Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1187 lines
31 KiB

/* Copyright (C) Boris Nikolaus, Germany, 1996-1997. All rights reserved. */
/* Copyright (C) Microsoft Corporation, 1997-1998. All rights reserved. */
#include "precomp.h"
// THE FOLLOWING IS FROM BERENCOD.C
/* get the expected length based on the table */
ASN1uint32_t _BERGetLength(ASN1uint32_t val, const ASN1uint32_t Tbl[], ASN1uint32_t cItems)
{
ASN1uint32_t i;
for (i = 0; i < cItems; i++)
{
if (val < Tbl[i])
return i+1;
}
return cItems+1;
}
static const ASN1uint32_t c_TagTable[] = { 31, 0x80, 0x4000, 0x200000, 0x10000000 };
/* encode a tag */
int ASN1BEREncTag(ASN1encoding_t enc, ASN1uint32_t tag)
{
ASN1uint32_t tagclass, tagvalue, cbTagLength;
tagclass = (tag >> 24) & 0xe0;
tagvalue = tag & 0x1fffffff;
cbTagLength = _BERGetLength(tagvalue, c_TagTable, ARRAY_SIZE(c_TagTable));
if (ASN1BEREncCheck(enc, cbTagLength))
{
if (cbTagLength == 1)
{
*enc->pos++ = (ASN1octet_t)(tagclass | tagvalue);
}
else
{
*enc->pos++ = (ASN1octet_t)(tagclass | 0x1f);
switch (cbTagLength)
{
case 6:
*enc->pos++ = (ASN1octet_t)((tagvalue >> 28) | 0x80);
// lonchanc: intentionally fall through
case 5:
*enc->pos++ = (ASN1octet_t)((tagvalue >> 21) | 0x80);
// lonchanc: intentionally fall through
case 4:
*enc->pos++ = (ASN1octet_t)((tagvalue >> 14) | 0x80);
// lonchanc: intentionally fall through
case 3:
*enc->pos++ = (ASN1octet_t)((tagvalue >> 7) | 0x80);
// lonchanc: intentionally fall through
case 2:
*enc->pos++ = (ASN1octet_t)(tagvalue & 0x7f);
break;
}
}
return 1;
}
return 0;
}
/* put the length value */
void _BERPutLength(ASN1encoding_t enc, ASN1uint32_t len, ASN1uint32_t cbLength)
{
if (cbLength > 1)
{
*enc->pos++ = (ASN1octet_t) (0x7f + cbLength); // 0x80 + cbLength - 1;
}
switch (cbLength)
{
case 5:
*enc->pos++ = (ASN1octet_t)(len >> 24);
// lonchanc: intentionally fall through
case 4:
*enc->pos++ = (ASN1octet_t)(len >> 16);
// lonchanc: intentionally fall through
case 3:
*enc->pos++ = (ASN1octet_t)(len >> 8);
// lonchanc: intentionally fall through
default: // case 2: case 1:
*enc->pos++ = (ASN1octet_t)len;
break;
}
}
static const ASN1uint32_t c_LengthTable[] = { 0x80, 0x100, 0x10000, 0x1000000 };
/* encode length */
int ASN1BEREncLength(ASN1encoding_t enc, ASN1uint32_t len)
{
ASN1uint32_t cbLength = _BERGetLength(len, c_LengthTable, ARRAY_SIZE(c_LengthTable));
if (ASN1BEREncCheck(enc, cbLength + len))
{
_BERPutLength(enc, len, cbLength);
return 1;
}
return 0;
}
/* encode an octet string value */
int ASN1BEREncOctetString(ASN1encoding_t enc, ASN1uint32_t tag, ASN1uint32_t len, ASN1octet_t *val)
{
/* encode tag */
if (ASN1BEREncTag(enc, tag))
{
/* encode length */
if (ASN1BEREncLength(enc, len))
{
/* copy value */
CopyMemory(enc->pos, val, len);
enc->pos += len;
return 1;
}
}
return 0;
}
/* encode a boolean value */
int ASN1BEREncBool(ASN1encoding_t enc, ASN1uint32_t tag, ASN1bool_t val)
{
if (ASN1BEREncTag(enc, tag))
{
if (ASN1BEREncLength(enc, 1))
{
*enc->pos++ = val ? 0xFF : 0;
return 1;
}
}
return 0;
}
static const c_U32LengthTable[] = { 0x80, 0x8000, 0x800000, 0x80000000 };
/* encode a unsigned integer value */
int ASN1BEREncU32(ASN1encoding_t enc, ASN1uint32_t tag, ASN1uint32_t val)
{
EncAssert(enc, tag != 0x01);
if (ASN1BEREncTag(enc, tag))
{
ASN1uint32_t cbLength;
cbLength = _BERGetLength(val, c_U32LengthTable, ARRAY_SIZE(c_U32LengthTable));
if (ASN1BEREncLength(enc, cbLength))
{
switch (cbLength)
{
case 5:
*enc->pos++ = 0;
// lonchanc: intentionally fall through
case 4:
*enc->pos++ = (ASN1octet_t)(val >> 24);
// lonchanc: intentionally fall through
case 3:
*enc->pos++ = (ASN1octet_t)(val >> 16);
// lonchanc: intentionally fall through
case 2:
*enc->pos++ = (ASN1octet_t)(val >> 8);
// lonchanc: intentionally fall through
case 1:
*enc->pos++ = (ASN1octet_t)(val);
break;
}
return 1;
}
}
return 0;
}
// THE FOLLOWING IS FROM BERDECOD.C
/* check if len octets are left in decoding stream */
int ASN1BERDecCheck(ASN1decoding_t dec, ASN1uint32_t len)
{
if (dec->pos + len <= dec->buf + dec->size)
{
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_EOD);
return 0;
}
int _BERDecPeekCheck(ASN1decoding_t dec, ASN1uint32_t len)
{
return ((dec->pos + len <= dec->buf + dec->size) ? 1 : 0);
}
/* start decoding of a constructed value */
int _BERDecConstructed(ASN1decoding_t dec, ASN1uint32_t len, ASN1uint32_t infinite, ASN1decoding_t *dd, ASN1octet_t **ppBufEnd)
{
// safety net
DecAssert(dec, NULL != dd);
*dd = dec;
#if 0 // NO_NESTED_DECODING
// lonchanc: this does not work because open type can be the last component and
// the open type decoder needs to peek a tag. as a result, we may peek the tag
// outside the buffer boundary.
if (ppBufEnd && (! infinite))
{
*ppBufEnd = dec->pos + len;
return 1;
}
#endif
/* initialize a new decoding stream as child of running decoding stream */
if (ASN1_CreateDecoder(dec->module, dd,
dec->pos, infinite ? dec->size - (ASN1uint32_t) (dec->pos - dec->buf) : len, dec) >= 0)
{
/* set pointer to end of decoding stream if definite length case selected */
*ppBufEnd = infinite ? NULL : (*dd)->buf + (*dd)->size;
return 1;
}
return 0;
}
/* decode a tag value; return constructed bit if desired */
int ASN1BERDecTag(ASN1decoding_t dec, ASN1uint32_t tag, ASN1uint32_t *constructed)
{
ASN1uint32_t tagvalue, tagclass, c;
/* get tag class and value */
if (ASN1BERDecCheck(dec, 1))
{
tagclass = *dec->pos & 0xe0;
tagvalue = *dec->pos++ & 0x1f;
if (tagvalue == 0x1f)
{
tagvalue = 0;
do {
if (ASN1BERDecCheck(dec, 1))
{
c = *dec->pos++;
if (! (tagvalue & 0xe0000000))
{
tagvalue = (tagvalue << 7) | (c & 0x7f);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_BADTAG);
return 0;
}
}
else
{
return 0;
}
} while (c & 0x80);
}
/* extract constructed bit if wanted */
if (constructed)
{
*constructed = tagclass & 0x20;
tagclass &= ~0x20;
}
/* check if tag equals desires */
if (tag == ((tagclass << 24) | tagvalue))
{
return 1;
}
ASN1DecSetError(dec, ASN1_ERR_BADTAG);
}
return 0;
}
/* decode length */
int ASN1BERDecLength(ASN1decoding_t dec, ASN1uint32_t *len, ASN1uint32_t *infinite)
{
// default is definite length
if (infinite)
{
*infinite = 0;
}
/* get length and infinite flag */
if (ASN1BERDecCheck(dec, 1))
{
ASN1uint32_t l = *dec->pos++;
if (l < 0x80)
{
*len = l;
}
else
if (l == 0x80)
{
*len = 0;
if (infinite)
{
*infinite = 1;
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
else
if (l <= 0x84)
{
ASN1uint32_t i = l - 0x80;
if (ASN1BERDecCheck(dec, i))
{
l = 0;
switch (i)
{
case 4:
l = *dec->pos++ << 24;
/*FALLTHROUGH*/
case 3:
l |= *dec->pos++ << 16;
/*FALLTHROUGH*/
case 2:
l |= *dec->pos++ << 8;
/*FALLTHROUGH*/
case 1:
l |= *dec->pos++;
break;
}
*len = l;
}
else
{
return 0;
}
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
/* check if enough octets left if length is known */
if (!infinite || !*infinite)
{
return ASN1BERDecCheck(dec, *len);
}
return 1;
}
return 0;
}
/* decode an explicit tag */
int ASN1BERDecExplicitTag(ASN1decoding_t dec, ASN1uint32_t tag, ASN1decoding_t *dd, ASN1octet_t **ppBufEnd)
{
ASN1uint32_t len, infinite, constructed;
// safety net
if (dd)
{
*dd = dec;
}
/* skip the constructed tag */
if (ASN1BERDecTag(dec, tag | 0x20000000, NULL))
{
/* get the length */
if (ASN1BERDecLength(dec, &len, &infinite))
{
/* start decoding of constructed value */
if (! dd)
{
*ppBufEnd = infinite ? NULL : dec->pos + len;
return 1;
}
return _BERDecConstructed(dec, len, infinite, dd, ppBufEnd);
}
}
return 0;
}
/* decode octet string value */
int _BERDecOctetString(ASN1decoding_t dec, ASN1uint32_t tag, ASN1octetstring_t *val, ASN1uint32_t fNoCopy)
{
ASN1INTERNdecoding_t d = (ASN1INTERNdecoding_t)dec;
ASN1uint32_t constructed, len, infinite;
ASN1decoding_t dd;
ASN1octet_t *di;
if (ASN1BERDecTag(dec, tag, &constructed))
{
if (ASN1BERDecLength(dec, &len, &infinite))
{
if (! constructed)
{
val->length = len;
if (fNoCopy)
{
val->value = dec->pos;
dec->pos += len;
return 1;
}
else
{
if (len)
{
val->value = (ASN1octet_t *)DecMemAlloc(dec, len);
if (val->value)
{
CopyMemory(val->value, dec->pos, len);
dec->pos += len;
return 1;
}
}
else
{
val->value = NULL;
return 1;
}
}
}
else
{
ASN1octetstring_t o;
val->length = 0;
val->value = NULL;
if (_BERDecConstructed(dec, len, infinite, &dd, &di))
{
while (ASN1BERDecNotEndOfContents(dd, di))
{
o.length = 0;
o.value = NULL;
if (_BERDecOctetString(dd, 0x4, &o, fNoCopy))
{
if (o.length)
{
if (fNoCopy)
{
*val = o;
break; // break out the loop because nocopy cannot have multiple constructed streams
}
/* resize value */
val->value = (ASN1octet_t *)DecMemReAlloc(dd, val->value,
val->length + o.length);
if (val->value)
{
/* concat octet strings */
CopyMemory(val->value + val->length, o.value, o.length);
val->length += o.length;
/* free unused octet string */
DecMemFree(dec, o.value);
}
else
{
return 0;
}
}
}
}
return ASN1BERDecEndOfContents(dec, dd, di);
}
}
}
}
return 0;
}
/* decode octet string value, making copy */
int ASN1BERDecOctetString(ASN1decoding_t dec, ASN1uint32_t tag, ASN1octetstring_t *val)
{
return _BERDecOctetString(dec, tag, val, FALSE);
}
/* decode octet string value, no copy */
int ASN1BERDecOctetString2(ASN1decoding_t dec, ASN1uint32_t tag, ASN1octetstring_t *val)
{
return _BERDecOctetString(dec, tag, val, TRUE);
}
/* peek the following tag without advancing the read position */
int ASN1BERDecPeekTag(ASN1decoding_t dec, ASN1uint32_t *tag)
{
ASN1uint32_t tagvalue, tagclass, c;
ASN1octet_t *p;
*tag = 0; // invalid tag
if (_BERDecPeekCheck(dec, 1))
{
p = dec->pos;
/* get tagclass without primitive/constructed bit */
tagclass = *dec->pos & 0xc0;
/* get tag value */
tagvalue = *dec->pos++ & 0x1f;
if (tagvalue == 0x1f)
{
tagvalue = 0;
do {
if (_BERDecPeekCheck(dec, 1))
{
c = *dec->pos++;
if (! (tagvalue & 0xe0000000))
{
tagvalue = (tagvalue << 7) | (c & 0x7f);
}
else
{
ASN1DecSetError(dec, ASN1_ERR_BADTAG);
return 0;
}
}
else
{
return 0;
}
} while (c & 0x80);
}
/* return tag */
*tag = ((tagclass << 24) | tagvalue);
/* reset decoding position */
dec->pos = p;
return 1;
}
return 0;
}
/* decode boolean into ASN1boot_t */
int ASN1BERDecBool(ASN1decoding_t dec, ASN1uint32_t tag, ASN1bool_t *val)
{
/* skip tag */
if (ASN1BERDecTag(dec, tag, NULL))
{
/* get length */
ASN1uint32_t len;
if (ASN1BERDecLength(dec, &len, NULL))
{
if (len >= 1)
{
DecAssert(dec, len == 1);
*val = *dec->pos ? 1 : 0;
dec->pos += len; // self defensive
return 1;
}
}
}
return 0;
}
/* decode integer into unsigned 32 bit value */
int ASN1BERDecU32Val(ASN1decoding_t dec, ASN1uint32_t tag, ASN1uint32_t *val)
{
ASN1uint32_t len;
/* skip tag */
if (ASN1BERDecTag(dec, tag, NULL))
{
/* get length */
if (ASN1BERDecLength(dec, &len, NULL))
{
/* get value */
if (len >= 1)
{
switch (len)
{
case 1:
*val = *dec->pos++;
break;
case 2:
*val = (*dec->pos << 8) | dec->pos[1];
dec->pos += 2;
break;
case 3:
*val = (*dec->pos << 16) | (dec->pos[1] << 8) | dec->pos[2];
dec->pos += 3;
break;
case 4:
*val = (*dec->pos << 24) | (dec->pos[1] << 16) |
(dec->pos[2] << 8) | dec->pos[3];
dec->pos += 4;
break;
case 5:
if (! *dec->pos)
{
*val = (dec->pos[1] << 24) | (dec->pos[2] << 16) |
(dec->pos[3] << 8) | dec->pos[4];
dec->pos += 5;
break;
}
// intentionally fall through
default:
ASN1DecSetError(dec, ASN1_ERR_LARGE);
return 0;
}
return 1;
}
else
{
ASN1DecSetError(dec, ASN1_ERR_CORRUPT);
return 0;
}
}
}
return 0;
}
int ASN1BERDecEndOfContents(ASN1decoding_t dec, ASN1decoding_t dd, ASN1octet_t *pBufEnd)
{
ASN1error_e err = ASN1_ERR_CORRUPT;
if (! dd)
{
dd = dec;
}
DecAssert(dec, NULL != dd);
if (pBufEnd)
{
/* end of definite length case: */
/* check if decoded up to end of contents */
if (dd->pos == pBufEnd)
{
dec->pos = pBufEnd;
err = ASN1_SUCCESS;
}
}
else
{
/* end of infinite length case: */
/* expect end-of-contents octets */
if (ASN1BERDecCheck(dd, 2))
{
if (0 == dd->pos[0] && 0 == dd->pos[1])
{
dd->pos += 2;
if (dd != dec)
{
/* finit child decoding stream and update parent decoding stream */
dec->pos = dd->pos;
}
err = ASN1_SUCCESS;
}
}
else
{
err = ASN1_ERR_EOD;
}
}
if (dd && dd != dec)
{
ASN1_CloseDecoder(dd);
}
if (ASN1_SUCCESS == err)
{
return 1;
}
ASN1DecSetError(dec, err);
return 0;
}
/* check if end of contents (of a constructed value) has been reached */
int ASN1BERDecNotEndOfContents(ASN1decoding_t dec, ASN1octet_t *pBufEnd)
{
return (pBufEnd ?
(dec->pos < pBufEnd) :
(ASN1BERDecCheck(dec, 2) && (dec->pos[0] || dec->pos[1])));
}
#ifdef ENABLE_BER
typedef struct
{
ASN1octet_t *pBuf;
ASN1uint32_t cbBufSize;
}
CER_BLK_BUF;
typedef struct
{
ASN1blocktype_e eBlkType;
ASN1encoding_t encPrimary;
ASN1encoding_t encSecondary;
ASN1uint32_t nMaxBlkSize;
ASN1uint32_t nCurrBlkSize;
CER_BLK_BUF *aBlkBuf;
}
CER_BLOCK;
#define MAX_INIT_BLK_SIZE 16
int ASN1CEREncBeginBlk(ASN1encoding_t enc, ASN1blocktype_e eBlkType, void **ppBlk_)
{
CER_BLOCK *pBlk = (CER_BLOCK *) EncMemAlloc(enc, sizeof(CER_BLOCK));
if (NULL != pBlk)
{
EncAssert(enc, ASN1_DER_SET_OF_BLOCK == eBlkType);
pBlk->eBlkType = eBlkType;
pBlk->encPrimary = enc;
pBlk->encSecondary = NULL;
pBlk->nMaxBlkSize = MAX_INIT_BLK_SIZE;
pBlk->nCurrBlkSize = 0;
pBlk->aBlkBuf = (CER_BLK_BUF *)EncMemAlloc(enc, MAX_INIT_BLK_SIZE * sizeof(CER_BLK_BUF));
if (NULL != pBlk->aBlkBuf)
{
*ppBlk_ = (void *) pBlk;
return 1;
}
EncMemFree(enc, pBlk);
}
return 0;
}
int ASN1CEREncNewBlkElement(void *pBlk_, ASN1encoding_t *enc2)
{
CER_BLOCK *pBlk = (CER_BLOCK *) pBlk_;
if (NULL == pBlk->encSecondary)
{
if (ASN1_SUCCESS == ASN1_CreateEncoder(pBlk->encPrimary->module,
&(pBlk->encSecondary),
NULL, 0, pBlk->encPrimary))
{
pBlk->encSecondary->eRule = pBlk->encPrimary->eRule;
*enc2 = pBlk->encSecondary;
return 1;
}
}
else
{
ASN1INTERNencoding_t e = (ASN1INTERNencoding_t) (*enc2 = pBlk->encSecondary);
ZeroMemory(e, sizeof(*e));
e->info.magic = MAGIC_ENCODER;
// e->info.err = ASN1_SUCCESS;
// e->info.pos = e->info.buf = NULL;
// e->info.size = e->info.len = e->info.bit = 0;
// e->info.dwFlags = 0;
e->info.module = pBlk->encPrimary->module;
e->info.eRule = pBlk->encPrimary->eRule;
((ASN1INTERNencoding_t) pBlk->encPrimary)->child = e;
e->parent = (ASN1INTERNencoding_t) pBlk->encPrimary;
// e->child = NULL;
// e->mem = NULL;
// e->memlength = 0;
// e->memsize = 0;
// e->epi = NULL;
// e->epilength = 0;
// e->episize = 0;
// e->csi = NULL;
// e->csilength = 0;
// e->csisize = 0;
if (ASN1BEREncCheck((ASN1encoding_t) e, 1))
{
// lonchanc: make sure the first byte is zeroed out, which
// is required for h245.
e->info.buf[0] = '\0';
return 1;
}
}
*enc2 = NULL;
return 0;
}
int ASN1CEREncFlushBlkElement(void *pBlk_)
{
CER_BLOCK *pBlk = (CER_BLOCK *) pBlk_;
ASN1encoding_t enc = pBlk->encSecondary;
ASN1uint32_t i;
if (ASN1BEREncFlush(enc))
{
// make sure we have enough space...
if (pBlk->nCurrBlkSize >= pBlk->nMaxBlkSize)
{
CER_BLK_BUF *aBlkBuf = (CER_BLK_BUF *)EncMemAlloc(pBlk->encPrimary, (pBlk->nMaxBlkSize << 1) * sizeof(CER_BLK_BUF));
if (NULL != aBlkBuf)
{
CopyMemory(aBlkBuf, pBlk->aBlkBuf, pBlk->nMaxBlkSize * sizeof(CER_BLK_BUF));
EncMemFree(pBlk->encPrimary, pBlk->aBlkBuf);
pBlk->aBlkBuf = aBlkBuf;
pBlk->nMaxBlkSize <<= 1;
}
else
{
return 0;
}
}
if (pBlk->encPrimary->eRule & (ASN1_BER_RULE_DER | ASN1_BER_RULE_CER))
{
// we need to sort these octet strings
for (i = 0; i < pBlk->nCurrBlkSize; i++)
{
if (0 >= My_memcmp(enc->buf, enc->len, pBlk->aBlkBuf[i].pBuf, pBlk->aBlkBuf[i].cbBufSize))
{
ASN1uint32_t cnt = pBlk->nCurrBlkSize - i;
ASN1uint32_t j;
for (j = pBlk->nCurrBlkSize; cnt--; j--)
{
pBlk->aBlkBuf[j] = pBlk->aBlkBuf[j-1];
}
// i is the place to hold the new one
break;
}
}
}
else
{
EncAssert(enc, ASN1_BER_RULE_BER == pBlk->encPrimary->eRule);
i = pBlk->nCurrBlkSize;
}
// remeber the new one.
pBlk->aBlkBuf[i].pBuf = enc->buf;
pBlk->aBlkBuf[i].cbBufSize = enc->len;
pBlk->nCurrBlkSize++;
// clean up the encoder structure
enc->buf = enc->pos = NULL;
enc->size = enc->len = 0;
return 1;
}
return 0;
}
int ASN1CEREncEndBlk(void *pBlk_)
{
CER_BLOCK *pBlk = (CER_BLOCK *) pBlk_;
ASN1encoding_t enc = pBlk->encPrimary;
ASN1uint32_t cbTotalSize = 0;
ASN1uint32_t i;
int fRet = 0;
// calculate the total size for all the buffers.
for (i = 0; i < pBlk->nCurrBlkSize; i++)
{
cbTotalSize += pBlk->aBlkBuf[i].cbBufSize;
}
if (ASN1BEREncCheck(enc, cbTotalSize))
{
for (i = 0; i < pBlk->nCurrBlkSize; i++)
{
ASN1uint32_t cbBufSize = pBlk->aBlkBuf[i].cbBufSize;
CopyMemory(enc->pos, pBlk->aBlkBuf[i].pBuf, cbBufSize);
enc->pos += cbBufSize;
}
fRet = 1;
}
// free these block buffers.
for (i = 0; i < pBlk->nCurrBlkSize; i++)
{
EncMemFree(enc, pBlk->aBlkBuf[i].pBuf);
}
// free the block buffer array
EncMemFree(enc, pBlk->aBlkBuf);
// free the secondary encoder structure
ASN1_CloseEncoder(pBlk->encSecondary);
// free the block structure itself.
EncMemFree(enc, pBlk);
return fRet;
}
#endif // ENABLE_BER
/* encode explicit tag */
int ASN1BEREncExplicitTag(ASN1encoding_t enc, ASN1uint32_t tag, ASN1uint32_t *pnLenOff)
{
/* encode tag */
if (ASN1BEREncTag(enc, tag | 0x20000000))
{
/* encode infinite length */
if (ASN1BEREncCheck(enc, 1))
{
if (ASN1_BER_RULE_CER != enc->eRule)
{
// BER and DER always use definite length form.
/* return the place to hold the length */
*pnLenOff = (ASN1uint32_t) (enc->pos++ - enc->buf);
}
else
{
// CER sub-rule always use indefinite length form.
*enc->pos++ = 0x80;
*pnLenOff = 0;
}
return 1;
}
}
return 0;
}
/* encode definite length */
int ASN1BEREncEndOfContents(ASN1encoding_t enc, ASN1uint32_t nLenOff)
{
if (ASN1_BER_RULE_CER != enc->eRule)
{
ASN1octet_t *pbLen = enc->buf + nLenOff;
ASN1uint32_t len = (ASN1uint32_t) (enc->pos - pbLen - 1);
ASN1uint32_t cbLength = _BERGetLength(len, c_LengthTable, ARRAY_SIZE(c_LengthTable));
ASN1uint32_t i;
if (cbLength == 1)
{
*pbLen = (ASN1octet_t) len;
return 1;
}
// we have to move the octets upward by cbLength-1
// --cbLength;
if (ASN1BEREncCheck(enc, cbLength-1))
{
// update pbLen because enc->buf may change due to realloc.
pbLen = enc->buf + nLenOff;
// move memory
MoveMemory(pbLen + cbLength, pbLen + 1, len);
// put the length
enc->pos = pbLen;
_BERPutLength(enc, len, cbLength);
EncAssert(enc, enc->pos == pbLen + cbLength);
// set up new position pointer.
// now enc->pos is at the beginning of contents.
enc->pos += len;
return 1;
}
}
else
{
EncAssert(enc, 0 == nLenOff);
if (ASN1BEREncCheck(enc, 2))
{
*enc->pos++ = 0;
*enc->pos++ = 0;
return 1;
}
}
return 0;
}
// The following is for CryptoAPI
#ifdef ENABLE_BER
#include <stdlib.h>
// max num of octets, ceiling of 64 / 7, is 10
#define MAX_BYTES_PER_NODE 10
ASN1uint32_t _BEREncOidNode64(ASN1encoding_t enc, unsigned __int64 n64, ASN1octet_t *pOut)
{
ASN1uint32_t Low32, i, cb;
ASN1octet_t aLittleEndian[MAX_BYTES_PER_NODE];
ZeroMemory(aLittleEndian, sizeof(aLittleEndian));
for (i = 0; n64 != 0; i++)
{
Low32 = *(ASN1uint32_t *) &n64;
aLittleEndian[i] = (ASN1octet_t) (Low32 & 0x7f);
n64 = Int64ShrlMod32(n64, 7);
}
cb = i ? i : 1; // at least one byte for zero value
EncAssert(enc, cb <= MAX_BYTES_PER_NODE);
for (i = 0; i < cb; i++)
{
EncAssert(enc, 0 == (0x80 & aLittleEndian[cb - i - 1]));
*pOut++ = (ASN1octet_t) (0x80 | aLittleEndian[cb - i - 1]);
}
*(pOut-1) &= 0x7f;
return cb;
}
int ASN1BERDotVal2Eoid(ASN1encoding_t enc, char *pszDotVal, ASN1encodedOID_t *pOut)
{
ASN1uint32_t cNodes, cbMaxSize, cb1, cb2;
char *psz;
// calculate how many nodes, at least 1.
for (cNodes = 0, psz = pszDotVal; NULL != psz; cNodes++)
{
psz = strchr(psz, '.');
if (psz)
{
psz++;
}
}
// calculate how many bytes should be allocated
cb1 = My_lstrlenA(pszDotVal);
cb2 = cNodes * MAX_BYTES_PER_NODE;
cbMaxSize = (cb1 > cb2) ? cb1 : cb2;
// allocate buffer
pOut->length = 0; // safety net
pOut->value = (ASN1octet_t *) EncMemAlloc(enc, cbMaxSize);
if (pOut->value)
{
ASN1octet_t *p = pOut->value;
ASN1uint32_t i;
unsigned __int64 n64;
psz = pszDotVal;
for (i = 0; i < cNodes; i++)
{
EncAssert(enc, NULL != psz);
n64 = (unsigned __int64) _atoi64(psz);
psz = strchr(psz, '.') + 1;
if (0 == i && cNodes > 1)
{
i++;
n64 = n64 * 40 + (unsigned __int64) _atoi64(psz);
psz = strchr(psz, '.') + 1;
}
p += _BEREncOidNode64(enc, n64, p);
}
pOut->length = (ASN1uint16_t) (p - pOut->value);
EncAssert(enc, pOut->length <= cbMaxSize);
return 1;
}
pOut->length = 0;
return 0;
}
ASN1uint32_t _BERDecOidNode64(unsigned __int64 *pn64, ASN1octet_t *pIn)
{
ASN1uint32_t c;
*pn64 = 0;
for (c = 1; TRUE; c++)
{
*pn64 = Int64ShllMod32(*pn64, 7) + (unsigned __int64) (*pIn & 0x7f);
if (!(*pIn++ & 0x80))
{
return c;
}
}
return 0;
}
int ASN1BEREoid2DotVal(ASN1decoding_t dec, ASN1encodedOID_t *pIn, char **ppszDotVal)
{
ASN1octet_t *p;
ASN1uint32_t i, cNodes, cb, n32;
unsigned __int64 n64;
char *psz;
char szBuf[256]; // should be large enough
// null out return value
*ppszDotVal = NULL;
if (NULL == dec)
{
return 0;
}
// calculate how many nodes
cNodes = 0;
for (p = pIn->value, i = 0; i < pIn->length; p++, i++)
{
if (!(*p & 0x80))
{
cNodes++;
}
}
if (cNodes++) // first encoded node consists of two nodes
{
// decode nodes one by one
psz = &szBuf[0];
p = pIn->value;
for (i = 0; i < cNodes; i++)
{
p += _BERDecOidNode64(&n64, p);
if (!i)
{ // first node
n32 = (ASN1uint32_t) (n64 / 40);
if (n32 > 2)
{
n32 = 2;
}
n64 -= (unsigned __int64) (40 * n32);
i++; // first encoded node actually consists of two nodes
_ultoa(n32, psz, 10);
psz += lstrlenA(psz);
*psz++ = '.';
}
_ui64toa(n64, psz, 10);
psz += lstrlenA(psz);
*psz++ = '.';
}
DecAssert(dec, psz > &szBuf[0]);
*(psz-1) = '\0';
// duplicate the string
cb = (ASN1uint32_t) (psz - &szBuf[0]);
*ppszDotVal = (char *) DecMemAlloc(dec, cb);
if (*ppszDotVal)
{
CopyMemory(*ppszDotVal, &szBuf[0], cb);
return 1;
}
}
return 0;
}
/* encode an object identifier value */
int ASN1BEREncEoid(ASN1encoding_t enc, ASN1uint32_t tag, ASN1encodedOID_t *val)
{
/* encode tag */
if (ASN1BEREncTag(enc, tag))
{
/* encode length */
int rc = ASN1BEREncLength(enc, val->length);
if (rc)
{
/* copy value */
CopyMemory(enc->pos, val->value, val->length);
enc->pos += val->length;
}
return rc;
}
return 0;
}
/* decode object identifier value */
int ASN1BERDecEoid(ASN1decoding_t dec, ASN1uint32_t tag, ASN1encodedOID_t *val)
{
val->length = 0; // safety net
if (ASN1BERDecTag(dec, tag, NULL))
{
ASN1uint32_t len;
if (ASN1BERDecLength(dec, &len, NULL))
{
val->length = (ASN1uint16_t) len;
if (len)
{
val->value = (ASN1octet_t *) DecMemAlloc(dec, len);
if (val->value)
{
CopyMemory(val->value, dec->pos, len);
dec->pos += len;
return 1;
}
}
else
{
val->value = NULL;
return 1;
}
}
}
return 0;
}
void ASN1BEREoid_free(ASN1encodedOID_t *val)
{
if (val)
{
MemFree(val->value);
}
}
#endif // ENABLE_BER