteDataNode |
* Compresses the input stream into the output buffer. If the buffer
* is full it will be flushed to a file.
*
* @parm _LPIPB | lpipb |
* Pointer to global buffer
*
* @parm DWORD | dwTopicCount |
* The number of topics in the input stream
*
* @parm PHRESULT | phr |
* Error buffer
*
* @rdesc Returns the number of compressed bytes written
*
*************************************************************************/
PUBLIC DWORD PASCAL FAR WriteDataNode (_LPIPB lpipb,
DWORD dwTopicCount, PHRESULT phr)
{
// Local replacement Variables
PBTREEDATA pTreeData = &lpipb->BTreeData;
PFILEDATA pOutput = &lpipb->OutFile; // Output data structure
PFILEDATA pInFile = &lpipb->InFile; // Input data structre
HFPB fFile = pOutput->fFile; // Output file handle
// Working Variables
DWORD dwBlockSize; // Size of block to compress
DWORD dwEncodedSize = 0; // Size of encoded block
DWORD dwTopicIdDelta; // Really only used for weight values
DWORD TopicLoop;
DWORD dwSlackSize;
DWORD loop;
DWORD dwTemp;
FILEOFFSET foStart; // Physical beginning of bit compression block
FLOAT rTerm; // Only used when IDXF_NORMALIZE is set
FLOAT rWeight; // Only used when IDXF_NORMALIZE is set
WORD wWeight; // Only used when IDXF_NORMALIZE is set
DWORD dwTopicId = 0; // Only used when IDXF_NORMALIZE is set
int cbTemp; // # of compressed bytes that uncompressed
OCCF occf = lpipb->occf;
HRESULT fRet;
foStart = pOutput->foPhysicalOffset;
wWeight = 0; // UNDONE: Don't need it
for (TopicLoop = dwTopicCount; TopicLoop > 0; --TopicLoop)
{
// Move to the byte boundary
if (pOutput->ibit != cbitBYTE - 1)
{
pOutput->ibit = cbitBYTE - 1;
if (--pOutput->cbLeft)
{
pOutput->pCurrent++;
pOutput->foPhysicalOffset = FoAddDw (pOutput->foPhysicalOffset, 1);
}
else
{
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwTemp = (DWORD)(pOutput->pCurrent - pOutput->pMem), phr) != (LONG)dwTemp)
return(0);
pOutput->pCurrent = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwTemp);
#ifdef _DEBUG
MEMSET (pOutput->pMem, 0, pOutput->dwMax);
#endif
}
}
// Store TopicId as necessary
if (pInFile->cbLeft < 2 * sizeof (DWORD))
{
MEMMOVE (pInFile->pMem, pInFile->pCurrent, pInFile->cbLeft);
pInFile->cbLeft += FileRead (pInFile->fFile, pInFile->pMem + pInFile->cbLeft,
pInFile->dwMax - pInFile->cbLeft, phr);
pInFile->dwMax = pInFile->cbLeft;
pInFile->pCurrent = pInFile->pMem;
}
cbTemp = CbByteUnpack (&dwTopicIdDelta, pInFile->pCurrent);
dwTopicId += dwTopicIdDelta; // Get the real TopicID
if ((fRet = FAddDword (pOutput, dwTopicIdDelta,
lpipb->cKey[CKEY_TOPIC_ID])) != S_OK)
{
SetErrCode(phr, fRet);
return(0);
}
pInFile->pCurrent += cbTemp;
pInFile->cbLeft -= cbTemp;
if (occf & OCCF_HAVE_OCCURRENCE)
{
// Get number of occ data records for this topic
if (pInFile->cbLeft < 2 * sizeof (DWORD))
{
MEMMOVE (pInFile->pMem, pInFile->pCurrent, pInFile->cbLeft);
pInFile->cbLeft += FileRead (pInFile->fFile,
pInFile->pMem + pInFile->cbLeft,
pInFile->dwMax - pInFile->cbLeft, phr);
pInFile->dwMax = pInFile->cbLeft;
pInFile->pCurrent = pInFile->pMem;
}
cbTemp = CbByteUnpack (&dwBlockSize, pInFile->pCurrent);
pInFile->pCurrent += cbTemp;
pInFile->cbLeft -= cbTemp;
}
// If we are term weighing we have to calculate the weight
if (lpipb->idxf & IDXF_NORMALIZE)
{
#ifndef ISBU_IR_CHANGE
// log10(x/y) == log10 (x) - log10 (y). Since x in our case is a known constant,
// 100,000,000, I'm replacing that with its equivalent log10 value of 8.0 and subtracting
// the log10(y) from it
rTerm = (float) (8.0 - log10((double) dwTopicCount));
// In extreme cases, rTerm could be 0 or even -ve (when dwTopicCount approaches or
// exceeds 100,000,000)
if (rTerm <= (float) 0.0)
rTerm = cVerySmallWt; // very small value. == log(100 mil/ 95 mil)
// NOTE : rWeight for the doc term would be as follows:
// rWeight = float(min(4096, dwBlockSize)) * rTerm / lpipb->wi.hrgsigma[dwTopicId]
//
// Since rTerm needs to be recomputed again for the query term weight computation,
// and since rTerm will be the same value for the current term ('cos N and n of log(N/n)
// are the same (N = 100 million and n is whatever the doc term freq is for the term),
// we will factor in the second rTerm at index time. This way, we don't have to deal
// with rTerm at search time (reduces computation and query time shortens)
//
// MV 2.0 initially did the same thing. However, BinhN removed the second rTerm
// because he decided to remove the rTerm altogether from the query term weight. He
// did that to keep the scores reasonably high.
rWeight = ((float) min(cTFThreshold, dwBlockSize)) * rTerm * rTerm / lpipb->wi.hrgsigma[dwTopicId];
// without the additional rTerm, we would probably be between 0.0 and 1.0
if (rWeight > rTerm)
wWeight = 0xFFFF;
else
wWeight = (WORD) ((float)0xFFFF * rWeight / rTerm);
#else
rTerm = (float) (65535.0 * 8) / (float)dwTopicCount;
rWeight = (float)dwBlockSize * rTerm / lpipb->wi.hrgsigma[dwTopicId];
if (rWeight >= 65535.0)
wWeight = 65335;
else
wWeight = (WORD)rWeight;
#endif // ISBU_IR_CHANGE
// Write the weight to the output buffer
if ((fRet = FWriteBits (&lpipb->OutFile, (DWORD)wWeight,
(BYTE)(sizeof (WORD) * cbitBYTE))) != S_OK)
{
SetErrCode (phr, fRet);
return(0);
}
}
// Don't do anything else if there is nothing else to do!!!
if ((occf & OCCF_HAVE_OCCURRENCE) == 0)
continue;
// Write the OccCount
if ((fRet = FAddDword (pOutput, dwBlockSize,
lpipb->cKey[CKEY_OCC_COUNT])) != S_OK)
{
SetErrCode (phr, fRet);
return(0);
}
// Encode the occ block
for (loop = dwBlockSize; loop > 0; loop--)
{
int iIndex;
iIndex = CKEY_OCC_BASE;
// Make sure input buffer holds enough data
if (pInFile->cbLeft < 5 * sizeof (DWORD))
{
MEMMOVE (pInFile->pMem, pInFile->pCurrent, pInFile->cbLeft);
pInFile->cbLeft += FileRead (pInFile->fFile,
pInFile->pMem + pInFile->cbLeft,
pInFile->dwMax - pInFile->cbLeft, phr);
pInFile->dwMax = pInFile->cbLeft;
pInFile->pCurrent = pInFile->pMem;
}
if (occf & OCCF_COUNT)
{
cbTemp = CbByteUnpack (&dwTemp, pInFile->pCurrent);
pInFile->pCurrent += cbTemp;
pInFile->cbLeft -= cbTemp;
if ((fRet = FAddDword (pOutput, dwTemp, lpipb->cKey[iIndex])) !=
S_OK)
{
SetErrCode (phr, fRet);
return(0);
}
iIndex++;
}
if (occf & OCCF_OFFSET)
{
cbTemp = CbByteUnpack (&dwTemp, pInFile->pCurrent);
pInFile->pCurrent += cbTemp;
pInFile->cbLeft -= cbTemp;
if ((fRet = FAddDword (pOutput, dwTemp, lpipb->cKey[iIndex])) !=
S_OK)
{
SetErrCode (phr, fRet);
return(0);
}
}
}
}
// Advance to next byte (we are partially through a byte now)
pOutput->ibit = cbitBYTE - 1;
pOutput->pCurrent++;
pOutput->foPhysicalOffset = FoAddDw (pOutput->foPhysicalOffset, 1);
pOutput->cbLeft--;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
dwEncodedSize += DwSubFo (pOutput->foPhysicalOffset, foStart);
// Leave slack space, but not for uncommon words
if (dwTopicCount <= 2)
dwSlackSize = 0;
else
dwSlackSize = dwEncodedSize / 10;
dwEncodedSize += dwSlackSize;
// Keep a running total of all allocated slack space
pTreeData->Header.dwSlackCount += dwSlackSize;
while (dwSlackSize)
{
if (pOutput->cbLeft < (LONG)dwSlackSize)
{ // The slack block doesn't fit in the output buffer
// Write as much as we can then flush the buffer and write the rest
// MEMSET (pOutput->pCurrent, 0, pOutput->cbLeft);
DWORD dwSize;
dwSlackSize -= pOutput->cbLeft;
if (0 == FileWrite (fFile, pOutput->pMem,
dwSize = pOutput->dwMax, phr))
{
return 0;
}
pOutput->pCurrent = pOutput->pMem;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, pOutput->cbLeft);
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
else
{ // The slack fits, no problems
MEMSET (pOutput->pCurrent, 0, dwSlackSize);
pOutput->pCurrent += dwSlackSize;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, dwSlackSize);
pOutput->cbLeft -= dwSlackSize;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
dwSlackSize = 0;
}
}
return dwEncodedSize;
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func void | WriteStemNode |
* Flushes a stem node in the BTree to the output buffer. Once flushed,
* the node is reset to the beginning and filled with zeros.
*
* @parm _LPIPB | lpipb |
* Pointer the IPB structure
*
* @parm PNODEINFO | pNode |
* Pointer to the node to flush
*
*************************************************************************/
PRIVATE HRESULT PASCAL WriteStemNode (_LPIPB lpipb, PNODEINFO pNode)
{
// Local Replacement Variable
PBTREEDATA pTreeData = &lpipb->BTreeData;
PFILEDATA pOutput = &lpipb->OutFile; // Output structure
LPB pDest; // Output buffer
LPB pStart = pNode->pBuffer; // Start of node buffer
// Local Working Variables
DWORD dwBytesLeft; // Bytes left to write
ERRB errb;
#if 0 // Use 2-bytes for cbLeft to simplify the work of update
// Compress CbLeft to output buffer
dwBytesLeft = lpipb->BTreeData.Header.dwBlockSize - FOFFSET_SIZE -
CompressDword (pOutput, (DWORD)pNode->cbLeft);
#else
*(LPUW)(pOutput->pCurrent) = (WORD)pNode->cbLeft;
pOutput->pCurrent += sizeof(WORD);
pOutput->cbLeft -= sizeof(WORD);
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, (DWORD)sizeof(WORD));
dwBytesLeft = lpipb->BTreeData.Header.dwBlockSize - sizeof(WORD);
#endif
pDest = pOutput->pCurrent;
// Keep a running total of all allocated slack space
pTreeData->Header.dwSlackCount += pNode->cbLeft;
// This is why the buffer must be >= BTREE_NODE_SIZE
// This could be put in a loop to avoid that restriction, but it
// is probably not worth it. (See also WriteLeafNode)
if (pOutput->cbLeft < (LONG)dwBytesLeft)
{
LONG dwSize;
if (FileWrite (pOutput->fFile,
pOutput->pMem, dwSize = (DWORD)(pDest - pOutput->pMem), &errb) != dwSize)
return(errb);
pDest = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
MEMCPY (pDest, pStart, dwBytesLeft);
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, dwBytesLeft);
pOutput->cbLeft -= dwBytesLeft;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Set the external variable
pOutput->pCurrent = pDest + dwBytesLeft;
// Set to all zeros so we know when we have reached the end of data later
MEMSET (pNode->pBuffer, 0, lpipb->BTreeData.Header.dwBlockSize);
pNode->cbLeft = lpipb->BTreeData.Header.dwBlockSize - sizeof(WORD);
pNode->pCurPtr = pNode->pBuffer;
*(PUSHORT)pNode->pLastWord = 0;
return(S_OK);
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func void | WriteLeafNode |
* Flushes a leaf node in the BTree to the output buffer. Once flushed,
* the node is reset to the beginning and filled with zeros.
*
* @parm _LPIPB | lpipb |
* Pointer to index block
*
* @rdesc S_OK or other errors
*************************************************************************/
PRIVATE HRESULT PASCAL NEAR WriteLeafNode (_LPIPB lpipb)
{
// Local Replacement Variables
PBTREEDATA pTreeData = &lpipb->BTreeData;
PFILEDATA pOutput = &lpipb->OutFile; // Output data structure
LPB pDest = pOutput->pCurrent; // Output buffer
FILEOFFSET OffsetPointer = pTreeData->OffsetPointer;
FILEOFFSET foPhysicalOffset = pOutput->foPhysicalOffset;
PNODEINFO pNode = pTreeData->rgpNodeInfo[0]; // Leaf node
LPB pStart = pNode->pBuffer; // Beginning of the node buffer
// Working Variables
DWORD dwLeft;
FILEOFFSET StartOffset; // Physical offset of the begining
// of the output buffer
ERRB errb;
// Backpatch the current offset to the last nodes pointer
if (!FoIsNil (OffsetPointer))
{
// Is the backpatch location in the output buffer?
if (FoCompare (OffsetPointer,
(StartOffset = FoSubFo (foPhysicalOffset,
MakeFo ((DWORD)(pDest - pOutput->pMem), 0)))) >= 0)
{
CopyFileOffset (pOutput->pMem + DwSubFo
(OffsetPointer, StartOffset), foPhysicalOffset);
}
else
{
if (FileSeekWrite (pOutput->fFile, &foPhysicalOffset,
OffsetPointer, sizeof (DWORD), &errb) !=
sizeof (DWORD))
return(errb);
FileSeek (pOutput->fFile, StartOffset, 0, NULL);
}
}
// Set the backpatch location for next time
pTreeData->OffsetPointer = foPhysicalOffset;
// Skip the record pointer for this record (will be backpatched next time)
if (pOutput->cbLeft <= 0 )
{
LONG dwSize;
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwSize = (DWORD)(pDest - pOutput->pMem), &errb) != dwSize)
return(errb);
pDest = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
MEMSET (pDest, 0, FOFFSET_SIZE);
pOutput->cbLeft -= FOFFSET_SIZE;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
pOutput->pCurrent = pDest + FOFFSET_SIZE;
pOutput->foPhysicalOffset = FoAddDw (foPhysicalOffset, FOFFSET_SIZE);
#if 0 // Use 2-bytes for cbLeft to simplify the work of update
// Compress CbLeft to output buffer
dwLeft = lpipb->BTreeData.Header.dwBlockSize - FOFFSET_SIZE -
CompressDword (pOutput, (DWORD)pNode->cbLeft);
#else
*(LPUW)(pOutput->pCurrent) = (WORD)pNode->cbLeft;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, (DWORD)sizeof(WORD));
pOutput->cbLeft -= sizeof(WORD);
dwLeft = lpipb->BTreeData.Header.dwBlockSize - FOFFSET_SIZE - sizeof(WORD);
pOutput->pCurrent += sizeof(WORD);
#endif
pDest = pOutput->pCurrent;
// Keep a running total of all allocated slack space
pTreeData->Header.dwSlackCount += pNode->cbLeft;
// This is why the buffer must be >= BTREE_NODE_SIZE
// This could be put in a loop to avoid that restriction, but it
// is probably not worth it. (See also WriteStemNode)
if (pOutput->cbLeft < (LONG)dwLeft)
{
LONG dwSize;
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwSize = (DWORD)(pDest - pOutput->pMem), &errb) != dwSize)
return(errb);
pDest = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
MEMCPY (pDest, pStart, dwLeft);
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, dwLeft);
pOutput->cbLeft -= dwLeft;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
pOutput->pCurrent = pDest + dwLeft;
// Reset buffer back to beginning
MEMSET (pNode->pBuffer, 0, lpipb->BTreeData.Header.dwBlockSize);
pNode->pCurPtr = pNode->pBuffer;
// Set the bytes left in node block
pNode->cbLeft = lpipb->BTreeData.Header.dwBlockSize -
FOFFSET_SIZE - sizeof(WORD);
*(PUSHORT)pNode->pLastWord = 0;
return(S_OK);
}
/*************************************************************************
* @doc PRIVATE INDEXING
*
* @func PNODEINFO | AllocBTreeNode |
* Allocates memory for the node structure as well as the data buffer
* contained in the structure.
*
* @parm _LPIPB | lpipb |
* Pointer to index parameter block
*
* @rdesc Returns a pointer to the newly allocated node
*************************************************************************/
PUBLIC PNODEINFO PASCAL FAR AllocBTreeNode (_LPIPB lpipb)
{
PNODEINFO pNode;
// Allocate node structure
if ((pNode = GlobalLockedStructMemAlloc (sizeof (NODEINFO))) == NULL)
{
exit0:
SetErrCode (NULL, E_OUTOFMEMORY);
return NULL;
}
// Allocate data buffer
if ((pNode->hMem =
_GLOBALALLOC (DLLGMEM_ZEROINIT,
pNode->dwBlockSize = lpipb->BTreeData.Header.dwBlockSize)) == NULL)
{
exit1:
GlobalLockedStructMemFree(pNode);
goto exit0;
}
pNode->pCurPtr = pNode->pBuffer = (LPB)_GLOBALLOCK (pNode->hMem);
// Allocate a buffer with the maximum word length, which is the block
// size
if ((pNode->hLastWord =
_GLOBALALLOC (DLLGMEM_ZEROINIT, pNode->dwBlockSize)) == NULL)
{
exit2:
FreeHandle (pNode->hMem);
goto exit1;
}
pNode->pLastWord = (LPB)_GLOBALLOCK (pNode->hLastWord);
// Alllocate temporary result buffer.
if ((pNode->hTmp =
_GLOBALALLOC (DLLGMEM_ZEROINIT, pNode->dwBlockSize)) == NULL)
{
FreeHandle (pNode->hLastWord);
goto exit2;
}
pNode->pTmpResult = (LPB)_GLOBALLOCK (pNode->hTmp);
return pNode;
}
/*************************************************************************
* @doc PRIVATE INDEXING
*
* @func VOID | FreeBTreeNode |
* Free all memory allocated for the node
*
* @parm PNODEINFO | pNode |
* BTree node to be freed
*************************************************************************/
PUBLIC VOID PASCAL FAR FreeBTreeNode (PNODEINFO pNode)
{
if (pNode == NULL)
return;
FreeHandle (pNode->hTmp);
FreeHandle (pNode->hMem);
FreeHandle (pNode->hLastWord);
GlobalLockedStructMemFree(pNode);
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func HRESULT | PrefixCompressWord |
* Adds a word to a record based on the last word in the node.
*
* @parm LPB | pDest |
* Pointer to the destination buffer
*
* @parm LPB | lpbWord |
* Pointer to the word string to add to node. The format is:
* - 2-byte: string length
* - n-byte: the string itself
* - cbBytePack: real word length
*
* @parm LPB | pLastWord |
* Pointer to the last word entered in the destination buffer
*
* @parm int | fOccfLengthSet |
* Set to 1 if OCCF_LENGTH field is set, else 0
*
* @parm PHRESULT | pErrb |
* Pointer to error structure
*
* @rdesc returns number of bytes written to the destination buffer
* @rcomm
* Strings are compressed based on how many beginning bytes
* (prefix) it has in common woth the previous word. The format is
* - String's length : 2-byte CbPacked
* - Prefix length : 1-byte (0 - 127). If the high bit is set
* another word length is to follow the word
* - Word : n-byte without the prefix
* - Word's real length - 2-byte CbPacked: only exist if the
* prefix length high bit is set
*************************************************************************/
PUBLIC int PASCAL FAR PrefixCompressWord
(LPB pDest, LPB lpbWord, LPB pLastWord, int fOccfLengthSet)
{
// Working Variables
int bPrefix; // The number of prefix bytes that match
unsigned int wPostfix; // Bytes left over that don't match
USHORT cbMinWordLen; // Smallest word size between the two words
LPB pStart = pDest; // Starting position
DWORD dwRealLength; // The real length of the word
// Get the minimum word length
wPostfix = GETWORD ((LPUW)lpbWord);
if ((cbMinWordLen = GETWORD ((LPUW)pLastWord)) > wPostfix)
cbMinWordLen = (USHORT) wPostfix;
// Add one to adjust for two byte word headers (saves an add in the loop)
cbMinWordLen++;
for (bPrefix = 2; bPrefix <= cbMinWordLen; bPrefix++)
{
if (lpbWord[bPrefix] != pLastWord[bPrefix])
break;
}
// Adjust back to the real value
bPrefix -= 2;
// Prefix must be <= 127 (high bit is used to indicate fOccfLength field)
if (bPrefix > 127)
bPrefix = 127;
cbMinWordLen = (USHORT) wPostfix; // Save the word length
wPostfix -= bPrefix;
// Add wLen to wPostfix to get total byte count then write it.
// The extra byte is for the prefix byte
pDest += (USHORT)CbBytePack (pDest, (DWORD)(wPostfix + 1));
// If WordLen == string length then don't write WordLen
if (fOccfLengthSet)
{
CbByteUnpack (&dwRealLength, lpbWord + sizeof(WORD) + cbMinWordLen );
if (dwRealLength == cbMinWordLen)
fOccfLengthSet = FALSE;
}
// Write prefix size
// If fOccfLengthSet is set, set high bit of bPrefix
if (fOccfLengthSet)
*pDest = bPrefix | 0x80;
else
*pDest = (BYTE) bPrefix;
pDest++;
// Copy the postfix string over
MEMCPY (pDest, lpbWord + (bPrefix + sizeof (SHORT)), wPostfix);
pDest += wPostfix;
// if fOccfLengthSet is set append WordLen to end of word
// (WordLen field follows word in input stream)
if (fOccfLengthSet)
pDest += CbBytePack (pDest, dwRealLength);
return (int)(pDest - pStart);
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func void | FlushAllNodes |
* Flushes the remaining nodes to disk when the tree is completely built.
*
* @parm _LPIPB | lpipb |
* Pointer to index block
*
* @rdesc S_OK on success or errors if failed
*
*************************************************************************/
HRESULT PASCAL FlushAllNodes (_LPIPB lpipb)
{
PBTREEDATA pTreeData = &lpipb->BTreeData;
PFILEDATA pOutput = &lpipb->OutFile;
PNODEINFO pLeafNode;
PNODEINFO pStemNode;
int WordSize;
BYTE curLevel = 0;
ERRB errb = S_OK;
HRESULT fRet;
pStemNode = pTreeData->rgpNodeInfo[0];
while (pTreeData->rgpNodeInfo[++curLevel] != NULL)
{
pLeafNode = pStemNode;
pStemNode = pTreeData->rgpNodeInfo[curLevel];
if ((WordSize = PrefixCompressWord (pStemNode->pCurPtr,
pLeafNode->pLastWord, pStemNode->pLastWord,
pTreeData->fOccfLength)) == 0)
{
return errb;
}
// Save new word as last word
MEMCPY (pStemNode->pLastWord, pLeafNode->pLastWord,
GETWORD ((LPUW)pLeafNode->pLastWord) + 2);
pStemNode->pCurPtr += WordSize;
pStemNode->cbLeft -= WordSize;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
CopyFileOffset (pStemNode->pCurPtr,
lpipb->OutFile.foPhysicalOffset);
pStemNode->pCurPtr += FOFFSET_SIZE;
pStemNode->cbLeft -= FOFFSET_SIZE;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
if (curLevel == 1)
{
if ((fRet = WriteLeafNode (lpipb)) != S_OK)
return(fRet);
}
else
{
if ((fRet = WriteStemNode (lpipb, pLeafNode)) != S_OK)
return(fRet);
}
}
// Set the pointer to the top stem node
pTreeData->Header.foIdxRoot = pOutput->foPhysicalOffset;
pTreeData->Header.nidIdxRoot = pOutput->foPhysicalOffset.dwOffset;
if (curLevel == 1)
{
if ((fRet = WriteLeafNode (lpipb)) != S_OK)
return(fRet);
}
else
{
if ((fRet = WriteStemNode (lpipb, pStemNode)) != S_OK)
return(fRet);
}
{
LONG dwSize;
// Flush the output buffer
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwSize = (DWORD)(pOutput->pCurrent - pOutput->pMem), &errb) != dwSize)
return(errb);
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
}
return S_OK;
}
PRIVATE HRESULT PASCAL NEAR WriteBitStreamDWord (PFILEDATA pOutput, DWORD dw,
int ckeyCenter)
{
BYTE ucBits;
HRESULT fRet;
// Bitstream scheme.
//
// This writes "dw" one-bits followed by a zero-bit.
//
for (; dw;)
{
if (dw < cbitBYTE * sizeof(DWORD))
{
ucBits = (BYTE)dw;
dw = 0;
}
else
{
ucBits = cbitBYTE * sizeof(DWORD);
dw -= cbitBYTE * sizeof(DWORD);
}
if ((fRet = FWriteBits(pOutput, argdwBits[ucBits],
(BYTE)ucBits)) != S_OK)
return fRet;
}
return FWriteBool(pOutput, 0);
}
PRIVATE HRESULT PASCAL NEAR WriteFixedDWord (PFILEDATA pOutput, DWORD dw,
int ckeyCenter)
{
// This just writes "ckey.ucCenter" bits of data.
return (FWriteBits (pOutput, dw, (BYTE)(ckeyCenter + 1)));
}
PRIVATE HRESULT PASCAL NEAR WriteBellDWord (PFILEDATA pOutput, DWORD dw,
int ckeyCenter)
{
BYTE ucBits;
HRESULT fRet;
// The "BELL" scheme is more complicated.
ucBits = (BYTE)CbitBitsDw(dw);
if (ucBits <= ckeyCenter)
{
//
// Encoding a small value. Write a zero, then write
// "ckey.ucCenter" bits of the value, which
// is guaranteed to be enough.
//
if ((fRet = FWriteBool(pOutput, 0)) != S_OK)
return fRet;
return FWriteBits(pOutput, dw, (BYTE)(ckeyCenter));
}
//
// Encoding a value that won't fit in "ckey.ucCenter" bits.
// "ucBits" is how many bits it will really take.
//
// First, write out "ucBits - ckey.ucCenter" one-bits.
//
if ((fRet = FWriteBits(pOutput, argdwBits[ucBits -
ckeyCenter], (BYTE)(ucBits - ckeyCenter))) != S_OK)
return fRet;
//
// Now, write out the value in "ucBits" bits,
// but zero the high-bit first.
//
return FWriteBits(pOutput, dw & argdwBits[ucBits - 1], ucBits);
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func HRESULT | FWriteBits |
* Writes a bunch of bits into the output buffer.
*
* @parm PFILEDATA | pOutput |
* Pointer to the output data structure
*
* @parm DWORD | dwVal |
* DWORD value to write
*
* @parm BYTE | cbits |
* Number of bits to write from dwVal
*
* @rdesc Returns S_OK on success or errors if failed
*
*************************************************************************/
PUBLIC HRESULT FAR PASCAL FWriteBits (PFILEDATA pOutput, DWORD dwVal, BYTE cBits)
{
BYTE cbitThisPassBits;
BYTE bThis;
ERRB errb;
static DWORD Count = 0;
// Loop until no bits left
for (; cBits;)
{
if (pOutput->ibit < 0)
{
pOutput->pCurrent++;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, 1);
pOutput->cbLeft--;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Room left in output buffer?
if (pOutput->cbLeft <= 256)
{
LONG dwSize;
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwSize = (DWORD)(pOutput->pCurrent - pOutput->pMem), &errb) !=
dwSize)
return(errb);
pOutput->cbLeft = pOutput->dwMax;
pOutput->pCurrent = pOutput->pMem;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset,
dwSize);
#ifdef _DEBUG
// MEMSET (pOutput->pMem, 0, pOutput->dwMax);
// Count++;
// if (!FoEquals(pOutput->foStartOffset, pOutput->foPhysicalOffset))
// _asm int 3;
#endif
}
pOutput->ibit = cbitBYTE - 1;
}
else
{ // Write some bits.
cbitThisPassBits = (pOutput->ibit + 1 < cBits) ?
pOutput->ibit + 1 : cBits;
bThis = (pOutput->ibit == cbitBYTE - 1) ?
0 : *pOutput->pCurrent;
bThis |= ((dwVal >> (cBits - cbitThisPassBits)) <<
(pOutput->ibit - cbitThisPassBits + 1));
*pOutput->pCurrent = (BYTE)bThis;
pOutput->ibit -= cbitThisPassBits;
cBits -= (BYTE)cbitThisPassBits;
}
}
return S_OK;
}
/*************************************************************************
*
* @doc PRIVATE INDEXING
*
* @func HRESULT | FWriteBool |
* Writes a single bit into the output buffer.
*
* @parm PFILEDATA | pOutput |
* Pointer to the output data structure
*
* @parm BOOL | dwVal |
* BOOL value to write
*
* @rdesc Returns S_OK on success or errors if failed
*
*************************************************************************/
PRIVATE HRESULT NEAR PASCAL FWriteBool (PFILEDATA pOutput, BOOL fVal)
{
HRESULT fRet = E_FAIL;
ERRB errb;
if (pOutput->ibit < 0)
{ // This byte is full, point to a new byte
pOutput->pCurrent++;
pOutput->foPhysicalOffset =
FoAddDw (pOutput->foPhysicalOffset, 1);
pOutput->cbLeft--;
#ifdef _DEBUG
if (pOutput->cbLeft <= 0)
SetErrCode (NULL, E_ASSERT);
#endif
// Room left in output buffer?
if (pOutput->cbLeft <= sizeof(DWORD))
{
LONG dwSize;
if (FileWrite (pOutput->fFile, pOutput->pMem,
dwSize = (DWORD)(pOutput->pCurrent - pOutput->pMem), &errb) != dwSize)
return(errb);
pOutput->pCurrent = pOutput->pMem;
pOutput->cbLeft = pOutput->dwMax;
pOutput->foStartOffset = FoAddDw(pOutput->foStartOffset, dwSize);
#ifdef _DEBUG
MEMSET (pOutput->pMem, 0, pOutput->dwMax);
#endif
}
pOutput->ibit = cbitBYTE - 1;
}
if (pOutput->ibit == cbitBYTE - 1) // Zero out a brand-new byte.
*pOutput->pCurrent = (BYTE)0;
if (fVal) // Write my boolean.
*pOutput->pCurrent |= 1 << pOutput->ibit;
pOutput->ibit--;
return S_OK; // Fine.
}
HRESULT PASCAL FAR BuildBtreeFromEso (HFPB hfpb,
LPSTR pstrFilename, LPB lpbEsiFile,
LPB lpbEsoFile, PINDEXINFO pIndexInfo)
{
_LPIPB lpipb;
HRESULT fRet;
ERRB errb;
BYTE bKeyIndex = 0;
IPB ipb;
HFILE hFile;
if ((lpipb = MVIndexInitiate(pIndexInfo, NULL)) == NULL)
return E_OUTOFMEMORY;
/* Read in the external sort buffer info */
if ((hFile = _lopen (lpbEsiFile, READ)) == HFILE_ERROR)
return E_NOTEXIST;
/* Read old IPB info */
_lread (hFile, &ipb, sizeof(IPB));
/* Transfer meaningful data */
lpipb->dwIndexedWord = ipb.dwIndexedWord;
lpipb->dwUniqueWord = ipb.dwUniqueWord;
lpipb->dwByteCount = ipb.dwByteCount;
lpipb->dwOccOffbits = ipb.dwOccOffbits;
lpipb->dwOccExtbits = ipb.dwOccExtbits;
lpipb->dwMaxFieldId = ipb.dwMaxFieldId;
lpipb->dwMaxWCount = ipb.dwMaxWCount;
lpipb->dwMaxOffset = ipb.dwMaxOffset;
lpipb->dwTotal3bWordLen = ipb.dwTotal3bWordLen;
lpipb->dwTotal2bWordLen = ipb.dwTotal2bWordLen;
lpipb->dwTotalUniqueWordLen = ipb.dwTotalUniqueWordLen;
lpipb->lcTopics = ipb.lcTopics;
lpipb->dwMaxTopicId = ipb.dwMaxTopicId;
// lpipb->dwMemAllowed = ipb.dwMemAllowed;
lpipb->dwMaxRecordSize = ipb.dwMaxRecordSize;
lpipb->dwMaxEsbRecSize = ipb.dwMaxEsbRecSize;
lpipb->dwMaxWLen = ipb.dwMaxWLen;
lpipb->idxf = ipb.idxf;
if (lpipb->idxf & IDXF_NORMALIZE)
{
if ((lpipb->wi.hSigma = _GLOBALALLOC (DLLGMEM_ZEROINIT,
(LCB)((lpipb->dwMaxTopicId + 1) * sizeof (SIGMA)))) == NULL)
return SetErrCode (&errb, E_OUTOFMEMORY);
lpipb->wi.hrgsigma = (HRGSIGMA)_GLOBALLOCK (lpipb->wi.hSigma);
if ((lpipb->wi.hLog = _GLOBALALLOC (DLLGMEM_ZEROINIT,
(CB)(cLOG_MAX * sizeof (FLOAT)))) == NULL)
{
SetErrCode (&errb, (HRESULT)(fRet = E_OUTOFMEMORY));
exit1:
FreeHandle (lpipb->wi.hSigma);
MVIndexDispose (lpipb);
return fRet;
}
#if 0
lpipb->wi.lrgrLog = (FLOAT FAR *)_GLOBALLOCK (lpipb->wi.hLog);
// Initialize the array
for (loop = cLOG_MAX - 1; loop > 0; --loop)
{
rLog = (FLOAT)1.0 / (float)loop;
lpipb->wi.lrgrLog[loop] = rLog * rLog;
}
#endif
}
// Build the permanent index
fRet = BuildBTree(NULL, lpipb, lpbEsoFile, hfpb, pstrFilename);
if (lpipb->idxf & IDXF_NORMALIZE)
{
FreeHandle (lpipb->wi.hLog);
goto exit1;
}
fRet = S_OK;
goto exit1;
}