mirror of https://github.com/tongzx/nt5src
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
170 lines
3.3 KiB
170 lines
3.3 KiB
/*++
|
|
|
|
Copyright (c) 1989 Microsoft Corporation
|
|
|
|
Module Name:
|
|
|
|
Random.c
|
|
|
|
Abstract:
|
|
|
|
This module implements a simple random number generator
|
|
|
|
Author:
|
|
|
|
Gary Kimura [GaryKi] 26-May-1989
|
|
|
|
Environment:
|
|
|
|
Pure utility routine
|
|
|
|
Revision History:
|
|
|
|
Vishnu Patankar [VishnuP] 12-Nov-2000
|
|
Added new random number generator RtlRandomEx()
|
|
|
|
--*/
|
|
|
|
#include <ntrtlp.h>
|
|
|
|
#if defined(ALLOC_PRAGMA) && defined(NTOS_KERNEL_RUNTIME)
|
|
#pragma alloc_text(PAGE, RtlRandom)
|
|
#endif
|
|
|
|
#define Multiplier ((ULONG)(0x80000000ul - 19)) // 2**31 - 19
|
|
#define Increment ((ULONG)(0x80000000ul - 61)) // 2**31 - 61
|
|
#define Modulus ((ULONG)(0x80000000ul - 1)) // 2**31 - 1
|
|
|
|
#if !defined(NTOS_KERNEL_RUNTIME)
|
|
ULONG
|
|
RtlUniform (
|
|
IN OUT PULONG Seed
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
A simple uniform random number generator, based on D.H. Lehmer's 1948
|
|
alrogithm.
|
|
|
|
Arguments:
|
|
|
|
Seed - Supplies a pointer to the random number generator seed.
|
|
|
|
Return Value:
|
|
|
|
ULONG - returns a random number uniformly distributed over [0..MAXLONG]
|
|
|
|
--*/
|
|
|
|
{
|
|
*Seed = ((Multiplier * (*Seed)) + Increment) % Modulus;
|
|
return *Seed;
|
|
}
|
|
#endif
|
|
|
|
#define UniformMacro(Seed) ( \
|
|
*Seed = (((Multiplier * (*Seed)) + Increment) % Modulus) \
|
|
)
|
|
|
|
|
|
extern ULONG RtlpRandomConstantVector[];
|
|
|
|
ULONG
|
|
RtlRandom (
|
|
IN OUT PULONG Seed
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
An every better random number generator based on MacLaren and Marsaglia.
|
|
|
|
Arguments:
|
|
|
|
Seed - Supplies a pointer to the random number generator seed.
|
|
|
|
Return Value:
|
|
|
|
ULONG - returns a random number uniformly distributed over [0..MAXLONG]
|
|
|
|
--*/
|
|
|
|
{
|
|
ULONG X;
|
|
ULONG Y;
|
|
ULONG j;
|
|
ULONG Result;
|
|
|
|
RTL_PAGED_CODE();
|
|
|
|
X = UniformMacro(Seed);
|
|
Y = UniformMacro(Seed);
|
|
|
|
j = Y % 128;
|
|
|
|
Result = RtlpRandomConstantVector[j];
|
|
|
|
RtlpRandomConstantVector[j] = X;
|
|
|
|
return Result;
|
|
|
|
}
|
|
|
|
extern ULONG RtlpRandomExAuxVarY;
|
|
extern ULONG RtlpRandomExConstantVector[];
|
|
|
|
ULONG
|
|
RtlRandomEx(
|
|
IN OUT PULONG Seed
|
|
)
|
|
|
|
/*++
|
|
|
|
Routine Description:
|
|
|
|
This algorithm is preferred over RtlRandom() for two reasons:
|
|
|
|
(a) it is faster than RtlRandom() since it saves one multiplication, one addition and
|
|
one modulus operation. This almost doubles the performance since it halves the number of
|
|
clocks even on a pipelined Integer Unit such as the P6/ia64 processors i.e. ~ 52% perf gain.
|
|
Plain RtlRandom() suffers from a RAW data dependency that integer pipelines cannot exploit.
|
|
|
|
(b) it produces better random numbers than RtlRandom() since the period of the random
|
|
numbers generated is comparatively higher.
|
|
|
|
The algorithm here is based on a paper by Carter Bays and S.D.Durham [ACM Trans. Math.
|
|
Software 2, pp. 59-64].
|
|
Knuth's The Art of Computer Programming (Seminumerical Algorithms) outlines the algorithm
|
|
with proofs to support claims (a) and (b) above.
|
|
|
|
Arguments:
|
|
|
|
Seed - Supplies a pointer to the random number generator seed.
|
|
|
|
Return Value:
|
|
|
|
ULONG - returns a random number uniformly distributed over [0..MAXLONG]
|
|
|
|
--*/
|
|
|
|
{
|
|
ULONG j;
|
|
ULONG Result;
|
|
|
|
RTL_PAGED_CODE();
|
|
|
|
j = RtlpRandomExAuxVarY % 128;
|
|
|
|
RtlpRandomExAuxVarY = RtlpRandomExConstantVector[j];
|
|
|
|
Result = RtlpRandomExAuxVarY;
|
|
|
|
RtlpRandomExConstantVector[j] = UniformMacro(Seed);
|
|
|
|
return Result;
|
|
|
|
}
|
|
|