Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1590 lines
39 KiB

// Dynamic Array APIs
#include "ctlspriv.h"
//
// Heapsort is a bit slower, but it doesn't use any stack or memory...
// Mergesort takes a bit of memory (O(n)) and stack (O(log(n)), but very fast...
//
#ifdef WIN32
#define MERGESORT
#else
#define USEHEAPSORT
#endif
#ifdef DEBUG
#define DSA_MAGIC ('S' | ('A' << 8))
#define IsDSA(pdsa) ((pdsa) && (pdsa)->magic == DSA_MAGIC)
#define DPA_MAGIC ('P' | ('A' << 8))
#define IsDPA(pdpa) ((pdpa) && (pdpa)->magic == DPA_MAGIC)
#else
#define IsDSA(pdsa)
#define IsDPA(pdsa)
#endif
typedef struct {
void FAR* FAR* pp;
PFNDPACOMPARE pfnCmp;
LPARAM lParam;
int cp;
#ifdef MERGESORT
void FAR* FAR* ppT;
#endif
} SORTPARAMS;
BOOL NEAR DPA_QuickSort(SORTPARAMS FAR* psp);
BOOL NEAR DPA_QuickSort2(int i, int j, SORTPARAMS FAR* psp);
BOOL NEAR DPA_HeapSort(SORTPARAMS FAR* psp);
void NEAR DPA_HeapSortPushDown(int first, int last, SORTPARAMS FAR* psp);
BOOL NEAR DPA_MergeSort(SORTPARAMS FAR* psp);
void NEAR DPA_MergeSort2(SORTPARAMS FAR* psp, int iFirst, int cItems);
//========== Dynamic structure array ====================================
// Dynamic structure array
typedef struct _DSA {
// NOTE: The following field MUST be defined at the beginning of the
// structure in order for GetItemCount() to work.
//
int cItem; // # of elements in dsa
void FAR* aItem; // memory for elements
int cItemAlloc; // # items which fit in aItem
int cbItem; // size of each item
int cItemGrow; // # items to grow cItemAlloc by
#ifdef DEBUG
UINT magic;
#endif
} DSA;
#define DSA_PITEM(pdsa, index) ((void FAR*)(((BYTE FAR*)(pdsa)->aItem) + ((index) * (pdsa)->cbItem)))
#ifdef DEBUG
#define BF_ONDAVALIDATE 0x00001000
void DABreakFn(void)
{
if (IsFlagSet(g_dwBreakFlags, BF_ONDAVALIDATE))
ASSERT(0);
}
#define DABreak() DABreakFn()
#else
#define DABreak()
#endif
HDSA WINAPI DSA_Create(int cbItem, int cItemGrow)
{
HDSA pdsa = Alloc(sizeof(DSA));
ASSERT(cbItem);
if (pdsa)
{
ASSERT(pdsa->cItem == 0);
ASSERT(pdsa->cItemAlloc == 0);
pdsa->cbItem = cbItem;
pdsa->cItemGrow = (cItemGrow == 0 ? 1 : cItemGrow);
ASSERT(pdsa->aItem == NULL);
#ifdef DEBUG
pdsa->magic = DSA_MAGIC;
#endif
}
return pdsa;
}
BOOL WINAPI DSA_Destroy(HDSA pdsa)
{
if (pdsa == NULL) // allow NULL for low memory cases
return TRUE;
// Components rely on not having to check for NULL
ASSERT(IsDSA(pdsa));
#ifdef DEBUG
pdsa->cItem = 0;
pdsa->cItemAlloc = 0;
pdsa->cbItem = 0;
pdsa->magic = 0;
#endif
if (pdsa->aItem && !Free(pdsa->aItem))
return FALSE;
return Free(pdsa);
}
void WINAPI DSA_EnumCallback(HDSA pdsa, PFNDSAENUMCALLBACK pfnCB, LPVOID pData)
{
int i;
if (!pdsa)
return;
ASSERT(IsDSA(pdsa));
for (i = 0; i < pdsa->cItem; i++) {
if (!pfnCB(DSA_GetItemPtr(pdsa, i), pData))
break;
}
}
void WINAPI DSA_DestroyCallback(HDSA pdsa, PFNDSAENUMCALLBACK pfnCB, LPVOID pData)
{
DSA_EnumCallback(pdsa, pfnCB, pData);
DSA_Destroy(pdsa);
}
BOOL WINAPI DSA_GetItem(HDSA pdsa, int index, void FAR* pitem)
{
ASSERT(IsDSA(pdsa));
ASSERT(pitem);
if (index < 0 || index >= pdsa->cItem)
{
#ifdef DEBUG
// Don't assert if index == pdsa->cItems as some clients simply want to walk the list and no need to call getcount...
if (index != pdsa->cItem)
{
DebugMsg(DM_ERROR, TEXT("DSA: GetItem: Invalid index: %d"), index);
DABreak();
}
#endif
return FALSE;
}
hmemcpy(pitem, DSA_PITEM(pdsa, index), pdsa->cbItem);
return TRUE;
}
void FAR* WINAPI DSA_GetItemPtr(HDSA pdsa, int index)
{
ASSERT(IsDSA(pdsa));
if (index < 0 || index >= pdsa->cItem)
{
DebugMsg(DM_ERROR, TEXT("DSA: GetItemPtr: Invalid index: %d"), index);
// DABreak(); // caller knows
return NULL;
}
return DSA_PITEM(pdsa, index);
}
BOOL WINAPI DSA_SetItem(HDSA pdsa, int index, void FAR* pitem)
{
ASSERT(pitem);
ASSERT(IsDSA(pdsa));
if (index < 0)
{
DebugMsg(DM_ERROR, TEXT("DSA: SetItem: Invalid index: %d"), index);
DABreak();
return FALSE;
}
if (index >= pdsa->cItem)
{
if (index + 1 > pdsa->cItemAlloc)
{
int cItemAlloc = (((index + 1) + pdsa->cItemGrow - 1) / pdsa->cItemGrow) * pdsa->cItemGrow;
void FAR* aItemNew = ReAlloc(pdsa->aItem, cItemAlloc * pdsa->cbItem);
if (!aItemNew)
return FALSE;
pdsa->aItem = aItemNew;
pdsa->cItemAlloc = cItemAlloc;
}
pdsa->cItem = index + 1;
}
hmemcpy(DSA_PITEM(pdsa, index), pitem, pdsa->cbItem);
return TRUE;
}
int WINAPI DSA_InsertItem(HDSA pdsa, int index, void FAR* pitem)
{
ASSERT(pitem);
ASSERT(IsDSA(pdsa));
if (index < 0)
{
DebugMsg(DM_ERROR, TEXT("DSA: InsertItem: Invalid index: %d"), index);
DABreak();
return -1;
}
if (index > pdsa->cItem)
index = pdsa->cItem;
if (pdsa->cItem + 1 > pdsa->cItemAlloc)
{
void FAR* aItemNew = ReAlloc(pdsa->aItem,
(pdsa->cItemAlloc + pdsa->cItemGrow) * pdsa->cbItem);
if (!aItemNew)
return -1;
pdsa->aItem = aItemNew;
pdsa->cItemAlloc += pdsa->cItemGrow;
}
if (index < pdsa->cItem)
{
hmemcpy(DSA_PITEM(pdsa, index + 1), DSA_PITEM(pdsa, index),
(pdsa->cItem - index) * pdsa->cbItem);
}
pdsa->cItem++;
hmemcpy(DSA_PITEM(pdsa, index), pitem, pdsa->cbItem);
return index;
}
BOOL WINAPI DSA_DeleteItem(HDSA pdsa, int index)
{
ASSERT(IsDSA(pdsa));
if (index < 0 || index >= pdsa->cItem)
{
DebugMsg(DM_ERROR, TEXT("DSA: DeleteItem: Invalid index: %d"), index);
DABreak();
return FALSE;
}
if (index < pdsa->cItem - 1)
{
hmemcpy(DSA_PITEM(pdsa, index), DSA_PITEM(pdsa, index + 1),
(pdsa->cItem - (index + 1)) * pdsa->cbItem);
}
pdsa->cItem--;
if (pdsa->cItemAlloc - pdsa->cItem > pdsa->cItemGrow)
{
void FAR* aItemNew = ReAlloc(pdsa->aItem,
(pdsa->cItemAlloc - pdsa->cItemGrow) * pdsa->cbItem);
if (aItemNew)
pdsa->aItem = aItemNew;
else
{
// If the shrink fails, then just continue with the old (slightly
// too big) allocation. Go ahead and let cItemAlloc decrease
// so we don't keep trying to realloc smaller
}
pdsa->cItemAlloc -= pdsa->cItemGrow;
}
return TRUE;
}
BOOL WINAPI DSA_DeleteAllItems(HDSA pdsa)
{
ASSERT(IsDSA(pdsa));
if (pdsa->aItem && !Free(pdsa->aItem))
return FALSE;
pdsa->aItem = NULL;
pdsa->cItem = pdsa->cItemAlloc = 0;
return TRUE;
}
//================== Dynamic pointer array implementation ===========
typedef struct _DPA {
// NOTE: The following two fields MUST be defined in this order, at
// the beginning of the structure in order for the macro APIs to work.
//
int cp;
void FAR* FAR* pp;
HANDLE hheap; // Heap to allocate from if NULL use shared
int cpAlloc;
int cpGrow;
#ifdef DEBUG
UINT magic;
#endif
} DPA;
HDPA WINAPI DPA_Create(int cpGrow)
{
return DPA_CreateEx(cpGrow, NULL);
}
// Should nuke the standard DPA above...
HDPA WINAPI DPA_CreateEx(int cpGrow, HANDLE hheap)
{
HDPA pdpa;
if (hheap == NULL)
{
#ifdef WIN32
#ifdef WINNT
hheap = GetProcessHeap();
#else
hheap = GetSharedHeapHandle();
#endif
#endif
pdpa = ALLOC_NULLHEAP(hheap, sizeof(DPA));
}
else
pdpa = ControlAlloc(hheap, sizeof(DPA));
if (pdpa)
{
ASSERT(pdpa->cp == 0);
ASSERT(pdpa->cpAlloc == 0);
pdpa->cpGrow = (cpGrow < 8 ? 8 : cpGrow);
ASSERT(pdpa->pp == NULL);
pdpa->hheap = hheap;
#ifdef DEBUG
pdpa->magic = DPA_MAGIC;
#endif
}
return pdpa;
}
BOOL WINAPI DPA_Destroy(HDPA pdpa)
{
if (pdpa == NULL) // allow NULL for low memory cases, still assert
return TRUE;
ASSERT(IsDPA(pdpa));
#ifndef UNIX
ASSERT(pdpa->hheap);
#endif
#ifdef DEBUG
pdpa->cp = 0;
pdpa->cpAlloc = 0;
pdpa->magic = 0;
#endif
if (pdpa->pp && !ControlFree(pdpa->hheap, pdpa->pp))
return FALSE;
return ControlFree(pdpa->hheap, pdpa);
}
HDPA WINAPI DPA_Clone(HDPA pdpa, HDPA pdpaNew)
{
BOOL fAlloc = FALSE;
if (!pdpaNew)
{
pdpaNew = DPA_CreateEx(pdpa->cpGrow, pdpa->hheap);
if (!pdpaNew)
return NULL;
fAlloc = TRUE;
}
if (!DPA_Grow(pdpaNew, pdpa->cpAlloc)) {
if (!fAlloc)
DPA_Destroy(pdpaNew);
return NULL;
}
pdpaNew->cp = pdpa->cp;
hmemcpy(pdpaNew->pp, pdpa->pp, pdpa->cp * sizeof(void FAR*));
return pdpaNew;
}
void FAR* WINAPI DPA_GetPtr(HDPA pdpa, INT_PTR index)
{
ASSERT(IsDPA(pdpa));
if (!pdpa || index < 0 || index >= pdpa->cp)
return NULL;
return pdpa->pp[index];
}
int WINAPI DPA_GetPtrIndex(HDPA pdpa, void FAR* p)
{
void FAR* FAR* pp;
void FAR* FAR* ppMax;
ASSERT(IsDPA(pdpa));
if (pdpa && pdpa->pp)
{
pp = pdpa->pp;
ppMax = pp + pdpa->cp;
for ( ; pp < ppMax; pp++)
{
if (*pp == p)
return (int) (pp - pdpa->pp);
}
}
return -1;
}
BOOL WINAPI DPA_Grow(HDPA pdpa, int cpAlloc)
{
ASSERT(IsDPA(pdpa));
if (!pdpa)
return FALSE;
if (cpAlloc > pdpa->cpAlloc)
{
void FAR* FAR* ppNew;
cpAlloc = ((cpAlloc + pdpa->cpGrow - 1) / pdpa->cpGrow) * pdpa->cpGrow;
if (pdpa->pp)
ppNew = (void FAR* FAR*)ControlReAlloc(pdpa->hheap, pdpa->pp, cpAlloc * sizeof(void FAR*));
else
ppNew = (void FAR* FAR*)ControlAlloc(pdpa->hheap, cpAlloc * sizeof(void FAR*));
if (!ppNew)
return FALSE;
pdpa->pp = ppNew;
pdpa->cpAlloc = cpAlloc;
//
// Grow more agressively as we get bigger, up to a maximum of
// 512 at a time. Note, we'll only hit our outer bound growth
// at a time limit once we've already got that many items in the
// DPA anyway...
//
if (pdpa->cpGrow < 256)
{
pdpa->cpGrow = pdpa->cpGrow << 1;
}
}
return TRUE;
}
BOOL WINAPI DPA_SetPtr(HDPA pdpa, int index, void FAR* p)
{
ASSERT(IsDPA(pdpa));
if (!pdpa)
return FALSE;
if (index < 0)
{
DebugMsg(DM_ERROR, TEXT("DPA: SetPtr: Invalid index: %d"), index);
DABreak();
return FALSE;
}
if (index >= pdpa->cp)
{
if (!DPA_Grow(pdpa, index + 1))
return FALSE;
// If we grew by more than one, must zero-init all the stuff in the middle
ZeroMemory(pdpa->pp + pdpa->cp, sizeof(LPVOID) * (index - pdpa->cp));
pdpa->cp = index + 1;
}
pdpa->pp[index] = p;
return TRUE;
}
int WINAPI DPA_InsertPtr(HDPA pdpa, int index, void FAR* p)
{
ASSERT(IsDPA(pdpa));
if (!pdpa)
return -1;
if (index < 0)
{
DebugMsg(DM_ERROR, TEXT("DPA: InsertPtr: Invalid index: %d"), index);
DABreak();
return -1;
}
if (index > pdpa->cp)
index = pdpa->cp;
// Make sure we have room for one more item
//
if (pdpa->cp + 1 > pdpa->cpAlloc)
{
if (!DPA_Grow(pdpa, pdpa->cp + 1))
return -1;
}
// If we are inserting, we need to slide everybody up
//
if (index < pdpa->cp)
{
hmemcpy(&pdpa->pp[index + 1], &pdpa->pp[index],
(pdpa->cp - index) * sizeof(void FAR*));
}
pdpa->pp[index] = p;
pdpa->cp++;
return index;
}
void FAR* WINAPI DPA_DeletePtr(HDPA pdpa, int index)
{
void FAR* p;
ASSERT(IsDPA(pdpa));
if (!pdpa)
return FALSE;
if (index < 0 || index >= pdpa->cp)
{
DebugMsg(DM_ERROR, TEXT("DPA: DeltePtr: Invalid index: %d"), index);
DABreak();
return NULL;
}
p = pdpa->pp[index];
if (index < pdpa->cp - 1)
{
hmemcpy(&pdpa->pp[index], &pdpa->pp[index + 1],
(pdpa->cp - (index + 1)) * sizeof(void FAR*));
}
pdpa->cp--;
if (pdpa->cpAlloc - pdpa->cp > pdpa->cpGrow)
{
void FAR* FAR* ppNew;
ppNew = ControlReAlloc(pdpa->hheap, pdpa->pp, (pdpa->cpAlloc - pdpa->cpGrow) * sizeof(void FAR*));
if (ppNew)
pdpa->pp = ppNew;
else
{
// If the shrink fails, then just continue with the old (slightly
// too big) allocation. Go ahead and let cpAlloc decrease
// so we don't keep trying to realloc smaller
}
pdpa->cpAlloc -= pdpa->cpGrow;
}
return p;
}
BOOL WINAPI DPA_DeleteAllPtrs(HDPA pdpa)
{
if (!pdpa)
return FALSE;
ASSERT(IsDPA(pdpa));
if (pdpa->pp && !ControlFree(pdpa->hheap, pdpa->pp))
return FALSE;
pdpa->pp = NULL;
pdpa->cp = pdpa->cpAlloc = 0;
return TRUE;
}
void WINAPI DPA_EnumCallback(HDPA pdpa, PFNDPAENUMCALLBACK pfnCB, LPVOID pData)
{
int i;
if (!pdpa)
return;
ASSERT(IsDPA(pdpa));
for (i = 0; i < pdpa->cp; i++) {
if (!pfnCB(DPA_FastGetPtr(pdpa, i), pData))
break;
}
}
void WINAPI DPA_DestroyCallback(HDPA pdpa, PFNDPAENUMCALLBACK pfnCB, LPVOID pData)
{
DPA_EnumCallback(pdpa, pfnCB, pData);
DPA_Destroy(pdpa);
}
typedef struct _DPASTREAMHEADER
{
DWORD cbSize; // Size of entire stream
DWORD dwVersion; // For versioning
int celem;
} DPASTREAMHEADER;
#define DPASTREAM_VERSION 1
/*----------------------------------------------------------
Purpose: Saves the DPA to a stream by writing out a header,
and then calling the given callback to write each
element.
The callback can end the write early by returning
something other than S_OK. Returning an error will
cancel the entire write. Returning S_FALSE will
stop the write.
Returns: S_OK or S_FALSE for success.
S_FALSE only if callback stops early
errors
*/
HRESULT
WINAPI
DPA_SaveStream(
IN HDPA pdpa,
IN PFNDPASTREAM pfn,
IN IStream * pstm,
IN LPVOID pvInstData)
{
HRESULT hres = E_INVALIDARG;
if (IS_VALID_HANDLE(pdpa, DPA) &&
IS_VALID_CODE_PTR(pstm, IStream *) &&
IS_VALID_CODE_PTR(pfn, PFNDPASTREAM))
{
DPASTREAMHEADER header;
LARGE_INTEGER dlibMove = { 0 };
ULARGE_INTEGER ulPosBegin;
// Get the current seek position, so we can update the header
// once we know how much we've written
hres = pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_CUR, &ulPosBegin);
if (SUCCEEDED(hres))
{
// Write the header (we will update some of this once we're
// finished)
header.cbSize = 0;
header.dwVersion = DPASTREAM_VERSION;
header.celem = 0;
// First write out the header
hres = pstm->lpVtbl->Write(pstm, &header, sizeof(header), NULL);
if (SUCCEEDED(hres))
{
DPASTREAMINFO info;
int cel = DPA_GetPtrCount(pdpa);
LPVOID * ppv = DPA_GetPtrPtr(pdpa);
// This keeps the count of what is actually written
info.iPos = 0;
// Write each element
for (; 0 < cel; cel--, ppv++)
{
info.pvItem = *ppv;
hres = pfn(&info, pstm, pvInstData);
// Returning S_FALSE from callback means it didn't
// write anything for this element, so don't increment
// the iPos (which refers to the count written).
if (S_OK == hres)
info.iPos++;
else if (FAILED(hres))
{
hres = S_FALSE;
break;
}
}
if (FAILED(hres))
{
// Reposition pointer to beginning
dlibMove.LowPart = ulPosBegin.LowPart;
dlibMove.HighPart = ulPosBegin.HighPart;
pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_SET, NULL);
}
else
{
ULARGE_INTEGER ulPosEnd;
// Calculate how much was written
hres = pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_CUR,
&ulPosEnd);
if (SUCCEEDED(hres))
{
// We only save the low part
ASSERT(ulPosEnd.HighPart == ulPosBegin.HighPart);
// Update the header
header.celem = info.iPos;
header.cbSize = ulPosEnd.LowPart - ulPosBegin.LowPart;
dlibMove.LowPart = ulPosBegin.LowPart;
dlibMove.HighPart = ulPosBegin.HighPart;
pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_SET, NULL);
pstm->lpVtbl->Write(pstm, &header, sizeof(header), NULL);
// Reposition pointer
dlibMove.LowPart = ulPosEnd.LowPart;
dlibMove.HighPart = ulPosEnd.HighPart;
pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_SET, NULL);
}
}
}
}
}
return hres;
}
/*----------------------------------------------------------
Purpose: Loads the DPA from a stream by calling the given callback
to read each element.
The callback can end the read early by returning
something other than S_OK.
Returns: S_OK on success
S_FALSE if the callback aborted early or the stream ended
abruptly. DPA is partially filled.
error on anything else
*/
HRESULT
WINAPI
DPA_LoadStream(
OUT HDPA * ppdpa,
IN PFNDPASTREAM pfn,
IN IStream * pstm,
IN LPVOID pvInstData)
{
HRESULT hres = E_INVALIDARG;
if (IS_VALID_WRITE_PTR(ppdpa, HDPA) &&
IS_VALID_CODE_PTR(pstm, IStream *) &&
IS_VALID_CODE_PTR(pfn, PFNDPASTREAM))
{
DPASTREAMHEADER header;
LARGE_INTEGER dlibMove = { 0 };
ULARGE_INTEGER ulPosBegin;
ULONG cbRead;
*ppdpa = NULL;
// Get the current seek position so we can position pointer
// correctly upon error.
hres = pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_CUR, &ulPosBegin);
if (SUCCEEDED(hres))
{
// Read the header
hres = pstm->lpVtbl->Read(pstm, &header, sizeof(header), &cbRead);
if (SUCCEEDED(hres))
{
if (sizeof(header) > cbRead ||
sizeof(header) > header.cbSize ||
DPASTREAM_VERSION != header.dwVersion)
{
hres = E_FAIL;
}
else
{
// Create the list
HDPA pdpa = DPA_Create(header.celem);
if ( !pdpa || !DPA_Grow(pdpa, header.celem))
hres = E_OUTOFMEMORY;
else
{
// Read each element
DPASTREAMINFO info;
LPVOID * ppv = DPA_GetPtrPtr(pdpa);
for (info.iPos = 0; info.iPos < header.celem; )
{
info.pvItem = NULL;
hres = pfn(&info, pstm, pvInstData);
// Returning S_FALSE from the callback means
// it skipped this stream element.
// Don't increment iPos (which refers to the
// count read).
if (S_OK == hres)
{
*ppv = info.pvItem;
info.iPos++;
ppv++;
}
else if (FAILED(hres))
{
hres = S_FALSE;
break;
}
}
pdpa->cp = info.iPos;
*ppdpa = pdpa;
}
}
// Reposition pointer if we failed
if (S_OK != hres)
{
if (S_FALSE == hres)
{
// Position pointer to the end
dlibMove.LowPart = ulPosBegin.LowPart + header.cbSize;
}
else
{
// Position pointer to beginning
dlibMove.LowPart = ulPosBegin.LowPart;
}
dlibMove.HighPart = ulPosBegin.HighPart;
pstm->lpVtbl->Seek(pstm, dlibMove, STREAM_SEEK_SET, NULL);
}
}
}
ASSERT(SUCCEEDED(hres) && *ppdpa ||
FAILED(hres) && NULL == *ppdpa);
}
return hres;
}
/*----------------------------------------------------------
Purpose: Merge two DPAs. This takes two arrays and merges the
source array into the destination.
Merge options:
DPAM_SORTED The arrays are already sorted; don't sort
DPAM_UNION The resulting array is the union of all elements
in both arrays.
DPAM_INTERSECT Only elements in the source array that intersect
with the dest array are merged.
DPAM_NORMAL Like DPAM_INTERSECT except the dest array
also maintains its original, additional elements.
Returns: S_OK for success.
errors if merge fails
Cond: --
*/
BOOL
WINAPI
DPA_Merge(
IN HDPA pdpaDest,
IN HDPA pdpaSrc,
IN DWORD dwFlags,
IN PFNDPACOMPARE pfnCompare,
IN PFNDPAMERGE pfnMerge,
IN LPARAM lParam)
{
BOOL bRet = FALSE;
if (IS_VALID_HANDLE(pdpaSrc, DPA) &&
IS_VALID_HANDLE(pdpaDest, DPA) &&
IS_VALID_CODE_PTR(pfnCompare, PFNDPACOMPARE) &&
IS_VALID_CODE_PTR(pfnMerge, PFNDPAMERGE))
{
int iSrc;
int iDest;
int nCmp;
LPVOID * ppvSrc;
LPVOID * ppvDest;
bRet = TRUE;
// Are the arrays already sorted?
if ( !(dwFlags & DPAM_SORTED) )
{
// No; sort them
DPA_Sort(pdpaSrc, pfnCompare, lParam);
DPA_Sort(pdpaDest, pfnCompare, lParam);
}
// This merges in-place. The size of the resulting DPA
// depends on the options:
//
// DPAM_NORMAL Same size as the dest DPA before
// the merge.
//
// DPAM_UNION Min size is the larger of the two.
// Max size is the sum of the two.
//
// DPAM_INTERSECT Min size is zero.
// Max size is the smaller of the two.
//
// We iterate backwards to minimize the amount of moves we
// incur by calling DPA_DeletePtr.
//
iSrc = pdpaSrc->cp - 1;
iDest = pdpaDest->cp - 1;
ppvSrc = &DPA_FastGetPtr(pdpaSrc, iSrc);
ppvDest = &DPA_FastGetPtr(pdpaDest, iDest);
while (0 <= iSrc && 0 <= iDest)
{
LPVOID pv;
nCmp = pfnCompare(*ppvDest, *ppvSrc, lParam);
if (0 == nCmp)
{
// Elements match; merge them.
pv = pfnMerge(DPAMM_MERGE, *ppvDest, *ppvSrc, lParam);
if (NULL == pv)
{
bRet = FALSE;
break;
}
*ppvDest = pv;
iSrc--;
ppvSrc--;
iDest--;
ppvDest--;
}
else if (0 < nCmp)
{
// pvSrc < pvDest. The source array doesn't have pvDest.
if (dwFlags & DPAM_INTERSECT)
{
// Delete pvDest
pfnMerge(DPAMM_DELETE, DPA_DeletePtr(pdpaDest, iDest), NULL, lParam);
}
else
{
; // Keep it (do nothing)
}
// Move onto the next element in the dest array
iDest--;
ppvDest--;
}
else
{
// pvSrc > pvDest. The dest array doesn't have pvSrc.
if (dwFlags & DPAM_UNION)
{
// Add pvSrc
pv = pfnMerge(DPAMM_INSERT, *ppvSrc, NULL, lParam);
if (NULL == pv)
{
bRet = FALSE;
break;
}
DPA_InsertPtr(pdpaDest, iDest+1, pv);
// DPA_InsertPtr may end up reallocating the pointer array
// thus making ppvDest invalid
ppvDest = &DPA_FastGetPtr(pdpaDest, iDest);
}
else
{
; // Skip it (do nothing)
}
// Move onto the next element in the source array
iSrc--;
ppvSrc--;
}
}
// there are some items left in src
if ((dwFlags & DPAM_UNION) && 0 <= iSrc)
{
for (; 0 <= iSrc; iSrc--, ppvSrc--)
{
LPVOID pv = pfnMerge(DPAMM_INSERT, *ppvSrc, NULL, lParam);
if (NULL == pv)
{
bRet = FALSE;
break;
}
DPA_InsertPtr(pdpaDest, 0, pv);
}
}
}
return bRet;
}
BOOL WINAPI DPA_Sort(HDPA pdpa, PFNDPACOMPARE pfnCmp, LPARAM lParam)
{
SORTPARAMS sp;
sp.cp = pdpa->cp;
sp.pp = pdpa->pp;
sp.pfnCmp = pfnCmp;
sp.lParam = lParam;
#ifdef USEQUICKSORT
return DPA_QuickSort(&sp);
#endif
#ifdef USEHEAPSORT
return DPA_HeapSort(&sp);
#endif
#ifdef MERGESORT
return DPA_MergeSort(&sp);
#endif
}
#ifdef USEQUICKSORT
BOOL NEAR DPA_QuickSort(SORTPARAMS FAR* psp)
{
return DPA_QuickSort2(0, psp->cp - 1, psp);
}
BOOL NEAR DPA_QuickSort2(int i, int j, SORTPARAMS FAR* psp)
{
void FAR* FAR* pp = psp->pp;
LPARAM lParam = psp->lParam;
PFNDPACOMPARE pfnCmp = psp->pfnCmp;
int iPivot;
void FAR* pFirst;
int k;
int result;
iPivot = -1;
pFirst = pp[i];
for (k = i + 1; k <= j; k++)
{
result = (*pfnCmp)(pp[k], pFirst, lParam);
if (result > 0)
{
iPivot = k;
break;
}
else if (result < 0)
{
iPivot = i;
break;
}
}
if (iPivot != -1)
{
int l = i;
int r = j;
void FAR* pivot = pp[iPivot];
do
{
void FAR* p;
p = pp[l];
pp[l] = pp[r];
pp[r] = p;
while ((*pfnCmp)(pp[l], pivot, lParam) < 0)
l++;
while ((*pfnCmp)(pp[r], pivot, lParam) >= 0)
r--;
} while (l <= r);
if (l - 1 > i)
DPA_QuickSort2(i, l - 1, psp);
if (j > l)
DPA_QuickSort2(l, j, psp);
}
return TRUE;
}
#endif // USEQUICKSORT
#ifdef USEHEAPSORT
void NEAR DPA_HeapSortPushDown(int first, int last, SORTPARAMS FAR* psp)
{
void FAR* FAR* pp = psp->pp;
LPARAM lParam = psp->lParam;
PFNDPACOMPARE pfnCmp = psp->pfnCmp;
int r;
int r2;
void FAR* p;
r = first;
while (r <= last / 2)
{
int wRTo2R;
r2 = r * 2;
wRTo2R = (*pfnCmp)(pp[r-1], pp[r2-1], lParam);
if (r2 == last)
{
if (wRTo2R < 0)
{
p = pp[r-1]; pp[r-1] = pp[r2-1]; pp[r2-1] = p;
}
break;
}
else
{
int wR2toR21 = (*pfnCmp)(pp[r2-1], pp[r2+1-1], lParam);
if (wRTo2R < 0 && wR2toR21 >= 0)
{
p = pp[r-1]; pp[r-1] = pp[r2-1]; pp[r2-1] = p;
r = r2;
}
else if ((*pfnCmp)(pp[r-1], pp[r2+1-1], lParam) < 0 && wR2toR21 < 0)
{
p = pp[r-1]; pp[r-1] = pp[r2+1-1]; pp[r2+1-1] = p;
r = r2 + 1;
}
else
{
break;
}
}
}
}
BOOL NEAR DPA_HeapSort(SORTPARAMS FAR* psp)
{
void FAR* FAR* pp = psp->pp;
int c = psp->cp;
int i;
for (i = c / 2; i >= 1; i--)
DPA_HeapSortPushDown(i, c, psp);
for (i = c; i >= 2; i--)
{
void FAR* p = pp[0]; pp[0] = pp[i-1]; pp[i-1] = p;
DPA_HeapSortPushDown(1, i - 1, psp);
}
return TRUE;
}
#endif // USEHEAPSORT
#if defined(MERGESORT) && defined(WIN32)
#define SortCompare(psp, pp1, i1, pp2, i2) \
(psp->pfnCmp(pp1[i1], pp2[i2], psp->lParam))
//
// This function merges two sorted lists and makes one sorted list.
// psp->pp[iFirst, iFirst+cItes/2-1], psp->pp[iFirst+cItems/2, iFirst+cItems-1]
//
void NEAR DPA_MergeThem(SORTPARAMS FAR* psp, int iFirst, int cItems)
{
//
// Notes:
// This function is separated from DPA_MergeSort2() to avoid comsuming
// stack variables. Never inline this.
//
int cHalf = cItems/2;
int iIn1, iIn2, iOut;
LPVOID * ppvSrc = &psp->pp[iFirst];
// Copy the first part to temp storage so we can write directly into
// the final buffer. Note that this takes at most psp->cp/2 DWORD's
hmemcpy(psp->ppT, ppvSrc, cHalf*sizeof(LPVOID));
for (iIn1=0, iIn2=cHalf, iOut=0;;)
{
if (SortCompare(psp, psp->ppT, iIn1, ppvSrc, iIn2) <= 0) {
ppvSrc[iOut++] = psp->ppT[iIn1++];
if (iIn1==cHalf) {
// We used up the first half; the rest of the second half
// should already be in place
break;
}
} else {
ppvSrc[iOut++] = ppvSrc[iIn2++];
if (iIn2==cItems) {
// We used up the second half; copy the rest of the first half
// into place
hmemcpy(&ppvSrc[iOut], &psp->ppT[iIn1], (cItems-iOut)*sizeof(LPVOID));
break;
}
}
}
}
//
// This function sorts a give list (psp->pp[iFirst,iFirst-cItems-1]).
//
void NEAR DPA_MergeSort2(SORTPARAMS FAR* psp, int iFirst, int cItems)
{
//
// Notes:
// This function is recursively called. Therefore, we should minimize
// the number of local variables and parameters. At this point, we
// use one local variable and three parameters.
//
int cHalf;
switch(cItems)
{
case 1:
return;
case 2:
// Swap them, if they are out of order.
if (SortCompare(psp, psp->pp, iFirst, psp->pp, iFirst+1) > 0)
{
psp->ppT[0] = psp->pp[iFirst];
psp->pp[iFirst] = psp->pp[iFirst+1];
psp->pp[iFirst+1] = psp->ppT[0];
}
break;
default:
cHalf = cItems/2;
// Sort each half
DPA_MergeSort2(psp, iFirst, cHalf);
DPA_MergeSort2(psp, iFirst+cHalf, cItems-cHalf);
// Then, merge them.
DPA_MergeThem(psp, iFirst, cItems);
break;
}
}
BOOL NEAR DPA_MergeSort(SORTPARAMS FAR* psp)
{
if (psp->cp==0)
return TRUE;
// Note that we divide by 2 below; we want to round down
psp->ppT = LocalAlloc(LPTR, psp->cp/2 * sizeof(LPVOID));
if (!psp->ppT)
return FALSE;
DPA_MergeSort2(psp, 0, psp->cp);
LocalFree(psp->ppT);
return TRUE;
}
#endif // MERGESORT
// Search function
//
int WINAPI DPA_Search(HDPA pdpa, void FAR* pFind, int iStart,
PFNDPACOMPARE pfnCompare, LPARAM lParam, UINT options)
{
int cp = DPA_GetPtrCount(pdpa);
ASSERT(pfnCompare);
ASSERT(0 <= iStart);
// Only allow these wierd flags if the list is sorted
ASSERT((options & DPAS_SORTED) || !(options & (DPAS_INSERTBEFORE | DPAS_INSERTAFTER)));
if (!(options & DPAS_SORTED))
{
// Not sorted: do linear search.
int i;
for (i = iStart; i < cp; i++)
{
if (0 == pfnCompare(pFind, DPA_FastGetPtr(pdpa, i), lParam))
return i;
}
return -1;
}
else
{
// Search the array using binary search. If several adjacent
// elements match the target element, the index of the first
// matching element is returned.
int iRet = -1; // assume no match
BOOL bFound = FALSE;
int nCmp = 0;
int iLow = 0; // Don't bother using iStart for binary search
int iMid = 0;
int iHigh = cp - 1;
// (OK for cp == 0)
while (iLow <= iHigh)
{
iMid = (iLow + iHigh) / 2;
nCmp = pfnCompare(pFind, DPA_FastGetPtr(pdpa, iMid), lParam);
if (0 > nCmp)
iHigh = iMid - 1; // First is smaller
else if (0 < nCmp)
iLow = iMid + 1; // First is larger
else
{
// Match; search back for first match
bFound = TRUE;
while (0 < iMid)
{
if (0 != pfnCompare(pFind, DPA_FastGetPtr(pdpa, iMid-1), lParam))
break;
else
iMid--;
}
break;
}
}
if (bFound)
{
ASSERT(0 <= iMid);
iRet = iMid;
}
// Did the search fail AND
// is one of the strange search flags set?
if (!bFound && (options & (DPAS_INSERTAFTER | DPAS_INSERTBEFORE)))
{
// Yes; return the index where the target should be inserted
// if not found
if (0 < nCmp) // First is larger
iRet = iLow;
else
iRet = iMid;
// (We don't distinguish between the two flags anymore)
}
else if ( !(options & (DPAS_INSERTAFTER | DPAS_INSERTBEFORE)) )
{
// Sanity check with linear search
ASSERT(DPA_Search(pdpa, pFind, iStart, pfnCompare, lParam, options & ~DPAS_SORTED) == iRet);
}
return iRet;
}
}
//===========================================================================
//
// String ptr management routines
//
// Copy as much of *psz to *pszBuf as will fit
//
// Warning: this same code is duplicated below.
//
int WINAPI Str_GetPtr(LPCTSTR pszCurrent, LPTSTR pszBuf, int cchBuf)
{
int cchToCopy;
if (!pszCurrent)
{
ASSERT(FALSE);
if (cchBuf > 0)
*pszBuf = TEXT('\0');
return 0;
}
cchToCopy = lstrlen(pszCurrent);
// if pszBuf is NULL, or they passed cchBuf = 0, return the needed buff size
if (!pszBuf || !cchBuf)
return cchToCopy + 1;
if (cchToCopy >= cchBuf)
cchToCopy = cchBuf - 1;
hmemcpy(pszBuf, pszCurrent, cchToCopy * SIZEOF(TCHAR));
pszBuf[cchToCopy] = TEXT('\0');
return cchToCopy + 1;
}
#ifdef DEBUG
//
// Str_GetPtr0 is just like Str_GetPtr except that it doesn't assert if
// pszCurrent = NULL.
//
int WINAPI Str_GetPtr0(LPCTSTR pszCurrent, LPTSTR pszBuf, int cchBuf)
{
return Str_GetPtr(pszCurrent ? pszCurrent : c_szNULL, pszBuf, cchBuf);
}
#endif
#ifdef UNICODE
//
// If we are build Unicode, then this is the ANSI version
// of the above function.
//
int WINAPI Str_GetPtrA(LPCSTR pszCurrent, LPSTR pszBuf, int cchBuf)
{
int cchToCopy;
if (!pszCurrent)
{
ASSERT(FALSE);
if (cchBuf > 0)
*pszBuf = '\0';
return 0;
}
cchToCopy = lstrlenA(pszCurrent);
// if pszBuf is NULL, or they passed cchBuf = 0, return the needed buff size
if (!pszBuf || !cchBuf)
return cchToCopy + 1;
if (cchToCopy >= cchBuf)
cchToCopy = cchBuf - 1;
// BUGBUG: Must call TruncateString, as we may be in the middle of DBCS char
hmemcpy(pszBuf, pszCurrent, cchToCopy * SIZEOF(CHAR));
pszBuf[cchToCopy] = TEXT('\0');
return cchToCopy + 1;
}
#else
//
// Unicode stub if this code is built ANSI
//
int WINAPI Str_GetPtrW(LPCWSTR psz, LPWSTR pszBuf, int cchBuf)
{
SetLastErrorEx(ERROR_CALL_NOT_IMPLEMENTED, SLE_WARNING);
return -1;
}
#endif
#ifdef WIN32
//
// This function is not exported.
//
BOOL Str_Set(LPTSTR *ppsz, LPCTSTR psz)
{
if (!psz || (psz == LPSTR_TEXTCALLBACK))
{
if (*ppsz)
{
if (*ppsz != (LPSTR_TEXTCALLBACK))
LocalFree(*ppsz);
}
*ppsz = (LPTSTR)psz;
}
else
{
LPTSTR pszNew = *ppsz;
UINT cbSize = (lstrlen(psz) + 1) * sizeof(TCHAR);
if (pszNew == LPSTR_TEXTCALLBACK)
pszNew = NULL;
pszNew = CCLocalReAlloc(pszNew, cbSize);
if (!pszNew)
return FALSE;
lstrcpy(pszNew, psz);
*ppsz = pszNew;
}
return TRUE;
}
#endif
// Set *ppszCurrent to a copy of pszNew, and free the previous value, if necessary
//
// WARNING: This same code is duplicated below
//
BOOL WINAPI Str_SetPtr(LPTSTR * ppszCurrent, LPCTSTR pszNew)
{
int cchLength;
LPTSTR pszOld;
LPTSTR pszNewCopy = NULL;
if (pszNew)
{
cchLength = lstrlen(pszNew);
// alloc a new buffer w/ room for the null terminator
pszNewCopy = (LPTSTR) Alloc((cchLength + 1) * SIZEOF(TCHAR));
if (!pszNewCopy)
return FALSE;
lstrcpyn(pszNewCopy, pszNew, cchLength + 1);
}
pszOld = InterlockedExchangePointer((LPVOID *)ppszCurrent, pszNewCopy);
if (pszOld)
Free(pszOld);
return TRUE;
}
#ifdef UNICODE
//
// ANSI stub when built Unicode.
//
BOOL WINAPI Str_SetPtrA(LPSTR * ppszCurrent, LPCSTR pszNew)
{
int cchLength;
LPSTR pszOld;
LPSTR pszNewCopy = NULL;
if (pszNew)
{
cchLength = lstrlenA(pszNew);
// alloc a new buffer w/ room for the null terminator
pszNewCopy = (LPSTR) Alloc((cchLength + 1) * SIZEOF(CHAR));
if (!pszNewCopy)
return FALSE;
lstrcpynA(pszNewCopy, pszNew, cchLength + 1);
}
pszOld = InterlockedExchangePointer((LPVOID *)ppszCurrent, pszNewCopy);
if (pszOld)
Free(pszOld);
return TRUE;
}
#else
// Unicode stub if this is built ANSI
BOOL WINAPI Str_SetPtrW(LPWSTR *ppwzCurrent, LPCWSTR pszNew)
{
int cchLength;
LPWSTR pwzOld;
LPWSTR pwzNewCopy = NULL;
if (pszNew)
{
cchLength = lstrlenW(pszNew); // Yes this is implemented on Win95.
// alloc a new buffer w/ room for the null terminator
pwzNewCopy = (LPWSTR) Alloc((cchLength + 1) * SIZEOF(WCHAR));
if (!pwzNewCopy)
return FALSE;
// lstrcpynW is thunked in unicwrap.cpp for Win95 machines.
StrCpyNW(pwzNewCopy, pszNew, cchLength + 1);
}
pwzOld = InterlockedExchangePointer((LPVOID *)ppwzCurrent, pwzNewCopy);
if (pwzOld)
Free(pwzOld);
return TRUE;
}
#endif