Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

334 lines
8.3 KiB

//##########################################################################
//**
//** Copyright (C) 1996-2000 Intel Corporation. All rights reserved.
//**
//** The information and source code contained herein is the exclusive
//** property of Intel Corporation and may not be disclosed, examined
//** or reproduced in whole or in part without explicit written authorization
//** from the company.
//**
//###########################################################################
.file "rerun.s"
.section .text
.align 32
.proc _xrun1args#
.global _xrun1args#
.align 32
_xrun1args:
alloc r31=ar.pfs,4,4,0,0 // r32, r33, r34, r35, r36, r37, r38, r39
// OpCode is in r32
// &fpsr is in r33
// &fr1 (output) is in r34
// &fr2 (input) is in r35
// save old FPSR in r36
mov.m r36 = ar40
// save predicates in r38
mov r38 = pr;;
// load fpsr in r37
ld8 r37 = [r33];;
// set new value of FPSR
mov ar40 = r37;;
// clear predicates
movl r39 = 0x0000000000000001;;
// load clear predicates from r39
mov pr = r39,0x1ffff;;
// load input argument into f8
ldf.fill f8 = [r35];;
cmp4.eq p1, p2 = 1, r32;; // fprsqrta [not used]
(p2) cmp4.eq.unc p2, p3 = 2, r32;; // fpcvt_fx
(p3) cmp4.eq.unc p3, p4 = 3, r32;; // fpcvt_fxu
(p4) cmp4.eq.unc p4, p5 = 4, r32;; // fpcvt_fx_trunc
(p5) cmp4.eq.unc p5, p6 = 5, r32;; // fpcvt_fxu_trunc
(p1) fprsqrta.s0 f9,p7 = f8;; // 1/sqrt(f8) in f9
(p2) fpcvt.fx.s0 f9 = f8;;
(p3) fpcvt.fxu.s0 f9 = f8;;
(p4) fpcvt.fx.trunc.s0 f9 = f8;;
(p5) fpcvt.fxu.trunc.s0 f9 = f8;;
(p6) mov f9 = f0 // return 0
// restore predicates from r38
mov pr = r38,0x1ffff;;
// store result
stf.spill [r34] = f9;;
// save FPSR
mov.m r37 = ar40;;
st8 [r33] = r37
// restore FPSR
mov ar40 = r36;;
// return
br.ret.sptk b0
.endp _xrun1args
.proc _xrun2args#
.global _xrun2args#
.align 32
_xrun2args:
alloc r31=ar.pfs,5,4,0,0 // r32, r33, r34, r35, r36, r37, r38, r39, r40
// OpCode is in r32
// &fpsr is in r33
// &fr1 (output) is in r34
// &fr2 (input) is in r35
// &fr3 (input) is in r36
// save old FPSR in r37
mov r37 = ar40
// save predicates in r39
mov r39 = pr;;
// load fpsr in r38
ld8 r38 = [r33];;
// set new value of FPSR
mov ar40 = r38;;
// clear predicates
movl r40 = 0x0000000000000001;;
// load clear predicates from r40
mov pr = r40,0x1ffff;;
// load first input argument into f8
ldf.fill f8 = [r35]
// load second input argument into f9
ldf.fill f9 = [r36];;
cmp4.eq p1, p2 = 1, r32;; // fprcpa [not used - fprcpa not re-executed]
(p2) cmp4.eq.unc p2, p3 = 2, r32;; // fpcmp_eq
(p3) cmp4.eq.unc p3, p4 = 3, r32;; // fpcmp_lt
(p4) cmp4.eq.unc p4, p5 = 4, r32;; // fpcmp_le
(p5) cmp4.eq.unc p5, p6 = 5, r32;; // fpcmp_unord
(p6) cmp4.eq.unc p6, p7 = 6, r32;; // fpcmp_neq
(p7) cmp4.eq.unc p7, p8 = 7, r32;; // fpcmp_nlt
(p8) cmp4.eq.unc p8, p9 = 8, r32;; // fpcmp_nle
(p9) cmp4.eq.unc p9, p10 = 9, r32;; // fpcmp_ord
(p10) cmp4.eq.unc p10, p11 = 10, r32;; // fpmin
(p11) cmp4.eq.unc p11, p12 = 11, r32;; // fpmax
(p12) cmp4.eq.unc p12, p13 = 12, r32;; // fpamin
(p13) cmp4.eq.unc p13, p14 = 13, r32;; // fpamax
(p1) fprcpa.s0 f10 , p15 = f8, f9;; // 1 / f3 in f4
(p2) fpcmp.eq.s0 f10 = f8, f9;;
(p3) fpcmp.lt.s0 f10 = f8, f9;;
(p4) fpcmp.le.s0 f10 = f8, f9;;
(p5) fpcmp.unord.s0 f10 = f8, f9;;
(p6) fpcmp.neq.s0 f10 = f8, f9;;
(p7) fpcmp.nlt.s0 f10 = f8, f9;;
(p8) fpcmp.nle.s0 f10 = f8, f9;;
(p9) fpcmp.ord.s0 f10 = f8, f9;;
(p10) fpmin.s0 f10 = f8, f9;;
(p11) fpmax.s0 f10 = f8, f9;;
(p12) fpamin.s0 f10 = f8, f9;;
(p13) fpamax.s0 f10 = f8, f9;;
(p14) mov f10 = f0 // return 0
// restore predicates from r39
mov pr = r39,0x1ffff;;
// store result
stf.spill [r34] = f10
// save FPSR
mov.m r38 = ar40;;
st8 [r33] = r38
// restore FPSR
mov ar40 = r37;;
// return
br.ret.sptk b0
.endp _xrun2args
.proc _xrun3args#
.global _xrun3args#
.align 32
_xrun3args:
alloc r31=ar.pfs,6,4,0,0 // r32, r33, r34, r35, r36, r37, r38, r39, r40, r41
// OpCode is in r32
// &fpsr is in r33
// &fr1 (output) is in r34
// &fr2 (input) is in r35
// &fr3 (input) is in r36
// &fr4 (input) is in r37
// save old FPSR in r38
mov r38 = ar40
// save predicates in r40
mov r40 = pr;;
// load fpsr in r39
ld8 r39 = [r33];;
// set new value of FPSR
mov ar40 = r39;;
// clear predicates
movl r41 = 0x0000000000000001;;
// load clear predicates from r41
mov pr = r41,0x1ffff;;
// load first input argument into f8
ldf.fill f8 = [r35]
// load second input argument into f9
ldf.fill f9 = [r36];;
// load third input argument into f10
ldf.fill f10 = [r37];;
cmp4.eq p1, p2 = 1, r32;; // fpma
(p2) cmp4.eq.unc p2, p3 = 2, r32;; // fpms
(p3) cmp4.eq.unc p3, p4 = 3, r32;; // fpnma
(p1) fpma.s0 f11 = f8, f9, f10;; // f11 = f8 * f9 + f10
(p2) fpms.s0 f11 = f8, f9, f10;; // f11 = f8 * f9 - f10
(p3) fpnma.s0 f11 = f8, f9, f10;; // f11 = -f8 * f9 + f10
(p4) mov f11 = f0 // return 0
// restore predicates from r40
mov pr = r40,0x1ffff;;
// store result
stf.spill [r34] = f11
// save FPSR
mov.m r39 = ar40;;
st8 [r33] = r39
// restore FPSR
mov ar40 = r38
// return
br.ret.sptk b0
.endp _xrun3args
.proc _thmB#
.global _thmB#
.align 32
_thmB:
alloc r31=ar.pfs,4,2,0,0 // r32, r33, r34, r35, r36, r37
// &a is in r32
// &b is in r33
// &div is in r34 (the address of the divide result)
// &fpsr is in r35
// general registers used: r31, r32, r33, r34, r35, r36, r37
// predicate registers used: p6
// floating-point registers used: f6, f7, f8
// save old FPSR in r36
mov r36 = ar40
// load fpsr in r37
ld8 r37 = [r35];;
// set new value of FPSR
mov ar40 = r37
// load a, the first argument, in f6
ldfs f6 = [r32];;
// load b, the second argument, in f7
ldfs f7 = [r33];;
// Step (1)
// y0 = 1 / b in f8
frcpa.s0 f8,p6=f6,f7;;
// Step (2)
// q0 = a * y0 in f6
(p6) fma.s1 f6=f6,f8,f0
// Step (3)
// e0 = 1 - b * y0 in f7
(p6) fnma.s1 f7=f7,f8,f1;;
// Step (4)
// q1 = q0 + e0 * q0 in f6
(p6) fma.s1 f6=f7,f6,f6
// Step (5)
// e1 = e0 * e0 in f7
(p6) fma.s1 f7=f7,f7,f0;;
// Step (6)
// q2 = q1 + e1 * q1 in f6
(p6) fma.s1 f6=f7,f6,f6
// Step (7)
// e2 = e1 * e1 in f7
(p6) fma.s1 f7=f7,f7,f0;;
// Step (8)
// q3 = q2 + e2 * q2 in f6
(p6) fma.d.s1 f6=f7,f6,f6;;
// Step (9)
// q3' = q3 in f8
(p6) fma.s.s0 f8=f6,f1,f0;;
// store result
stfs [r34]=f8
// save fpsr
mov.m r37 = ar40;;
st8 [r35] = r37
// restore FPSR
mov ar40 = r36;;
// return
br.ret.sptk b0
.endp _thmB
.proc _thmH#
.global _thmH#
.align 32
_thmH:
alloc r31=ar.pfs,3,2,0,0 // r32, r33, r34, r35, r36
// &a is in r32
// &sqrt is in r33 (the address of the sqrt result)
// &fpsr in r34
// general registers used: r31, r32, r33, r34, r35
// predicate registers used: p6
// floating-point registers used: f6, f7, f8, f9, f10, f11, f12
// save old FPSR in r35
mov r35 = ar40
// load fpsr in r36
ld8 r36 = [r34];;
// set new value of FPSR
mov ar40 = r36
// exponent of +1/2 in r2
movl r2 = 0x0fffe;;
// +1/2 in f7
setf.exp f7 = r2
// load the argument a in f6
ldfs f6 = [r32];;
// Step (1)
// y0 = 1/sqrt(a) in f8
frsqrta.s0 f8,p6=f6;;
// Step (2)
// h = +1/2 * a in f9
(p6) fma.s1 f9=f7,f6,f0
// Step (3)
// t1 = y0 * y0 in f10
(p6) fma.s1 f10=f8,f8,f0;;
// Step (4)
// t2 = 1/2 - t1 * h in f10
(p6) fnma.s1 f10=f10,f9,f7;;
// Step (5)
// y1 = y0 + t2 * y0 in f8
(p6) fma.s1 f8=f10,f8,f8;;
// Step (6)
// S = a * y1 in f10
(p6) fma.s1 f10=f6,f8,f0
// Step (7)
// t3 = y1 * h in f9
(p6) fma.s1 f9=f8,f9,f0
// Step (8)
// H = 1/2 * y1 in f11
(p6) fma.s1 f11=f7,f8,f0;;
// Step (9)
// d = a - S * S in f12
(p6) fnma.s1 f12=f10,f10,f6
// Step (10)
// t4 = 1/2 - t3 * y1 in f7
(p6) fnma.s1 f7=f9,f8,f7;;
// Step (11)
// S1 = S + d * H in f8
(p6) fma.s.s1 f8=f12,f11,f10
// Step (12)
// H1 = H + t4 * H in f7
(p6) fma.s1 f7=f7,f11,f11;;
// Step (13)
// d1 = a - S1 * S1 in f6
(p6) fnma.s1 f6=f8,f8,f6;;
// Step (14)
// R = S1 + d1 * H1 in f8
(p6) fma.s.s0 f8=f6,f7,f8;;
// store result
stfs [r33]=f8
// save fpsr
mov.m r36 = ar40;;
st8 [r34] = r36
// restore FPSR
mov ar40 = r35;;
// return
br.ret.sptk b0
.endp _thmH