Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

298 lines
9.5 KiB

/*
* title: ckUtils.cpp
*
* purpose: misc c-style utility functions
*
*/
#include "hidbatt.h"
// utils
NTSTATUS
HidBattDoIoctlCompletion(
IN PDEVICE_OBJECT pDeviceObject,
IN PIRP pIrp,
IN PVOID pDoIoCompletedEvent
)
{
KeSetEvent((KEVENT *) pDoIoCompletedEvent,0, FALSE);
return pIrp->IoStatus.Status;
}
ULONG CentiAmpSecsToMilliWattHours(ULONG CentiAmps,ULONG MilliVolts)
{
// conversion from Centiampsec to millWattHours
// formula = (amps * volts / 3600) ^ (exponent correction)
ULONG milliWattHours = CentiAmps;
milliWattHours /= 100; // now have ampsec
milliWattHours *= MilliVolts; // now have milliwattsec
milliWattHours /= 3600; // milliwatthours
HidBattPrint (HIDBATT_DATA, ("CentiAmpSecsToMilliWhatHours: CAs = 0x%08x, mV = 0x%08x, mWH = 0x%08x \n",
CentiAmps, MilliVolts, milliWattHours ));
return milliWattHours;
}
ULONG milliWattHoursToCentiAmpSecs(ULONG mwHours, ULONG MilliVolts)
{
// inverse of formula above
ULONG AmpSecs = mwHours;
AmpSecs *= 3600;
AmpSecs /= MilliVolts;
AmpSecs *= 100;
HidBattPrint (HIDBATT_DATA, ("MilliWattHoursToCentiAmpSecs: mWH = 0x%08x, mV = 0x%08x, CAs = 0x%08x \n",
mwHours, MilliVolts, AmpSecs ));
return AmpSecs;
}
// subroutine to take a value, it's exponent and the desired exponent and correct the value
ULONG CorrectExponent(ULONG ulBaseValue, SHORT sCurrExponent, SHORT sTargetExponent)
{
SHORT sCorrection;
if(!ulBaseValue) return 0; // done all I can with zero
sCorrection = sCurrExponent - sTargetExponent;
if(!sCorrection) return ulBaseValue; // no correction
if(sCorrection < 0)
{
for (; sCorrection < 0; sCorrection++) {
ulBaseValue /= 10;
}
return ulBaseValue;
} else {
for (; sCorrection > 0; sCorrection--) {
ulBaseValue *= 10;
}
return ulBaseValue;
}
}
NTSTATUS
DoIoctl(
PDEVICE_OBJECT pDeviceObject,
ULONG ulIOCTL,
PVOID pInputBuffer,
ULONG ulInputBufferLength,
PVOID pOutputBuffer,
ULONG ulOutputBufferLength,
CHidDevice * pHidDevice)
{
IO_STATUS_BLOCK StatusBlock;
NTSTATUS ntStatus;
PIRP pIrp = NULL;
PIO_STACK_LOCATION pNewStack;
KEVENT IOCTLEvent;
HIDDebugBreak(HIDBATT_BREAK_DEBUG);
//CBatteryDevExt * pDevExt = (CBatteryDevExt *) pDeviceObject->DeviceExtension;
KeInitializeEvent(&IOCTLEvent , NotificationEvent, FALSE);
pIrp = IoBuildDeviceIoControlRequest(
ulIOCTL,
pDeviceObject,
pInputBuffer,
ulInputBufferLength,
pOutputBuffer,
ulOutputBufferLength,
FALSE,
&IOCTLEvent,
&StatusBlock
);
if(!pIrp) return STATUS_NO_MEMORY;
// stuff file control block if requested (non-null hid device ptr)
if(pHidDevice)
{
pNewStack = IoGetNextIrpStackLocation(pIrp);
pNewStack->FileObject = pHidDevice->m_pFCB;
}
ntStatus = IoCallDriver(pDeviceObject,pIrp);
if(ntStatus == STATUS_PENDING)
{
KeWaitForSingleObject(&IOCTLEvent, Executive, KernelMode, FALSE, NULL);
} else
if(NT_ERROR(ntStatus)) return ntStatus;
return StatusBlock.Status;
}
// This is a direct adaption of Ken Ray's function to populate the hid inforation structures
PHID_DEVICE SetupHidData(
IN PHIDP_PREPARSED_DATA pPreparsedData,
IN OUT PHIDP_CAPS pCaps,
PHIDP_LINK_COLLECTION_NODE pLinkNodes)
{
PHID_DEVICE pHidDevice;
PHIDP_BUTTON_CAPS pButtonCaps;
PHIDP_VALUE_CAPS pValueCaps;
PHID_DATA pHidData;
int iNumValues,i;
USAGE usage;
pHidDevice = (PHID_DEVICE) ExAllocatePoolWithTag(NonPagedPool,sizeof(HID_DEVICE),HidBattTag);
if(!pHidDevice) return NULL;
RtlZeroMemory(pHidDevice,sizeof(HID_DEVICE));
//
// At this point the client has a choice. It may chose to look at the
// Usage and Page of the top level collection found in the HIDP_CAPS
// structure. In this way it could just use the usages it knows about.
// If either HidP_GetUsages or HidP_GetUsageValue return an error then
// that particular usage does not exist in the report.
// This is most likely the preferred method as the application can only
// use usages of which it already knows.
// In this case the app need not even call GetButtonCaps or GetValueCaps.
//
// In this example, however, we look for all of the usages in the device.
//
//
// Allocate memory to hold the button and value capabilities.
// NumberXXCaps is in terms of array elements.
//
if(pCaps->NumberInputButtonCaps)
{
pHidDevice->InputButtonCaps = pButtonCaps = (PHIDP_BUTTON_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberInputButtonCaps * sizeof (HIDP_BUTTON_CAPS),HidBattTag);
if (pButtonCaps) {
RtlZeroMemory(pButtonCaps,pCaps->NumberInputButtonCaps * sizeof(HIDP_BUTTON_CAPS));
}
}
if(pCaps->NumberInputValueCaps)
{
pHidDevice->InputValueCaps = pValueCaps = (PHIDP_VALUE_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberInputValueCaps * sizeof (HIDP_VALUE_CAPS),HidBattTag);
if (pValueCaps) {
RtlZeroMemory(pValueCaps, pCaps->NumberInputValueCaps * sizeof (HIDP_VALUE_CAPS));
}
}
//
// Have the HidP_X functions fill in the capability structure arrays.
//
if(pButtonCaps)
{
HidP_GetButtonCaps (HidP_Input,
pButtonCaps,
&pCaps->NumberInputButtonCaps,
pPreparsedData);
}
if(pValueCaps)
{
HidP_GetValueCaps (HidP_Input,
pValueCaps,
&pCaps->NumberInputValueCaps,
pPreparsedData);
}
//
// Depending on the device, some value caps structures may represent more
// than one value. (A range). In the interest of being verbose, over
// efficient we will expand these so that we have one and only one
// struct _HID_DATA for each value.
//
// To do this we need to count up the total number of values are listed
// in the value caps structure. For each element in the array we test
// for range if it is a range then UsageMax and UsageMin describe the
// usages for this range INCLUSIVE.
//
iNumValues = 0;
for (i = 0; i < pCaps->NumberInputValueCaps; i++, pValueCaps++) {
if ((pValueCaps) && (pValueCaps->IsRange)) {
iNumValues += pValueCaps->Range.UsageMax - pValueCaps->Range.UsageMin + 1;
} else {
iNumValues++;
}
}
//
// setup Output Data buffers.
//
if(pCaps->NumberOutputButtonCaps)
{
pHidDevice->OutputButtonCaps = pButtonCaps = (PHIDP_BUTTON_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberOutputButtonCaps * sizeof (HIDP_BUTTON_CAPS),HidBattTag);
HidP_GetButtonCaps (HidP_Output,
pButtonCaps,
&pCaps->NumberOutputButtonCaps,
pPreparsedData);
}
iNumValues = 0;
if(pCaps->NumberOutputValueCaps)
{
pHidDevice->OutputValueCaps = pValueCaps = (PHIDP_VALUE_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberOutputValueCaps * sizeof (HIDP_VALUE_CAPS),HidBattTag);
HidP_GetValueCaps (HidP_Output,
pValueCaps,
&pCaps->NumberOutputValueCaps,
pPreparsedData);
for (i = 0; i < pCaps->NumberOutputValueCaps; i++, pValueCaps++) {
if (pValueCaps->IsRange) {
iNumValues += pValueCaps->Range.UsageMax
- pValueCaps->Range.UsageMin + 1;
} else {
iNumValues++;
}
}
}
//
// setup Feature Data buffers.
//
if(pCaps->NumberFeatureButtonCaps)
{
pHidDevice->FeatureButtonCaps = pButtonCaps = (PHIDP_BUTTON_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberFeatureButtonCaps * sizeof (HIDP_BUTTON_CAPS),HidBattTag);
RtlZeroMemory(pButtonCaps, pCaps->NumberFeatureButtonCaps * sizeof(HIDP_BUTTON_CAPS));
HidP_GetButtonCaps (HidP_Feature,
pButtonCaps,
&pCaps->NumberFeatureButtonCaps,
pPreparsedData);
}
if(pCaps->NumberFeatureValueCaps)
{
pHidDevice->FeatureValueCaps = pValueCaps = (PHIDP_VALUE_CAPS)
ExAllocatePoolWithTag (NonPagedPool, pCaps->NumberFeatureValueCaps * sizeof (HIDP_VALUE_CAPS),HidBattTag);
RtlZeroMemory(pValueCaps, pCaps->NumberFeatureValueCaps * sizeof (HIDP_VALUE_CAPS));
HidP_GetValueCaps (HidP_Feature,
pValueCaps,
&pCaps->NumberFeatureValueCaps,
pPreparsedData);
}
iNumValues = 0;
for (i = 0; i < pCaps->NumberFeatureValueCaps; i++, pValueCaps++) {
if (pValueCaps->IsRange) {
iNumValues += pValueCaps->Range.UsageMax
- pValueCaps->Range.UsageMin + 1;
} else {
iNumValues++;
}
}
return pHidDevice;
}