Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

365 lines
10 KiB

/***
*pow.c - raise to a power
*
* Copyright (c) 1991-2001, Microsoft Corporation. All rights reserved.
*
*Purpose:
*
*Revision History:
* 8-15-91 GDP written
* 12-20-91 GDP support IEEE exceptions & denormals
* 1-11-92 GDP special handling of small powers
* special handling of u1, u2 when cancellation occurs
* 3-22-92 GDP changed handling of int exponents, pow(0, neg)
* added check to avoid internal overflow due to large y
* 6-23-92 GDP adjusted special return values according to NCEG spec
* 02-06-95 JWM Mac merge
* 02-07-95 JWM powhlp() usage restored to Intel version.
* 10-07-97 RDL Added IA64.
*
*******************************************************************************/
#include <math.h>
#include <trans.h>
#include <float.h>
#if defined(_M_IA64)
#pragma function(pow)
#endif
static double _reduce(double);
static double const a1[18] = {
0.00000000000000000000e+000, /* dummy element */
1.00000000000000000000e+000,
9.57603280698573646910e-001,
9.17004043204671231754e-001,
8.78126080186649741555e-001,
8.40896415253714543073e-001,
8.05245165974627154042e-001,
7.71105412703970411793e-001,
7.38413072969749655712e-001,
7.07106781186547524436e-001,
6.77127773468446364133e-001,
6.48419777325504832961e-001,
6.20928906036742024317e-001,
5.94603557501360533344e-001,
5.69394317378345826849e-001,
5.45253866332628829604e-001,
5.22136891213706920173e-001,
5.00000000000000000000e-001
};
static double const a2[9] = {
0.00000000000000000000e+000, /* dummy element */
-5.31259064517897172664e-017,
1.47993596544271355242e-017,
1.23056946577104753260e-017,
-1.74014448683923461658e-017,
3.84891771232354074073e-017,
2.33103467084383453312e-017,
4.45607092891542322377e-017,
4.27717757045531499216e-017
};
static double const log2inv = 1.44269504088896340739e+0; // 1/log(2)
static double const K = 0.44269504088896340736e+0;
static double const p1 = 0.83333333333333211405e-1;
static double const p2 = 0.12500000000503799174e-1;
static double const p3 = 0.22321421285924258967e-2;
static double const p4 = 0.43445775672163119635e-3;
#define P(v) (((p4 * v + p3) * v + p2) * v + p1)
static double const q1 = 0.69314718055994529629e+0;
static double const q2 = 0.24022650695909537056e+0;
static double const q3 = 0.55504108664085595326e-1;
static double const q4 = 0.96181290595172416964e-2;
static double const q5 = 0.13333541313585784703e-2;
static double const q6 = 0.15400290440989764601e-3;
static double const q7 = 0.14928852680595608186e-4;
#define Q(w) ((((((q7 * w + q6) * w + q5) * w + q4) * w + \
q3) * w + q2) * w + q1)
/*
* Thresholds for over/underflow that results in an adjusted value
* too big/small to be represented as a double. An infinity or 0
* is delivered to the trap handler instead
*/
static _dbl const _ovfx ={SET_DBL(0x40e40000,0)}; // 16*log2(XMAX*2^IEEE_ADJ)
static _dbl const _uflx ={SET_DBL(0xc0e3fc00,0)}; // 16*log2(XMIN*2^(-IEEE_ADJ))
#define OVFX _ovfx.dbl
#define UFLX _uflx.dbl
#define INT_POW_LIMIT 128.0
static double ymax = 1e20;
static double _reduce(double x)
{
return 0.0625 * _frnd( 16.0 * x);
}
/***
*double pow(double x, double y) - x raised to the power of y
*
*Purpose:
* Calculate x^y
* Algorithm from Cody & Waite
*
*Entry:
*
*Exit:
*
*Exceptions:
*
* All 5 IEEE exceptions may occur
*
*******************************************************************************/
double pow(double x, double y)
{
uintptr_t savedcw;
int m,mprim;
int p,pprim;
int i,iw1;
int iy;
int newexp;
double diw1;
double sign;
double g,z,bigz,v,rz,result;
double u1,u2,y1,y2,w,w1,w2;
double savedx;
/* save user fp control word */
savedcw = _maskfp();
savedx = x; // save original value of first argument
if (_fpclass(y) & (_FPCLASS_NZ | _FPCLASS_PZ)) {
RETURN(savedcw, 1.0);
}
/* Check for zero^y */
if (_fpclass(x) & (_FPCLASS_NZ | _FPCLASS_PZ)) { /* x==0? */
int type;
type = _d_inttype(y);
if (y < 0.0) {
result = (type == _D_ODD ? _copysign(D_INF,x) : D_INF);
return _except2(FP_Z,OP_POW,savedx,y,result,savedcw|ISW_ZERODIVIDE);
}
else if (y > 0.0) {
result = (type == _D_ODD ? x : 0.0);
RETURN(savedcw, result);
}
}
/* check for infinity or NAN */
if (IS_D_SPECIAL(x) || IS_D_SPECIAL(y)) {
double absx = fabs(x);
if (IS_D_SNAN(x) || IS_D_SNAN(y)) {
return _except2(FP_I,OP_POW,savedx,y,_d_snan2(x,y),savedcw | (ISW_INVALID>>5) );
}
if (IS_D_QNAN(x) || IS_D_QNAN(y)){
return _handle_qnan2(OP_POW,x,y,savedcw | (ISW_INVALID>>5) );
}
/* there is at least one infinite argument ... */
if (_powhlp(x, y, &result)) { /* removed "<" 0. */
return _except2(FP_I,OP_POW,savedx,y,result,savedcw | (ISW_INVALID>>5) );
}
RETURN(savedcw, result);
}
sign = 1.0;
if (x < 0) {
switch (_d_inttype(y)) {
case _D_ODD: /* y is an odd integral value */
sign = -1.0;
/* NO BREAK */
case _D_EVEN:
x = -x;
break;
default: /* y is not an integral value */
return _except2(FP_I,OP_POW,savedx,y,D_IND,savedcw|(ISW_INVALID>>5));
}
}
//
// This is here in order to prevent internal overflows
// due to a large value of y
// The following relation holds on overflow with a scaled
// result out of range
// (lg stands for log base 2)
// |y| * |lg(x)| > MAXEXP + IEEE_ADJUST <=>
// |y| > 2560 / |lg(x)|
// The values of lg(x) closer to 0 are:
// x lg(x)
// 3fefffffffffffff (0,99...9) -1.601e-16
// 3ff0000000000000 (1.0) 0.0
// 3ff0000000000001 (1.00...1) 3.203e-16
//
// So if |y| > 2560/1.6e-16 = 1.6e19 overflow occurs
// We set ymax to 1e20 in order to have a safety margin
//
if (ABS(y) > ymax) {
if (y < 0) {
y = -y;
//
// this may cause an underflow
// there is no problem with fp sw pollution because
// a FP_U exception is going to be raised anyway.
//
x = 1.0 / x;
}
if (x > 1.0) {
return _except2(FP_O | FP_P,OP_POW,savedx,y,sign*D_INF,savedcw|ISW_OVERFLOW);
}
else if (x < 1.0){
return _except2(FP_U | FP_P,OP_POW,savedx,y,sign*0.0,savedcw|ISW_UNDERFLOW);
}
else {
RETURN(savedcw, sign*1.0);
}
}
/* determine m, g */
g = _decomp(x, &m);
/* handle small integer powers
* for small integer powers this is faster that Cody&Waite's
* algorithm, and yields better precision
* Without this piece of code there was not enough precision
* to satisfy all requirements of the 'paranoia' test.
* We choose INT_POW_LIMIT such that (1) no overflow or underflow
* occurs while computing bigz (g is in the range
* [0.5, 1.0) or (1.0, 2.0] so INT_POW_LIMIT should be less than
* approximately 10^3) and (2) no extraordinary loss of precision
* occurs because of repeated multiplications (this practically
* restricts the maximum INT_POW_LIMIT to 128).
*/
if (y <= INT_POW_LIMIT &&
_d_inttype(x) != _D_NOINT &&
_d_inttype(y) != _D_NOINT &&
y > 0.0 ) {
iy = (int)y;
mprim = m * iy;
for (bigz=1 ; iy ; iy >>= 1, g *= g) {
if (iy & 0x1)
bigz *= g;
}
newexp = _get_exp(bigz) + mprim;
if (newexp > MAXEXP + IEEE_ADJUST) {
return _except2(FP_O | FP_P, OP_POW, savedx, y, sign*bigz*D_INF, savedcw);
}
if (newexp < MINEXP - IEEE_ADJUST) {
return _except2(FP_U | FP_P, OP_POW, savedx, y, sign*bigz*0.0, savedcw);
}
}
else {
/* determine p using binary search */
p = 1;
if (g <= a1[9])
p = 9;
if (g <= a1[p+4])
p += 4;
if (g <= a1[p+2])
p += 2;
/* C&W's algorithm is not very accurate when m*16-p == 1,
* because there is cancellation between u1 and u2.
* Handle this separately.
*/
if (ABS(m*16-p) == 1) {
u1 = log(x) * log2inv;
u2 = 0.0;
}
else {
/* determine z */
z = ( (g - a1[p+1]) - a2[(p+1)/2] ) / ( g + a1[p+1] );
z += z;
/* determine u2 */
v = z * z;
rz = P(v) * v * z;
rz += K * rz;
u2 = (rz + z * K) + z;
u1 = (m * 16 - p) * 0.0625;
}
/* determine w1, w2 */
y1 = _reduce(y);
y2 = y - y1;
w = u2 * y + u1 * y2;
w1 = _reduce(w);
w2 = w - w1;
w = w1 + u1 * y1;
w1 = _reduce(w);
w2 += w - w1;
w = _reduce(w2);
diw1 = 16 * (w1 + w); /* iw1 might overflow here, so use diw1 */
w2 -= w;
if (diw1 > OVFX) {
return _except2(FP_O | FP_P,OP_POW,savedx,y,sign*D_INF,savedcw | ISW_OVERFLOW);
}
if (diw1 < UFLX) {
return _except2(FP_U | FP_P,OP_POW,savedx,y,sign*0.0,savedcw | ISW_UNDERFLOW);
}
iw1 = (int) diw1; /* now it is safe to cast to int */
/* make sure w2 <= 0 */
if (w2 > 0) {
iw1 += 1;
w2 -= 0.0625;
}
/* determine mprim, pprim */
i = iw1 < 0 ? 0 : 1;
mprim = iw1 / 16 + i;
pprim = 16 * mprim - iw1;
/* determine 2^w2 */
bigz = Q(w2) * w2;
/* determine final result */
bigz = a1[pprim + 1] + a1[pprim + 1] * bigz;
newexp = _get_exp(bigz) + mprim;
}
if (newexp > MAXEXP) {
result = sign * _set_exp(bigz, newexp - IEEE_ADJUST);
return _except2(FP_O | FP_P, OP_POW, savedx, y, sign*D_INF, savedcw|ISW_OVERFLOW);
}
if (newexp < MINEXP) {
result = sign * _set_exp(bigz, newexp + IEEE_ADJUST);
return _except2(FP_U | FP_P, OP_POW, savedx, y, sign*0.0, savedcw|ISW_UNDERFLOW);
}
result = sign * _set_exp(bigz, newexp);
RETURN_INEXACT2(OP_POW, savedx, y, result, savedcw|ISW_INEXACT);
}