Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

337 lines
12 KiB

//#pragma title( "PwGen.cpp - PasswordGenerate implementation" )
/*
Copyright (c) 1995-1998, Mission Critical Software, Inc. All rights reserved.
===============================================================================
Module - PwGen.cpp
System - EnterpriseAdministrator
Author - Steven Bailey, Marcus Erickson
Created - 1997-05-30
Description - PasswordGenerate implementation
Updates -
===============================================================================
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <WinCrypt.h>
#include "Common.hpp"
#include "Err.hpp"
#include "UString.hpp"
#include "pwgen.hpp"
int iRand(int iMin, int iMax);
void __stdcall GenerateRandom(DWORD dwCount, BYTE* pbRandomType, BYTE* pbRandomChar);
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Generate a password from the rules provided.
// Returns ERROR_SUCCESS if successful, else ERROR_INVALID_PARAMETER.
// If successful, the new password is returned in the supplied buffer.
// The buffer must be long enough to hold the minimum length password
// that is required by the rules, plus a terminating NULL.
DWORD __stdcall // ret-EA/OS return code
EaPasswordGenerate(
DWORD dwMinUC, // in -minimum upper case chars
DWORD dwMinLC, // in -minimum lower case chars
DWORD dwMinDigits, // in -minimum numeric digits
DWORD dwMinSpecial, // in -minimum special chars
DWORD dwMaxConsecutiveAlpha,// in -maximum consecutive alpha chars
DWORD dwMinLength, // in -minimum length
WCHAR * newPassword, // out-returned password
DWORD dwBufferLength // in -returned area buffer length
)
{
DWORD dwMaxLength = PWGEN_MAX_LENGTH;
DWORD dwNewLength; // actual length of new password
DWORD dwUC = dwMinUC; // actual numbers of these characters
DWORD dwLC = dwMinLC;
DWORD dwDigits = dwMinDigits;
DWORD dwSpecial = dwMinSpecial;
DWORD dwActualLength = dwUC + dwLC + dwDigits + dwSpecial; // total length specified by the minima
TCHAR pszNewPassword[PWGEN_MAX_LENGTH+1]; // out-returned password
BYTE bRandomType[PWGEN_MAX_LENGTH]; // cryptographically generated random bytes for type
BYTE bRandomChar[PWGEN_MAX_LENGTH]; // cryptographically generated random bytes for character
const TCHAR *szSourceString[4] = { // the lists of characters by type
{ TEXT("ABDEFGHJKLMNQRTY") },
{ TEXT("abcdefghkmnpqrstuvwxyz") },
{ TEXT("23456789") },
{ TEXT("~!@#$%^+=") }
};
DWORD dwToPlace[4]; // number of characters of a type to place
int iType[4]; // type of each character class
int iTypes; // total number of types
enum { // types of chars
eUC = 0,
eLC,
eDigit,
eSpecial
};
// Sanity checking
// Does the minimum passed to us exceed the maximum?
if (dwMinLength > dwMaxLength)
return ERROR_INVALID_PARAMETER;
// Adjust the minimum length
dwMinLength = max(dwMinLength, dwMinUC + dwMinLC + dwMinDigits + dwMinSpecial);
dwMinLength = max(dwMinLength, PWGEN_MIN_LENGTH);
// Do the minimum requirements make the password too long?
if ((dwMinUC + dwMinLC + dwMinDigits + dwMinSpecial) > dwMaxLength)
return ERROR_INVALID_PARAMETER;
// Adjust maximum length to size of buffer.
dwMaxLength = min(dwMaxLength, dwBufferLength - 1);
// Do the min LC and UC characters make it impossible to satisfy the maximum consecutive alpha characters?
if (dwMaxConsecutiveAlpha) {
if (dwMaxLength - dwMaxLength / (dwMaxConsecutiveAlpha + 1) < (dwMinUC + dwMinLC))
return ERROR_INVALID_PARAMETER;
}
// Adjust the minimum length to accomodate the rules about max consecutive alphas.
if (dwMaxConsecutiveAlpha) {
DWORD dwTotalAlpha = dwUC + dwLC;
if (dwTotalAlpha) {
DWORD dwMinGroups = dwTotalAlpha / dwMaxConsecutiveAlpha; // we need at least this minus one separators
if (dwTotalAlpha % dwMaxConsecutiveAlpha)
++dwMinGroups;
dwMinLength = max(dwMinLength, dwTotalAlpha + dwMinGroups - 1);
}
}
// Check confirmed min length against maximum length.
if (dwMinLength > dwMaxLength)
return ERROR_INVALID_PARAMETER;
// Seed the random-number generator with current time so that
// the numbers will be different every time we run.
#ifndef _DEBUG
// Note for debugging: If this is run in a tight loop, the tick count
// won't be incrementing between calls, so the same password will generate
// repeatedly. That doesn't help you test anything.
srand( (int)GetTickCount() );
#endif
// Determine the actual length of new password.
dwNewLength = dwMinLength;
// Adjust max consecutive alpha
if (dwMaxConsecutiveAlpha == 0)
dwMaxConsecutiveAlpha = dwNewLength;
// Determine the actual numbers of each type of character.
if (dwActualLength < dwNewLength) {
// Try to pad with alphabetic characters.
// Determine the maximum number of alpha characters that could be added.
int iAddAlpha = (int)(dwNewLength - dwNewLength / (dwMaxConsecutiveAlpha + 1) - (dwUC + dwLC));
// It cannot exceed the number of characters we need.
if ((DWORD)iAddAlpha > (dwNewLength - dwActualLength))
iAddAlpha = (int)(dwNewLength - dwActualLength);
dwLC += (DWORD)iAddAlpha;
dwActualLength += (DWORD)iAddAlpha;
}
// Make certain there are enough groups.
if (dwActualLength < dwNewLength)
// The padding is separators.
dwDigits += dwNewLength - dwActualLength;
// Prepare to generate the characters.
dwToPlace[0] = dwUC;
dwToPlace[1] = dwLC;
dwToPlace[2] = dwDigits;
dwToPlace[3] = dwSpecial;
iType[0] = eUC;
iType[1] = eLC;
iType[2] = eDigit;
iType[3] = eSpecial;
iTypes = 4;
for (int iPos = 0; iPos < iTypes; ) {
if (!dwToPlace[iPos]) {
for (int iNextPos = iPos + 1; iNextPos < iTypes; ++iNextPos) {
dwToPlace[iNextPos - 1] = dwToPlace[iNextPos];
iType[iNextPos - 1] = iType[iNextPos];
}
--iTypes;
}
else
++iPos;
}
// Result: dwToPlace[0..iTypes - 1] contain all non-zero values;
// iType[0..iTypes - 1] contain the type of character they represent.
// generate cryptographically random bytes
// for choosing both the character type and character
GenerateRandom(dwNewLength, bRandomType, bRandomChar);
// Generate a string.
DWORD dwConsecAlpha = 0;
int iRemainingAlpha = (int)(dwUC + dwLC);
int iTypeList[PWGEN_MAX_LENGTH]; // A distributed list of types.
for (int iNewChar = 0; (DWORD)iNewChar < dwNewLength; ++iNewChar) {
// Determine whether the next char must be alpha or must not be alpha.
BOOL bMustBeAlpha = FALSE;
BOOL bMustNotBeAlpha = dwConsecAlpha == dwMaxConsecutiveAlpha;
// If it can be alpha, determine whether it HAS to be alpha.
if (!bMustNotBeAlpha) {
// If, among the remaining chars after this one, it would be impossible to
// fit the remaining alpha chars due to constraints of dwMaxConsecutiveAlpha,
// then this character must be alpha.
// Determine the minimum number of groups if we put remaining alpha chars
// into groups that are the maximum width.
int iMinGroups = iRemainingAlpha / (int)dwMaxConsecutiveAlpha;
if (iRemainingAlpha % (int)dwMaxConsecutiveAlpha)
++iMinGroups;
// Determine the minimum number of non-alpha characters we'll need.
int iMinNonAlpha = iMinGroups - 1;
// Determine the characters remaining.
int iRemaining = (int)dwNewLength - iNewChar;
// Is there room for a non-alpha char here?
if (iRemaining <= (iRemainingAlpha + iMinNonAlpha))
// no.
bMustBeAlpha = TRUE;
}
// Determine the type range.
int iMinType = 0;
int iMaxType = iTypes - 1;
// If next char must be alpha, then alpha chars remain.
// Type position 0 contains either UC or LC.
// Type position 1 contains LC, non-alpha, or nothing.
if (bMustBeAlpha) {
if ((iType[1] == eLC) && (iTypes > 1))
iMaxType = 1;
else
iMaxType = 0;
}
// If next char may not be alpha, there may be no alpha left to generate.
// If so, type position 0 is non-alpha.
// O.w., type positions 0 and 1 may both be alpha.
else if (bMustNotBeAlpha) {
if (iRemainingAlpha) {
if (iType[1] >= eDigit)
iMinType = 1;
else
iMinType = 2;
}
}
// Get the type to generate.
int iTypePosition;
int iTypeToGenerate;
const TCHAR *pszSourceString;
if (iMinType == iMaxType) // There's only one type. Use it.
iTypePosition = iMinType;
else {
// This algorithm distributes the chances for various types.
// If there are 13 LCs to place and one special, there's a
// 13/14 chance of placing an LC and a 1/14 chance of placing a
// special, due to this algorithm.
int iNextTypePosition = 0;
for (int i = iMinType; i <= iMaxType; ++i) {
for (int j = 0; j < (int)dwToPlace[i]; ++j) {
iTypeList[iNextTypePosition++] = i;
}
}
iTypePosition = iTypeList[bRandomType[iNewChar] % iNextTypePosition];
}
iTypeToGenerate = iType[iTypePosition];
pszSourceString = szSourceString[iTypeToGenerate];
// Generate the next character.
pszNewPassword[iNewChar] = pszSourceString[bRandomChar[iNewChar] % UStrLen(pszSourceString)];
// Keep track of those alphas.
if (iTypeToGenerate < eDigit) {
++dwConsecAlpha;
--iRemainingAlpha;
}
else
dwConsecAlpha = 0;
// Update the types to generate.
if (!--dwToPlace[iTypePosition]) {
for (int iNextTypePosition = iTypePosition + 1; iNextTypePosition < iTypes; ++iNextTypePosition) {
dwToPlace[iNextTypePosition - 1] = dwToPlace[iNextTypePosition];
iType[iNextTypePosition - 1] = iType[iNextTypePosition];
}
--iTypes;
}
}
pszNewPassword[dwNewLength] = '\0';
UStrCpy( newPassword, pszNewPassword );
return ERROR_SUCCESS;
} /* PasswordGenerate() */
/////////////////////////////////////////////////////////////////////////////////////////////////////////
// Return a random number in the range [iMin..iMax].
// Tries to be fair by discarding values of rand() that give an advantage
// to low results.
int iRand(int iMin, int iMax)
{
int iSize = iMax - iMin + 1;
int iMaxRand = (int)((((long)RAND_MAX + 1L) / (long)iSize) * (long)iSize);
int i;
if (iMaxRand > 0)
do {
i = rand();
} while (i > iMaxRand);
else
i = rand();
return (i % iSize) + iMin;
}
// GenerateRandom
//
// Fills buffers with cryptographically random bytes.
void __stdcall GenerateRandom(DWORD dwCount, BYTE* pbRandomType, BYTE* pbRandomChar)
{
bool bGenerated = false;
HCRYPTPROV hProv = NULL;
if (CryptAcquireContext(&hProv, NULL, NULL, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))
{
if (CryptGenRandom(hProv, dwCount, pbRandomType) && CryptGenRandom(hProv, dwCount, pbRandomChar))
{
bGenerated = true;
}
CryptReleaseContext(hProv, 0);
}
// if cryptographic generation fails, fallback to random number generator
if (!bGenerated)
{
for (DWORD dwIndex = 0; dwIndex < dwCount; dwIndex++)
{
pbRandomType[dwIndex] = (BYTE)iRand(0, 255);
pbRandomChar[dwIndex] = (BYTE)iRand(0, 255);
}
}
}