Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

572 lines
17 KiB

/*
** Copyright 1991, Silicon Graphics, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of Silicon Graphics, Inc.;
** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form, in whole or in part, without the prior written
** permission of Silicon Graphics, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
**
** Mathematical subroutines needed by the GL.
**
** $Revision: 1.12 $
** $Date: 1993/12/11 01:03:25 $
*/
#include "precomp.h"
#pragma hdrstop
#include "xform.h"
#ifdef SGI
// SGIBUG None of the assembly routines copies matrixType!
#ifndef __GL_ASM_COPYMATRIX
/*
** Copy src to dst
*/
void FASTCALL __glCopyMatrix(__GLmatrix *dst, const __GLmatrix *src)
{
dst->matrixType = src->matrixType;
dst->matrix[0][0] = src->matrix[0][0];
dst->matrix[0][1] = src->matrix[0][1];
dst->matrix[0][2] = src->matrix[0][2];
dst->matrix[0][3] = src->matrix[0][3];
dst->matrix[1][0] = src->matrix[1][0];
dst->matrix[1][1] = src->matrix[1][1];
dst->matrix[1][2] = src->matrix[1][2];
dst->matrix[1][3] = src->matrix[1][3];
dst->matrix[2][0] = src->matrix[2][0];
dst->matrix[2][1] = src->matrix[2][1];
dst->matrix[2][2] = src->matrix[2][2];
dst->matrix[2][3] = src->matrix[2][3];
dst->matrix[3][0] = src->matrix[3][0];
dst->matrix[3][1] = src->matrix[3][1];
dst->matrix[3][2] = src->matrix[3][2];
dst->matrix[3][3] = src->matrix[3][3];
}
#endif /* __GL_ASM_COPYMATRIX */
#endif // SGI
/*
** Make m an identity matrix
*/
void FASTCALL __glMakeIdentity(__GLmatrix *m)
{
__GLfloat zer = __glZero;
__GLfloat one = ((__GLfloat) 1.0);;
m->matrix[0][0] = one; m->matrix[0][1] = zer;
m->matrix[0][2] = zer; m->matrix[0][3] = zer;
m->matrix[1][0] = zer; m->matrix[1][1] = one;
m->matrix[1][2] = zer; m->matrix[1][3] = zer;
m->matrix[2][0] = zer; m->matrix[2][1] = zer;
m->matrix[2][2] = one; m->matrix[2][3] = zer;
m->matrix[3][0] = zer; m->matrix[3][1] = zer;
m->matrix[3][2] = zer; m->matrix[3][3] = one;
m->matrixType = __GL_MT_IDENTITY;
}
#ifndef __GL_ASM_MULTMATRIX
/*
** Compute r = a * b, where r can equal b.
*/
void FASTCALL __glMultMatrix(__GLmatrix *r, const __GLmatrix *a, const __GLmatrix *b)
{
__GLfloat b00, b01, b02, b03;
__GLfloat b10, b11, b12, b13;
__GLfloat b20, b21, b22, b23;
__GLfloat b30, b31, b32, b33;
GLint i;
b00 = b->matrix[0][0]; b01 = b->matrix[0][1];
b02 = b->matrix[0][2]; b03 = b->matrix[0][3];
b10 = b->matrix[1][0]; b11 = b->matrix[1][1];
b12 = b->matrix[1][2]; b13 = b->matrix[1][3];
b20 = b->matrix[2][0]; b21 = b->matrix[2][1];
b22 = b->matrix[2][2]; b23 = b->matrix[2][3];
b30 = b->matrix[3][0]; b31 = b->matrix[3][1];
b32 = b->matrix[3][2]; b33 = b->matrix[3][3];
for (i = 0; i < 4; i++) {
r->matrix[i][0] = a->matrix[i][0]*b00 + a->matrix[i][1]*b10
+ a->matrix[i][2]*b20 + a->matrix[i][3]*b30;
r->matrix[i][1] = a->matrix[i][0]*b01 + a->matrix[i][1]*b11
+ a->matrix[i][2]*b21 + a->matrix[i][3]*b31;
r->matrix[i][2] = a->matrix[i][0]*b02 + a->matrix[i][1]*b12
+ a->matrix[i][2]*b22 + a->matrix[i][3]*b32;
r->matrix[i][3] = a->matrix[i][0]*b03 + a->matrix[i][1]*b13
+ a->matrix[i][2]*b23 + a->matrix[i][3]*b33;
}
}
#endif /* __GL_ASM_MULTMATRIX */
#ifndef __GL_ASM_NORMALIZE
/*
** Normalize v into vout.
*/
void FASTCALL __glNormalize(__GLfloat vout[3], const __GLfloat v[3])
{
__GLfloat len;
len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];
if (__GL_FLOAT_LEZ(len))
{
vout[0] = __glZero;
vout[1] = __glZero;
vout[2] = __glZero;
return;
} else {
if (len == ((__GLfloat) 1.0))
{
vout[0] = v[0];
vout[1] = v[1];
vout[2] = v[2];
} else {
len = ((__GLfloat) 1.0) / __GL_SQRTF(len);
vout[0] = v[0] * len;
vout[1] = v[1] * len;
vout[2] = v[2] * len;
}
}
}
#endif /* __GL_ASM_NORMALIZE */
#ifndef __GL_ASM_NORMAL_BATCH
/*
** Normalize normals in a polyarray.
*/
void FASTCALL __glNormalizeBatch(POLYARRAY *pa)
{
POLYDATA * const pdLast = pa->pdNextVertex;
POLYDATA *pd = pa->pd0;
for (; pd < pdLast; pd++)
{
if (pd->flags & POLYDATA_NORMAL_VALID)
{
__GLcoord * const v = &pd->normal;
const __GLfloat len = v->x*v->x + v->y*v->y + v->z*v->z;
if (__GL_FLOAT_LEZ(len))
{
v->x = __glZero;
v->y = __glZero;
v->z = __glZero;
} else
{
if (fabs(len - (GLfloat)1.0) > (__GLfloat) 0.0001)
{
const __GLfloat tmp = ((__GLfloat)1.0) / __GL_SQRTF(len);
v->x = v->x * tmp;
v->y = v->y * tmp;
v->z = v->z * tmp;
}
}
}
}
}
#endif /* __GL_ASM_NORMAL_BATCH */
/*
** inverse = invert(transpose(src))
This code uses Cramer's Rule to calculate the matrix inverse.
In general, the inverse transpose has this form:
[ ] -t [ ]
[ ] [ -t -t t ]
[ Q P ] [ S(SQ - PT) -(SQ - PT) T ]
[ ] [ ]
[ ] [ ]
[ ] = [ ]
[ ] [ -1 t ]
[ ] [ -(Q P) 1 ]
[ T S ] [ ------------- ------------- ]
[ ] [ -1 t t -1 t t ]
[ ] [ S - (Q P) T S - (Q P) T ]
But in the usual case that P,S == [0, 0, 0, 1], this is enough:
[ ] -t [ ]
[ ] [ -t -t t ]
[ Q 0 ] [ Q -Q T ]
[ ] [ ]
[ ] [ ]
[ ] = [ ]
[ ] [ ]
[ ] [ ]
[ T 1 ] [ 0 1 ]
[ ] [ ]
[ ] [ ]
*/
void FASTCALL __glInvertTransposeMatrix(__GLmatrix *inverse, const __GLmatrix *src)
{
__GLfloat x00, x01, x02;
__GLfloat x10, x11, x12;
__GLfloat x20, x21, x22;
__GLfloat rcp;
#ifdef NT
// The matrix type of the inverse transpose is not necessarily the
// same as that of the input. Always set it to general here to
// be safe. The type can be refined later if necessary.
inverse->matrixType = __GL_MT_GENERAL;
if (src->matrixType)
#else
/* propagate matrix type & branch if general */
if (inverse->matrixType = src->matrixType)
#endif
{
__GLfloat z00, z01, z02;
__GLfloat z10, z11, z12;
__GLfloat z20, z21, z22;
/* read 3x3 matrix into registers */
x00 = src->matrix[0][0];
x01 = src->matrix[0][1];
x02 = src->matrix[0][2];
x10 = src->matrix[1][0];
x11 = src->matrix[1][1];
x12 = src->matrix[1][2];
x20 = src->matrix[2][0];
x21 = src->matrix[2][1];
x22 = src->matrix[2][2];
/* compute first three 2x2 cofactors */
z20 = x01*x12 - x11*x02;
z10 = x21*x02 - x01*x22;
z00 = x11*x22 - x12*x21;
/* compute 3x3 determinant & its reciprocal */
rcp = x20*z20 + x10*z10 + x00*z00;
if (rcp == (float)0)
return;
rcp = (float)1/rcp;
/* compute other six 2x2 cofactors */
z01 = x20*x12 - x10*x22;
z02 = x10*x21 - x20*x11;
z11 = x00*x22 - x20*x02;
z12 = x20*x01 - x00*x21;
z21 = x10*x02 - x00*x12;
z22 = x00*x11 - x10*x01;
/* multiply all cofactors by reciprocal */
inverse->matrix[0][0] = z00*rcp;
inverse->matrix[0][1] = z01*rcp;
inverse->matrix[0][2] = z02*rcp;
inverse->matrix[1][0] = z10*rcp;
inverse->matrix[1][1] = z11*rcp;
inverse->matrix[1][2] = z12*rcp;
inverse->matrix[2][0] = z20*rcp;
inverse->matrix[2][1] = z21*rcp;
inverse->matrix[2][2] = z22*rcp;
/* read translation vector & negate */
x00 = -src->matrix[3][0];
x01 = -src->matrix[3][1];
x02 = -src->matrix[3][2];
/* store bottom row of inverse transpose */
inverse->matrix[3][0] = 0;
inverse->matrix[3][1] = 0;
inverse->matrix[3][2] = 0;
inverse->matrix[3][3] = 1;
/* finish by tranforming translation vector */
inverse->matrix[0][3] = inverse->matrix[0][0]*x00 +
inverse->matrix[0][1]*x01 +
inverse->matrix[0][2]*x02;
inverse->matrix[1][3] = inverse->matrix[1][0]*x00 +
inverse->matrix[1][1]*x01 +
inverse->matrix[1][2]*x02;
inverse->matrix[2][3] = inverse->matrix[2][0]*x00 +
inverse->matrix[2][1]*x01 +
inverse->matrix[2][2]*x02;
if ((rcp <= ((float)1.0 + __GL_MATRIX_UNITY_SCALE_EPSILON)) &&
(rcp >= ((float)1.0 - __GL_MATRIX_UNITY_SCALE_EPSILON))) {
inverse->nonScaling = GL_TRUE;
} else {
inverse->nonScaling = GL_FALSE;
}
}
else
{
__GLfloat x30, x31, x32;
__GLfloat y01, y02, y03, y12, y13, y23;
__GLfloat z02, z03, z12, z13, z22, z23, z32, z33;
#define x03 x01
#define x13 x11
#define x23 x21
#define x33 x31
#define z00 x02
#define z10 x12
#define z20 x22
#define z30 x32
#define z01 x03
#define z11 x13
#define z21 x23
#define z31 x33
/* read 1st two columns of matrix into registers */
x00 = src->matrix[0][0];
x01 = src->matrix[0][1];
x10 = src->matrix[1][0];
x11 = src->matrix[1][1];
x20 = src->matrix[2][0];
x21 = src->matrix[2][1];
x30 = src->matrix[3][0];
x31 = src->matrix[3][1];
/* compute all six 2x2 determinants of 1st two columns */
y01 = x00*x11 - x10*x01;
y02 = x00*x21 - x20*x01;
y03 = x00*x31 - x30*x01;
y12 = x10*x21 - x20*x11;
y13 = x10*x31 - x30*x11;
y23 = x20*x31 - x30*x21;
/* read 2nd two columns of matrix into registers */
x02 = src->matrix[0][2];
x03 = src->matrix[0][3];
x12 = src->matrix[1][2];
x13 = src->matrix[1][3];
x22 = src->matrix[2][2];
x23 = src->matrix[2][3];
x32 = src->matrix[3][2];
x33 = src->matrix[3][3];
/* compute all 3x3 cofactors for 2nd two columns */
z33 = x02*y12 - x12*y02 + x22*y01;
z23 = x12*y03 - x32*y01 - x02*y13;
z13 = x02*y23 - x22*y03 + x32*y02;
z03 = x22*y13 - x32*y12 - x12*y23;
z32 = x13*y02 - x23*y01 - x03*y12;
z22 = x03*y13 - x13*y03 + x33*y01;
z12 = x23*y03 - x33*y02 - x03*y23;
z02 = x13*y23 - x23*y13 + x33*y12;
/* compute all six 2x2 determinants of 2nd two columns */
y01 = x02*x13 - x12*x03;
y02 = x02*x23 - x22*x03;
y03 = x02*x33 - x32*x03;
y12 = x12*x23 - x22*x13;
y13 = x12*x33 - x32*x13;
y23 = x22*x33 - x32*x23;
/* read 1st two columns of matrix into registers */
x00 = src->matrix[0][0];
x01 = src->matrix[0][1];
x10 = src->matrix[1][0];
x11 = src->matrix[1][1];
x20 = src->matrix[2][0];
x21 = src->matrix[2][1];
x30 = src->matrix[3][0];
x31 = src->matrix[3][1];
/* compute all 3x3 cofactors for 1st column */
z30 = x11*y02 - x21*y01 - x01*y12;
z20 = x01*y13 - x11*y03 + x31*y01;
z10 = x21*y03 - x31*y02 - x01*y23;
z00 = x11*y23 - x21*y13 + x31*y12;
/* compute 4x4 determinant & its reciprocal */
rcp = x30*z30 + x20*z20 + x10*z10 + x00*z00;
if (rcp == (float)0)
return;
rcp = (float)1/rcp;
/* compute all 3x3 cofactors for 2nd column */
z31 = x00*y12 - x10*y02 + x20*y01;
z21 = x10*y03 - x30*y01 - x00*y13;
z11 = x00*y23 - x20*y03 + x30*y02;
z01 = x20*y13 - x30*y12 - x10*y23;
/* multiply all 3x3 cofactors by reciprocal */
inverse->matrix[0][0] = z00*rcp;
inverse->matrix[0][1] = z01*rcp;
inverse->matrix[1][0] = z10*rcp;
inverse->matrix[0][2] = z02*rcp;
inverse->matrix[2][0] = z20*rcp;
inverse->matrix[0][3] = z03*rcp;
inverse->matrix[3][0] = z30*rcp;
inverse->matrix[1][1] = z11*rcp;
inverse->matrix[1][2] = z12*rcp;
inverse->matrix[2][1] = z21*rcp;
inverse->matrix[1][3] = z13*rcp;
inverse->matrix[3][1] = z31*rcp;
inverse->matrix[2][2] = z22*rcp;
inverse->matrix[2][3] = z23*rcp;
inverse->matrix[3][2] = z32*rcp;
inverse->matrix[3][3] = z33*rcp;
if ((inverse->matrix[3][0] == __glZero) &&
(inverse->matrix[3][1] == __glZero) &&
(inverse->matrix[3][2] == __glZero)) {
if (((rcp <= ((float)1.0 + __GL_MATRIX_UNITY_SCALE_EPSILON)) &&
(rcp >= ((float)1.0 - __GL_MATRIX_UNITY_SCALE_EPSILON)))) {
inverse->nonScaling = GL_TRUE;
} else {
inverse->nonScaling = GL_FALSE;
}
} else {
inverse->nonScaling = GL_FALSE;
}
}
}
/*
* Find the 3x3 transpose of a matrix. This is used to calculate the light
* vector in object space for fast infinite lighting.
*/
void __glTranspose3x3(__GLmatrix *dst, __GLmatrix *src)
{
__GLfloat x00, x01, x02;
__GLfloat x10, x11, x12;
__GLfloat x20, x21, x22;
x00 = src->matrix[0][0];
x01 = src->matrix[0][1];
x02 = src->matrix[0][2];
x10 = src->matrix[1][0];
x11 = src->matrix[1][1];
x12 = src->matrix[1][2];
x20 = src->matrix[2][0];
x21 = src->matrix[2][1];
x22 = src->matrix[2][2];
dst->matrix[0][0] = x00;
dst->matrix[1][0] = x01;
dst->matrix[2][0] = x02;
dst->matrix[3][0] = __glZero;
dst->matrix[0][1] = x10;
dst->matrix[1][1] = x11;
dst->matrix[2][1] = x12;
dst->matrix[3][1] = __glZero;
dst->matrix[0][2] = x20;
dst->matrix[1][2] = x21;
dst->matrix[2][2] = x22;
dst->matrix[3][2] = __glZero;
dst->matrix[0][3] = __glZero;
dst->matrix[1][3] = __glZero;
dst->matrix[2][3] = __glZero;
dst->matrix[3][3] = __glOne;
}
#ifdef NT
/*
** Return the closest integer log based 2 of a number
*/
static GLubyte logTab[256] = { 0, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3,
4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7
};
GLint FASTCALL __glIntLog2(__GLfloat f)
{
GLuint i = (GLuint) FTOL(f);
if (i & 0xffff0000) {
if (i & 0xff000000) {
return ((GLint)logTab[i >> 24] + 24);
} else {
return ((GLint)logTab[i >> 16] + 16);
}
} else {
if (i & 0xff00) {
return ((GLint)logTab[i >> 8] + 8);
} else {
return ((GLint)logTab[i]);
}
}
}
#else
GLint __glIntLog2(__GLfloat f)
{
return (GLint)(__GL_LOGF(f) * __GL_M_LN2_INV);
}
#endif
GLfloat FASTCALL __glClampf(GLfloat fval, __GLfloat zero, __GLfloat one)
{
if (fval < zero) return zero;
else if (fval > one) return one;
else return fval;
}
/*
** r = vector from p1 to p2
*/
#ifndef __GL_ASM_VECSUB4
void FASTCALL __glVecSub4(__GLcoord *r,
const __GLcoord *p1, const __GLcoord *p2)
{
__GLfloat oneOverW;
if (p2->w == __glZero) {
if (p1->w == __glZero) {
r->x = p2->x - p1->x;
r->y = p2->y - p1->y;
r->z = p2->z - p1->z;
} else {
r->x = p2->x;
r->y = p2->y;
r->z = p2->z;
}
} else
if (p1->w == __glZero) {
r->x = -p1->x;
r->y = -p1->y;
r->z = -p1->z;
} else{
oneOverW = ((__GLfloat) 1.0) / p2->w;
r->x = p2->x * oneOverW;
r->y = p2->y * oneOverW;
r->z = p2->z * oneOverW;
oneOverW = ((__GLfloat) 1.0) / p1->w;
r->x -= p1->x * oneOverW;
r->y -= p1->y * oneOverW;
r->z -= p1->z * oneOverW;
}
}
#endif // !__GL_ASM_VECSUB4