Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

339 lines
9.7 KiB

/*++
Copyright (c) 1996 Microsoft Corporation
Module Name:
perfthrd.c
Abstract:
This file implements an Performance Object that presents
Thread performance object data
Created:
Bob Watson 22-Oct-1996
Revision History
--*/
//
// Include Files
//
#include <nt.h>
#include <ntrtl.h>
#include <nturtl.h>
#include <windows.h>
#include <assert.h>
#include <winperf.h>
#include <ntprfctr.h>
#include <perfutil.h>
#include "perfsprc.h"
#include "perfmsg.h"
#include "datathrd.h"
extern DWORD PerfSprc_dwThreadNameFormat;
DWORD APIENTRY
CollectThreadObjectData (
IN OUT LPVOID *lppData,
IN OUT LPDWORD lpcbTotalBytes,
IN OUT LPDWORD lpNumObjectTypes
)
/*++
Routine Description:
This routine will return the data for the processor object
Arguments:
IN OUT LPVOID *lppData
IN: pointer to the address of the buffer to receive the completed
PerfDataBlock and subordinate structures. This routine will
append its data to the buffer starting at the point referenced
by *lppData.
OUT: points to the first byte after the data structure added by this
routine. This routine updated the value at lppdata after appending
its data.
IN OUT LPDWORD lpcbTotalBytes
IN: the address of the DWORD that tells the size in bytes of the
buffer referenced by the lppData argument
OUT: the number of bytes added by this routine is writted to the
DWORD pointed to by this argument
IN OUT LPDWORD NumObjectTypes
IN: the address of the DWORD to receive the number of objects added
by this routine
OUT: the number of objects added by this routine is writted to the
DWORD pointed to by this argument
Returns:
0 if successful, else Win 32 error code of failure
--*/
{
LONG lReturn = ERROR_SUCCESS;
DWORD TotalLen; // Length of the total return block
THREAD_DATA_DEFINITION *pThreadDataDefinition;
PERF_INSTANCE_DEFINITION *pPerfInstanceDefinition;
PTHREAD_COUNTER_DATA pTCD;
THREAD_COUNTER_DATA tcdTotal;
PSYSTEM_PROCESS_INFORMATION ProcessInfo;
PSYSTEM_THREAD_INFORMATION ThreadInfo;
ULONG ProcessNumber;
ULONG NumThreadInstances;
ULONG ThreadNumber;
ULONG ProcessBufferOffset;
BOOLEAN NullProcess;
BOOL bMoreThreads;
// total thread accumulator variables
UNICODE_STRING ThreadName;
WCHAR ThreadNameBuffer[MAX_THREAD_NAME_LENGTH+1];
pThreadDataDefinition = (THREAD_DATA_DEFINITION *) *lppData;
//
// Check for sufficient space for Thread object type definition
//
TotalLen = sizeof(THREAD_DATA_DEFINITION) +
sizeof(PERF_INSTANCE_DEFINITION) +
sizeof(THREAD_COUNTER_DATA);
if ( *lpcbTotalBytes < TotalLen ) {
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
return ERROR_MORE_DATA;
}
//
// Define Thread data block
//
ThreadName.Length =
ThreadName.MaximumLength = (MAX_THREAD_NAME_LENGTH + 1) * sizeof(WCHAR);
ThreadName.Buffer = ThreadNameBuffer;
memcpy(pThreadDataDefinition,
&ThreadDataDefinition,
sizeof(THREAD_DATA_DEFINITION));
pThreadDataDefinition->ThreadObjectType.PerfTime = PerfTime;
ProcessBufferOffset = 0;
// Now collect data for each Thread
ProcessNumber = 0;
NumThreadInstances = 0;
ProcessInfo = (PSYSTEM_PROCESS_INFORMATION)pProcessBuffer;
pPerfInstanceDefinition =
(PPERF_INSTANCE_DEFINITION)&pThreadDataDefinition[1];
TotalLen = sizeof(THREAD_DATA_DEFINITION);
// clear total accumulator
memset (&tcdTotal, 0, sizeof (tcdTotal));
bMoreThreads = FALSE;
if (ProcessInfo) {
if (ProcessInfo->NextEntryOffset != 0) {
bMoreThreads = TRUE;
}
}
while ( bMoreThreads && (ProcessInfo != NULL)) {
if ( ProcessInfo->ImageName.Buffer != NULL ||
ProcessInfo->NumberOfThreads > 0 ) {
NullProcess = FALSE;
} else {
NullProcess = TRUE;
}
ThreadNumber = 0; // Thread number of this process
ThreadInfo = (PSYSTEM_THREAD_INFORMATION)(ProcessInfo + 1);
while ( !NullProcess &&
ThreadNumber < ProcessInfo->NumberOfThreads ) {
TotalLen += sizeof(PERF_INSTANCE_DEFINITION) +
(MAX_THREAD_NAME_LENGTH+1+sizeof(DWORD))*
sizeof(WCHAR) +
sizeof (THREAD_COUNTER_DATA);
if ( *lpcbTotalBytes < TotalLen ) {
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
return ERROR_MORE_DATA;
}
if (PerfSprc_dwThreadNameFormat == NAME_FORMAT_ID) {
PerfIntegerToWString(
HandleToUlong(ThreadInfo->ClientId.UniqueThread),
10,
MAX_THREAD_NAME_LENGTH+1,
ThreadNameBuffer);
}
else {
// The only name we've got is the thread number
RtlIntegerToUnicodeString(ThreadNumber,
10,
&ThreadName);
}
MonBuildInstanceDefinition(pPerfInstanceDefinition,
(PVOID *) &pTCD,
PROCESS_OBJECT_TITLE_INDEX,
ProcessNumber,
(DWORD)-1,
ThreadName.Buffer);
// test structure for Quadword Alignment
assert (((DWORD)(pTCD) & 0x00000007) == 0);
//
//
// Format and collect Thread data
//
pTCD->CounterBlock.ByteLength = sizeof(THREAD_COUNTER_DATA);
//
// Convert User time from 100 nsec units to counter
// frequency.
//
tcdTotal.ProcessorTime +=
pTCD->ProcessorTime = ThreadInfo->KernelTime.QuadPart +
ThreadInfo->UserTime.QuadPart;
tcdTotal.UserTime +=
pTCD->UserTime = ThreadInfo->UserTime.QuadPart;
tcdTotal.KernelTime +=
pTCD->KernelTime = ThreadInfo->KernelTime.QuadPart;
tcdTotal.ContextSwitches +=
pTCD->ContextSwitches = ThreadInfo->ContextSwitches;
pTCD->ThreadElapsedTime = ThreadInfo->CreateTime.QuadPart;
pTCD->ThreadPriority = (ThreadInfo->ClientId.UniqueProcess == 0) ?
0 : ThreadInfo->Priority;
pTCD->ThreadBasePriority = ThreadInfo->BasePriority;
pTCD->ThreadStartAddr = ThreadInfo->StartAddress;
pTCD->ThreadState =
(DWORD)((ThreadInfo->ThreadState > 7) ?
7 : ThreadInfo->ThreadState);
pTCD->WaitReason = (DWORD)ThreadInfo->WaitReason;
// now stuff in the process and thread id's
pTCD->ProcessId = HandleToUlong(ThreadInfo->ClientId.UniqueProcess);
pTCD->ThreadId = HandleToUlong(ThreadInfo->ClientId.UniqueThread);
pPerfInstanceDefinition = (PERF_INSTANCE_DEFINITION *)&pTCD[1];
NumThreadInstances++;
ThreadNumber++;
ThreadInfo++;
}
if ( !NullProcess ) {
ProcessNumber++;
}
if (ProcessInfo->NextEntryOffset == 0) {
bMoreThreads = FALSE;
continue;
}
ProcessBufferOffset += ProcessInfo->NextEntryOffset;
ProcessInfo = (PSYSTEM_PROCESS_INFORMATION)
&pProcessBuffer[ProcessBufferOffset];
}
if (NumThreadInstances > 0) {
// See if the total instance will fit
TotalLen += sizeof(PERF_INSTANCE_DEFINITION) +
(MAX_THREAD_NAME_LENGTH+1+sizeof(DWORD))*
sizeof(WCHAR) +
sizeof (THREAD_COUNTER_DATA);
if ( *lpcbTotalBytes < TotalLen ) {
*lpcbTotalBytes = (DWORD) 0;
*lpNumObjectTypes = (DWORD) 0;
return ERROR_MORE_DATA;
}
// set the Total Elapsed Time to be the current time so that it will
// show up as 0 when displayed.
tcdTotal.ThreadElapsedTime = pThreadDataDefinition->ThreadObjectType.PerfTime.QuadPart;
// use the "total" for this instance
MonBuildInstanceDefinition(pPerfInstanceDefinition,
(PVOID *) &pTCD,
PROCESS_OBJECT_TITLE_INDEX,
ProcessNumber,
(DWORD)-1,
wszTotal);
// test structure for Quadword Alignment
assert (((DWORD)(pTCD) & 0x00000007) == 0);
//
//
// Format and collect Thread data
//
memcpy (pTCD, &tcdTotal, sizeof(tcdTotal));
pTCD->CounterBlock.ByteLength = sizeof(THREAD_COUNTER_DATA);
pPerfInstanceDefinition = (PERF_INSTANCE_DEFINITION *)&pTCD[1];
NumThreadInstances++;
}
// Note number of Thread instances
pThreadDataDefinition->ThreadObjectType.NumInstances =
NumThreadInstances;
//
// Now we know how large an area we used for the
// Thread definition, so we can update the offset
// to the next object definition
//
*lpcbTotalBytes =
pThreadDataDefinition->ThreadObjectType.TotalByteLength =
(DWORD)((PCHAR) pPerfInstanceDefinition -
(PCHAR) pThreadDataDefinition);
#if DBG
if (*lpcbTotalBytes > TotalLen ) {
DbgPrint ("\nPERFPROC: Thread Perf Ctr. Instance Size Underestimated:");
DbgPrint ("\nPERFPROC: Estimated size: %d, Actual Size: %d", TotalLen, *lpcbTotalBytes);
}
#endif
*lppData = (LPVOID)pPerfInstanceDefinition;
*lpNumObjectTypes = 1;
return lReturn;
}