Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

3867 lines
117 KiB

/*++
Copyright (c) 1990 Microsoft Corporation
Module Name:
trcapi.c
Abstract:
This module contains implementations of win32 api's used in wmi files.
Author:
Revision History:
--*/
#include <nt.h>
#include "wmiump.h"
#include "trcapi.h"
DWORD g_dwLastErrorToBreakOn = ERROR_SUCCESS;
UNICODE_STRING BasePathVariableName = RTL_CONSTANT_STRING(L"PATH");
#define TLS_MASK 0x80000000
#define TMP_TAG 0
#define IsActiveConsoleSession() (USER_SHARED_DATA->ActiveConsoleId == NtCurrentPeb()->SessionId)
#if defined(_WIN64) || defined(BUILD_WOW6432)
SYSTEM_BASIC_INFORMATION SysInfo;
#endif
extern BOOLEAN CsrServerProcess;
DWORD
WmipGetLastError(
VOID
)
/*++
Routine Description:
This function returns the most recent error code set by a Win32 API
call. Applications should call this function immediately after a
Win32 API call returns a failure indications (e.g. FALSE, NULL or
-1) to determine the cause of the failure.
The last error code value is a per thread field, so that multiple
threads do not overwrite each other's last error code value.
Arguments:
None.
Return Value:
The return value is the most recent error code as set by a Win32 API
call.
--*/
{
return (DWORD)NtCurrentTeb()->LastErrorValue;
}
VOID
WmipSetLastError(
DWORD dwErrCode
)
/*++
Routine Description:
This function set the most recent error code and error string in per
thread storage. Win32 API functions call this function whenever
they return a failure indication (e.g. FALSE, NULL or -1).
This function
is not called by Win32 API function calls that are successful, so
that if three Win32 API function calls are made, and the first one
fails and the second two succeed, the error code and string stored
by the first one are still available after the second two succeed.
Applications can retrieve the values saved by this function using
WmipGetLastError. The use of this function is optional, as an
application need only call if it is interested in knowing the
specific reason for an API function failure.
The last error code value is kept in thread local storage so that
multiple threads do not overwrite each other's values.
Arguments:
dwErrCode - Specifies the error code to store in per thread storage
for the current thread.
Return Value:
return-value - Description of conditions needed to return value. - or -
None.
--*/
{
PTEB Teb = NtCurrentTeb();
if ((g_dwLastErrorToBreakOn != ERROR_SUCCESS) &&
(dwErrCode == g_dwLastErrorToBreakOn)) {
DbgBreakPoint();
}
// make write breakpoints to this field more meaningful by only writing to it when
// the value changes.
if (Teb->LastErrorValue != dwErrCode) {
Teb->LastErrorValue = dwErrCode;
}
}
DWORD
WINAPI
WmipGetTimeZoneInformation(
LPTIME_ZONE_INFORMATION lpTimeZoneInformation
)
/*++
Routine Description:
This function allows an application to get the current timezone
parameters These parameters control the Universal time to Local time
translations.
All UTC time to Local time translations are based on the following
formula:
UTC = LocalTime + Bias
The return value of this function is the systems best guess of
the current time zone parameters. This is one of:
- Unknown
- Standard Time
- Daylight Savings Time
If SetTimeZoneInformation was called without the transition date
information, Unknown is returned, but the currect bias is used for
local time translation. Otherwise, the system will correctly pick
either daylight savings time or standard time.
The information returned by this API is identical to the information
stored in the last successful call to SetTimeZoneInformation. The
exception is the Bias field returns the current Bias value in
Arguments:
lpTimeZoneInformation - Supplies the address of the time zone
information structure.
Return Value:
TIME_ZONE_ID_UNKNOWN - The system can not determine the current
timezone. This is usually due to a previous call to
SetTimeZoneInformation where only the Bias was supplied and no
transition dates were supplied.
TIME_ZONE_ID_STANDARD - The system is operating in the range covered
by StandardDate.
TIME_ZONE_ID_DAYLIGHT - The system is operating in the range covered
by DaylightDate.
0xffffffff - The operation failed. Extended error status is
available using WmipGetLastError.
--*/
{
RTL_TIME_ZONE_INFORMATION tzi;
NTSTATUS Status;
//
// get the timezone data from the system
// If it's terminal server session use client time zone
Status = NtQuerySystemInformation(
SystemCurrentTimeZoneInformation,
&tzi,
sizeof(tzi),
NULL
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
return 0xffffffff;
}
lpTimeZoneInformation->Bias = tzi.Bias;
lpTimeZoneInformation->StandardBias = tzi.StandardBias;
lpTimeZoneInformation->DaylightBias = tzi.DaylightBias;
RtlMoveMemory(&lpTimeZoneInformation->StandardName,&tzi.StandardName,sizeof(tzi.StandardName));
RtlMoveMemory(&lpTimeZoneInformation->DaylightName,&tzi.DaylightName,sizeof(tzi.DaylightName));
lpTimeZoneInformation->StandardDate.wYear = tzi.StandardStart.Year ;
lpTimeZoneInformation->StandardDate.wMonth = tzi.StandardStart.Month ;
lpTimeZoneInformation->StandardDate.wDayOfWeek = tzi.StandardStart.Weekday ;
lpTimeZoneInformation->StandardDate.wDay = tzi.StandardStart.Day ;
lpTimeZoneInformation->StandardDate.wHour = tzi.StandardStart.Hour ;
lpTimeZoneInformation->StandardDate.wMinute = tzi.StandardStart.Minute ;
lpTimeZoneInformation->StandardDate.wSecond = tzi.StandardStart.Second ;
lpTimeZoneInformation->StandardDate.wMilliseconds = tzi.StandardStart.Milliseconds;
lpTimeZoneInformation->DaylightDate.wYear = tzi.DaylightStart.Year ;
lpTimeZoneInformation->DaylightDate.wMonth = tzi.DaylightStart.Month ;
lpTimeZoneInformation->DaylightDate.wDayOfWeek = tzi.DaylightStart.Weekday ;
lpTimeZoneInformation->DaylightDate.wDay = tzi.DaylightStart.Day ;
lpTimeZoneInformation->DaylightDate.wHour = tzi.DaylightStart.Hour ;
lpTimeZoneInformation->DaylightDate.wMinute = tzi.DaylightStart.Minute ;
lpTimeZoneInformation->DaylightDate.wSecond = tzi.DaylightStart.Second ;
lpTimeZoneInformation->DaylightDate.wMilliseconds = tzi.DaylightStart.Milliseconds;
return USER_SHARED_DATA->TimeZoneId;
}
BOOL
WINAPI
WmipGetVersionExW(
LPOSVERSIONINFOW lpVersionInformation
)
{
PPEB Peb;
NTSTATUS Status;
if (lpVersionInformation->dwOSVersionInfoSize != sizeof( OSVERSIONINFOEXW ) &&
lpVersionInformation->dwOSVersionInfoSize != sizeof( *lpVersionInformation )
) {
WmipSetLastError( ERROR_INSUFFICIENT_BUFFER );
return FALSE;
}
Status = RtlGetVersion(lpVersionInformation);
if (Status == STATUS_SUCCESS) {
Peb = NtCurrentPeb();
if (Peb->CSDVersion.Buffer)
wcscpy( lpVersionInformation->szCSDVersion, Peb->CSDVersion.Buffer );
if (lpVersionInformation->dwOSVersionInfoSize ==
sizeof( OSVERSIONINFOEXW))
((POSVERSIONINFOEXW)lpVersionInformation)->wReserved =
(UCHAR)BaseRCNumber;
return TRUE;
} else {
return FALSE;
}
}
BOOL
WINAPI
WmipGetVersionExA(
LPOSVERSIONINFOA lpVersionInformation
)
{
OSVERSIONINFOEXW VersionInformationU;
ANSI_STRING AnsiString;
UNICODE_STRING UnicodeString;
NTSTATUS Status;
if (lpVersionInformation->dwOSVersionInfoSize != sizeof( OSVERSIONINFOEXA ) &&
lpVersionInformation->dwOSVersionInfoSize != sizeof( *lpVersionInformation )
) {
WmipSetLastError( ERROR_INSUFFICIENT_BUFFER );
return FALSE;
}
VersionInformationU.dwOSVersionInfoSize = sizeof( VersionInformationU );
if (WmipGetVersionExW( (LPOSVERSIONINFOW)&VersionInformationU )) {
lpVersionInformation->dwMajorVersion = VersionInformationU.dwMajorVersion;
lpVersionInformation->dwMinorVersion = VersionInformationU.dwMinorVersion;
lpVersionInformation->dwBuildNumber = VersionInformationU.dwBuildNumber;
lpVersionInformation->dwPlatformId = VersionInformationU.dwPlatformId;
if (lpVersionInformation->dwOSVersionInfoSize == sizeof( OSVERSIONINFOEXA )) {
((POSVERSIONINFOEXA)lpVersionInformation)->wServicePackMajor = VersionInformationU.wServicePackMajor;
((POSVERSIONINFOEXA)lpVersionInformation)->wServicePackMinor = VersionInformationU.wServicePackMinor;
((POSVERSIONINFOEXA)lpVersionInformation)->wSuiteMask = VersionInformationU.wSuiteMask;
((POSVERSIONINFOEXA)lpVersionInformation)->wProductType = VersionInformationU.wProductType;
((POSVERSIONINFOEXA)lpVersionInformation)->wReserved = VersionInformationU.wReserved;
}
AnsiString.Buffer = lpVersionInformation->szCSDVersion;
AnsiString.Length = 0;
AnsiString.MaximumLength = sizeof( lpVersionInformation->szCSDVersion );
RtlInitUnicodeString( &UnicodeString, VersionInformationU.szCSDVersion );
Status = RtlUnicodeStringToAnsiString( &AnsiString,
&UnicodeString,
FALSE
);
if (NT_SUCCESS( Status )) {
return TRUE;
}
else {
return FALSE;
}
}
else {
return FALSE;
}
}
ULONG
WmipBaseSetLastNTError(
IN NTSTATUS Status
)
/*++
Routine Description:
This API sets the "last error value" and the "last error string"
based on the value of Status. For status codes that don't have
a corresponding error string, the string is set to null.
Arguments:
Status - Supplies the status value to store as the last error value.
Return Value:
The corresponding Win32 error code that was stored in the
"last error value" thread variable.
--*/
{
ULONG dwErrorCode;
dwErrorCode = RtlNtStatusToDosError( Status );
WmipSetLastError( dwErrorCode );
return( dwErrorCode );
}
PUNICODE_STRING
WmipBasep8BitStringToStaticUnicodeString(
IN LPCSTR lpSourceString
)
/*++
Routine Description:
Captures and converts a 8-bit (OEM or ANSI) string into the Teb Static
Unicode String
Arguments:
lpSourceString - string in OEM or ANSI
Return Value:
Pointer to the Teb static string if conversion was successful, NULL
otherwise. If a failure occurred, the last error is set.
--*/
{
PUNICODE_STRING StaticUnicode;
ANSI_STRING AnsiString;
NTSTATUS Status;
//
// Get pointer to static per-thread string
//
StaticUnicode = &NtCurrentTeb()->StaticUnicodeString;
//
// Convert input string into unicode string
//
RtlInitAnsiString( &AnsiString, lpSourceString );
//Status = Basep8BitStringToUnicodeString( StaticUnicode, &AnsiString, FALSE );
Status = RtlAnsiStringToUnicodeString( StaticUnicode, &AnsiString, FALSE );
//
// If we couldn't convert the string
//
if ( !NT_SUCCESS( Status ) ) {
if ( Status == STATUS_BUFFER_OVERFLOW ) {
WmipSetLastError( ERROR_FILENAME_EXCED_RANGE );
} else {
WmipBaseSetLastNTError( Status );
}
return NULL;
} else {
return StaticUnicode;
}
}
HANDLE
WINAPI
WmipCreateFileW(
LPCWSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
)
/*++
Routine Description:
A file can be created, opened, or truncated, and a handle opened to
access the new file using CreateFile.
This API is used to create or open a file and obtain a handle to it
that allows reading data, writing data, and moving the file pointer.
This API allows the caller to specify the following creation
dispositions:
- Create a new file and fail if the file exists ( CREATE_NEW )
- Create a new file and succeed if it exists ( CREATE_ALWAYS )
- Open an existing file ( OPEN_EXISTING )
- Open and existing file or create it if it does not exist (
OPEN_ALWAYS )
- Truncate and existing file ( TRUNCATE_EXISTING )
If this call is successful, a handle is returned that has
appropriate access to the specified file.
If as a result of this call, a file is created,
- The attributes of the file are determined by the value of the
FileAttributes parameter or'd with the FILE_ATTRIBUTE_ARCHIVE bit.
- The length of the file will be set to zero.
- If the hTemplateFile parameter is specified, any extended
attributes associated with the file are assigned to the new file.
If a new file is not created, then the hTemplateFile is ignored as
are any extended attributes.
For DOS based systems running share.exe the file sharing semantics
work as described above. Without share.exe no share level
protection exists.
This call is logically equivalent to DOS (int 21h, function 5Bh), or
DOS (int 21h, function 3Ch) depending on the value of the
FailIfExists parameter.
Arguments:
lpFileName - Supplies the file name of the file to open. Depending on
the value of the FailIfExists parameter, this name may or may
not already exist.
dwDesiredAccess - Supplies the caller's desired access to the file.
DesiredAccess Flags:
GENERIC_READ - Read access to the file is requested. This
allows data to be read from the file and the file pointer to
be modified.
GENERIC_WRITE - Write access to the file is requested. This
allows data to be written to the file and the file pointer to
be modified.
dwShareMode - Supplies a set of flags that indicates how this file is
to be shared with other openers of the file. A value of zero
for this parameter indicates no sharing of the file, or
exclusive access to the file is to occur.
ShareMode Flags:
FILE_SHARE_READ - Other open operations may be performed on the
file for read access.
FILE_SHARE_WRITE - Other open operations may be performed on the
file for write access.
lpSecurityAttributes - An optional parameter that, if present, and
supported on the target file system supplies a security
descriptor for the new file.
dwCreationDisposition - Supplies a creation disposition that
specifies how this call is to operate. This parameter must be
one of the following values.
dwCreationDisposition Value:
CREATE_NEW - Create a new file. If the specified file already
exists, then fail. The attributes for the new file are what
is specified in the dwFlagsAndAttributes parameter or'd with
FILE_ATTRIBUTE_ARCHIVE. If the hTemplateFile is specified,
then any extended attributes associated with that file are
propogated to the new file.
CREATE_ALWAYS - Always create the file. If the file already
exists, then it is overwritten. The attributes for the new
file are what is specified in the dwFlagsAndAttributes
parameter or'd with FILE_ATTRIBUTE_ARCHIVE. If the
hTemplateFile is specified, then any extended attributes
associated with that file are propogated to the new file.
OPEN_EXISTING - Open the file, but if it does not exist, then
fail the call.
OPEN_ALWAYS - Open the file if it exists. If it does not exist,
then create the file using the same rules as if the
disposition were CREATE_NEW.
TRUNCATE_EXISTING - Open the file, but if it does not exist,
then fail the call. Once opened, the file is truncated such
that its size is zero bytes. This disposition requires that
the caller open the file with at least GENERIC_WRITE access.
dwFlagsAndAttributes - Specifies flags and attributes for the file.
The attributes are only used when the file is created (as
opposed to opened or truncated). Any combination of attribute
flags is acceptable except that all other attribute flags
override the normal file attribute, FILE_ATTRIBUTE_NORMAL. The
FILE_ATTRIBUTE_ARCHIVE flag is always implied.
dwFlagsAndAttributes Flags:
FILE_ATTRIBUTE_NORMAL - A normal file should be created.
FILE_ATTRIBUTE_READONLY - A read-only file should be created.
FILE_ATTRIBUTE_HIDDEN - A hidden file should be created.
FILE_ATTRIBUTE_SYSTEM - A system file should be created.
FILE_FLAG_WRITE_THROUGH - Indicates that the system should
always write through any intermediate cache and go directly
to the file. The system may still cache writes, but may not
lazily flush the writes.
FILE_FLAG_OVERLAPPED - Indicates that the system should initialize
the file so that ReadFile and WriteFile operations that may
take a significant time to complete will return ERROR_IO_PENDING.
An event will be set to the signalled state when the operation
completes. When FILE_FLAG_OVERLAPPED is specified the system will
not maintain the file pointer. The position to read/write from
is passed to the system as part of the OVERLAPPED structure
which is an optional parameter to ReadFile and WriteFile.
FILE_FLAG_NO_BUFFERING - Indicates that the file is to be opened
with no intermediate buffering or caching done by the
system. Reads and writes to the file must be done on sector
boundries. Buffer addresses for reads and writes must be
aligned on at least disk sector boundries in memory.
FILE_FLAG_RANDOM_ACCESS - Indicates that access to the file may
be random. The system cache manager may use this to influence
its caching strategy for this file.
FILE_FLAG_SEQUENTIAL_SCAN - Indicates that access to the file
may be sequential. The system cache manager may use this to
influence its caching strategy for this file. The file may
in fact be accessed randomly, but the cache manager may
optimize its cacheing policy for sequential access.
FILE_FLAG_DELETE_ON_CLOSE - Indicates that the file is to be
automatically deleted when the last handle to it is closed.
FILE_FLAG_BACKUP_SEMANTICS - Indicates that the file is being opened
or created for the purposes of either a backup or a restore
operation. Thus, the system should make whatever checks are
appropriate to ensure that the caller is able to override
whatever security checks have been placed on the file to allow
this to happen.
FILE_FLAG_POSIX_SEMANTICS - Indicates that the file being opened
should be accessed in a manner compatible with the rules used
by POSIX. This includes allowing multiple files with the same
name, differing only in case. WARNING: Use of this flag may
render it impossible for a DOS, WIN-16, or WIN-32 application
to access the file.
FILE_FLAG_OPEN_REPARSE_POINT - Indicates that the file being opened
should be accessed as if it were a reparse point. WARNING: Use
of this flag may inhibit the operation of file system filter drivers
present in the I/O subsystem.
FILE_FLAG_OPEN_NO_RECALL - Indicates that all the state of the file
should be acessed without changing its storage location. Thus,
in the case of files that have parts of its state stored at a
remote servicer, no permanent recall of data is to happen.
Security Quality of Service information may also be specified in
the dwFlagsAndAttributes parameter. These bits are meaningful
only if the file being opened is the client side of a Named
Pipe. Otherwise they are ignored.
SECURITY_SQOS_PRESENT - Indicates that the Security Quality of
Service bits contain valid values.
Impersonation Levels:
SECURITY_ANONYMOUS - Specifies that the client should be impersonated
at Anonymous impersonation level.
SECURITY_IDENTIFICAION - Specifies that the client should be impersonated
at Identification impersonation level.
SECURITY_IMPERSONATION - Specifies that the client should be impersonated
at Impersonation impersonation level.
SECURITY_DELEGATION - Specifies that the client should be impersonated
at Delegation impersonation level.
Context Tracking:
SECURITY_CONTEXT_TRACKING - A boolean flag that when set,
specifies that the Security Tracking Mode should be
Dynamic, otherwise Static.
SECURITY_EFFECTIVE_ONLY - A boolean flag indicating whether
the entire security context of the client is to be made
available to the server or only the effective aspects of
the context.
hTemplateFile - An optional parameter, then if specified, supplies a
handle with GENERIC_READ access to a template file. The
template file is used to supply extended attributes for the file
being created. When the new file is created, the relevant attributes
from the template file are used in creating the new file.
Return Value:
Not -1 - Returns an open handle to the specified file. Subsequent
access to the file is controlled by the DesiredAccess parameter.
0xffffffff - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
OBJECT_ATTRIBUTES Obja;
HANDLE Handle;
UNICODE_STRING FileName;
IO_STATUS_BLOCK IoStatusBlock;
BOOLEAN TranslationStatus;
RTL_RELATIVE_NAME RelativeName;
PVOID FreeBuffer;
ULONG CreateDisposition;
ULONG CreateFlags;
FILE_ALLOCATION_INFORMATION AllocationInfo;
FILE_EA_INFORMATION EaInfo;
PFILE_FULL_EA_INFORMATION EaBuffer;
ULONG EaSize;
PUNICODE_STRING lpConsoleName;
BOOL bInheritHandle;
BOOL EndsInSlash;
DWORD SQOSFlags;
BOOLEAN ContextTrackingMode = FALSE;
BOOLEAN EffectiveOnly = FALSE;
SECURITY_IMPERSONATION_LEVEL ImpersonationLevel = 0;
SECURITY_QUALITY_OF_SERVICE SecurityQualityOfService;
switch ( dwCreationDisposition ) {
case CREATE_NEW :
CreateDisposition = FILE_CREATE;
break;
case CREATE_ALWAYS :
CreateDisposition = FILE_OVERWRITE_IF;
break;
case OPEN_EXISTING :
CreateDisposition = FILE_OPEN;
break;
case OPEN_ALWAYS :
CreateDisposition = FILE_OPEN_IF;
break;
case TRUNCATE_EXISTING :
CreateDisposition = FILE_OPEN;
if ( !(dwDesiredAccess & GENERIC_WRITE) ) {
WmipBaseSetLastNTError(STATUS_INVALID_PARAMETER);
return INVALID_HANDLE_VALUE;
}
break;
default :
WmipBaseSetLastNTError(STATUS_INVALID_PARAMETER);
return INVALID_HANDLE_VALUE;
}
// temporary routing code
RtlInitUnicodeString(&FileName,lpFileName);
if ( FileName.Length > 1 && lpFileName[(FileName.Length >> 1)-1] == (WCHAR)'\\' ) {
EndsInSlash = TRUE;
}
else {
EndsInSlash = FALSE;
}
/*
if ((lpConsoleName = WmipBaseIsThisAConsoleName(&FileName,dwDesiredAccess)) ) {
Handle = INVALID_HANDLE_VALUE;
bInheritHandle = FALSE;
if ( ARGUMENT_PRESENT(lpSecurityAttributes) ) {
bInheritHandle = lpSecurityAttributes->bInheritHandle;
}
Handle = WmipOpenConsoleW(lpConsoleName,
dwDesiredAccess,
bInheritHandle,
FILE_SHARE_READ | FILE_SHARE_WRITE //dwShareMode
);
if ( Handle == INVALID_HANDLE_VALUE ) {
WmipBaseSetLastNTError(STATUS_ACCESS_DENIED);
return INVALID_HANDLE_VALUE;
}
else {
WmipSetLastError(0);
return Handle;
}
}*/
// end temporary code
CreateFlags = 0;
TranslationStatus = RtlDosPathNameToNtPathName_U(
lpFileName,
&FileName,
NULL,
&RelativeName
);
if ( !TranslationStatus ) {
WmipSetLastError(ERROR_PATH_NOT_FOUND);
return INVALID_HANDLE_VALUE;
}
FreeBuffer = FileName.Buffer;
if ( RelativeName.RelativeName.Length ) {
FileName = *(PUNICODE_STRING)&RelativeName.RelativeName;
}
else {
RelativeName.ContainingDirectory = NULL;
}
InitializeObjectAttributes(
&Obja,
&FileName,
dwFlagsAndAttributes & FILE_FLAG_POSIX_SEMANTICS ? 0 : OBJ_CASE_INSENSITIVE,
RelativeName.ContainingDirectory,
NULL
);
SQOSFlags = dwFlagsAndAttributes & SECURITY_VALID_SQOS_FLAGS;
if ( SQOSFlags & SECURITY_SQOS_PRESENT ) {
SQOSFlags &= ~SECURITY_SQOS_PRESENT;
if (SQOSFlags & SECURITY_CONTEXT_TRACKING) {
SecurityQualityOfService.ContextTrackingMode = (SECURITY_CONTEXT_TRACKING_MODE) TRUE;
SQOSFlags &= ~SECURITY_CONTEXT_TRACKING;
} else {
SecurityQualityOfService.ContextTrackingMode = (SECURITY_CONTEXT_TRACKING_MODE) FALSE;
}
if (SQOSFlags & SECURITY_EFFECTIVE_ONLY) {
SecurityQualityOfService.EffectiveOnly = TRUE;
SQOSFlags &= ~SECURITY_EFFECTIVE_ONLY;
} else {
SecurityQualityOfService.EffectiveOnly = FALSE;
}
SecurityQualityOfService.ImpersonationLevel = SQOSFlags >> 16;
} else {
SecurityQualityOfService.ContextTrackingMode = SECURITY_DYNAMIC_TRACKING;
SecurityQualityOfService.ImpersonationLevel = SecurityImpersonation;
SecurityQualityOfService.EffectiveOnly = TRUE;
}
SecurityQualityOfService.Length = sizeof( SECURITY_QUALITY_OF_SERVICE );
Obja.SecurityQualityOfService = &SecurityQualityOfService;
if ( ARGUMENT_PRESENT(lpSecurityAttributes) ) {
Obja.SecurityDescriptor = lpSecurityAttributes->lpSecurityDescriptor;
if ( lpSecurityAttributes->bInheritHandle ) {
Obja.Attributes |= OBJ_INHERIT;
}
}
EaBuffer = NULL;
EaSize = 0;
if ( ARGUMENT_PRESENT(hTemplateFile) ) {
Status = NtQueryInformationFile(
hTemplateFile,
&IoStatusBlock,
&EaInfo,
sizeof(EaInfo),
FileEaInformation
);
if ( NT_SUCCESS(Status) && EaInfo.EaSize ) {
EaSize = EaInfo.EaSize;
do {
EaSize *= 2;
EaBuffer = RtlAllocateHeap( RtlProcessHeap(), MAKE_TAG( TMP_TAG ), EaSize);
if ( !EaBuffer ) {
RtlFreeHeap(RtlProcessHeap(), 0, FreeBuffer);
WmipBaseSetLastNTError(STATUS_NO_MEMORY);
return INVALID_HANDLE_VALUE;
}
Status = NtQueryEaFile(
hTemplateFile,
&IoStatusBlock,
EaBuffer,
EaSize,
FALSE,
(PVOID)NULL,
0,
(PULONG)NULL,
TRUE
);
if ( !NT_SUCCESS(Status) ) {
RtlFreeHeap(RtlProcessHeap(), 0,EaBuffer);
EaBuffer = NULL;
IoStatusBlock.Information = 0;
}
} while ( Status == STATUS_BUFFER_OVERFLOW ||
Status == STATUS_BUFFER_TOO_SMALL );
EaSize = (ULONG)IoStatusBlock.Information;
}
}
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_NO_BUFFERING ? FILE_NO_INTERMEDIATE_BUFFERING : 0 );
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_WRITE_THROUGH ? FILE_WRITE_THROUGH : 0 );
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_OVERLAPPED ? 0 : FILE_SYNCHRONOUS_IO_NONALERT );
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_SEQUENTIAL_SCAN ? FILE_SEQUENTIAL_ONLY : 0 );
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_RANDOM_ACCESS ? FILE_RANDOM_ACCESS : 0 );
CreateFlags |= (dwFlagsAndAttributes & FILE_FLAG_BACKUP_SEMANTICS ? FILE_OPEN_FOR_BACKUP_INTENT : 0 );
if ( dwFlagsAndAttributes & FILE_FLAG_DELETE_ON_CLOSE ) {
CreateFlags |= FILE_DELETE_ON_CLOSE;
dwDesiredAccess |= DELETE;
}
if ( dwFlagsAndAttributes & FILE_FLAG_OPEN_REPARSE_POINT ) {
CreateFlags |= FILE_OPEN_REPARSE_POINT;
}
if ( dwFlagsAndAttributes & FILE_FLAG_OPEN_NO_RECALL ) {
CreateFlags |= FILE_OPEN_NO_RECALL;
}
//
// Backup semantics allow directories to be opened
//
if ( !(dwFlagsAndAttributes & FILE_FLAG_BACKUP_SEMANTICS) ) {
CreateFlags |= FILE_NON_DIRECTORY_FILE;
}
else {
//
// Backup intent was specified... Now look to see if we are to allow
// directory creation
//
if ( (dwFlagsAndAttributes & FILE_ATTRIBUTE_DIRECTORY ) &&
(dwFlagsAndAttributes & FILE_FLAG_POSIX_SEMANTICS ) &&
(CreateDisposition == FILE_CREATE) ) {
CreateFlags |= FILE_DIRECTORY_FILE;
}
}
Status = NtCreateFile(
&Handle,
(ACCESS_MASK)dwDesiredAccess | SYNCHRONIZE | FILE_READ_ATTRIBUTES,
&Obja,
&IoStatusBlock,
NULL,
dwFlagsAndAttributes & (FILE_ATTRIBUTE_VALID_FLAGS & ~FILE_ATTRIBUTE_DIRECTORY),
dwShareMode,
CreateDisposition,
CreateFlags,
EaBuffer,
EaSize
);
RtlFreeHeap(RtlProcessHeap(), 0,FreeBuffer);
RtlFreeHeap(RtlProcessHeap(), 0, EaBuffer);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
if ( Status == STATUS_OBJECT_NAME_COLLISION ) {
WmipSetLastError(ERROR_FILE_EXISTS);
}
else if ( Status == STATUS_FILE_IS_A_DIRECTORY ) {
if ( EndsInSlash ) {
WmipSetLastError(ERROR_PATH_NOT_FOUND);
}
else {
WmipSetLastError(ERROR_ACCESS_DENIED);
}
}
return INVALID_HANDLE_VALUE;
}
//
// if NT returns supersede/overwritten, it means that a create_always, openalways
// found an existing copy of the file. In this case ERROR_ALREADY_EXISTS is returned
//
if ( (dwCreationDisposition == CREATE_ALWAYS && IoStatusBlock.Information == FILE_OVERWRITTEN) ||
(dwCreationDisposition == OPEN_ALWAYS && IoStatusBlock.Information == FILE_OPENED) ){
WmipSetLastError(ERROR_ALREADY_EXISTS);
}
else {
WmipSetLastError(0);
}
//
// Truncate the file if required
//
if ( dwCreationDisposition == TRUNCATE_EXISTING) {
AllocationInfo.AllocationSize.QuadPart = 0;
Status = NtSetInformationFile(
Handle,
&IoStatusBlock,
&AllocationInfo,
sizeof(AllocationInfo),
FileAllocationInformation
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
NtClose(Handle);
Handle = INVALID_HANDLE_VALUE;
}
}
//
// Deal with hTemplateFile
//
return Handle;
}
HANDLE
WmipBaseGetNamedObjectDirectory(
VOID
)
{
OBJECT_ATTRIBUTES Obja;
NTSTATUS Status;
UNICODE_STRING RestrictedObjectDirectory;
ACCESS_MASK DirAccess = DIRECTORY_ALL_ACCESS &
~(DELETE | WRITE_DAC | WRITE_OWNER);
HANDLE hRootNamedObject;
HANDLE BaseHandle;
if ( BaseNamedObjectDirectory != NULL) {
return BaseNamedObjectDirectory;
}
RtlAcquirePebLock();
if ( !BaseNamedObjectDirectory ) {
BASE_READ_REMOTE_STR_TEMP(TempStr);
InitializeObjectAttributes( &Obja,
BASE_READ_REMOTE_STR(BaseStaticServerData->NamedObjectDirectory, TempStr),
OBJ_CASE_INSENSITIVE,
NULL,
NULL
);
Status = NtOpenDirectoryObject( &BaseHandle,
DirAccess,
&Obja
);
// if the intial open failed, try again with just traverse, and
// open the restricted subdirectory
if ( !NT_SUCCESS(Status) ) {
Status = NtOpenDirectoryObject( &hRootNamedObject,
DIRECTORY_TRAVERSE,
&Obja
);
if ( NT_SUCCESS(Status) ) {
RtlInitUnicodeString( &RestrictedObjectDirectory, L"Restricted");
InitializeObjectAttributes( &Obja,
&RestrictedObjectDirectory,
OBJ_CASE_INSENSITIVE,
hRootNamedObject,
NULL
);
Status = NtOpenDirectoryObject( &BaseHandle,
DirAccess,
&Obja
);
NtClose( hRootNamedObject );
}
}
if ( NT_SUCCESS(Status) ) {
BaseNamedObjectDirectory = BaseHandle;
}
}
RtlReleasePebLock();
return BaseNamedObjectDirectory;
}
POBJECT_ATTRIBUTES
WmipBaseFormatObjectAttributes(
OUT POBJECT_ATTRIBUTES ObjectAttributes,
IN PSECURITY_ATTRIBUTES SecurityAttributes,
IN PUNICODE_STRING ObjectName
)
/*++
Routine Description:
This function transforms a Win32 security attributes structure into
an NT object attributes structure. It returns the address of the
resulting structure (or NULL if SecurityAttributes was not
specified).
Arguments:
ObjectAttributes - Returns an initialized NT object attributes
structure that contains a superset of the information provided
by the security attributes structure.
SecurityAttributes - Supplies the address of a security attributes
structure that needs to be transformed into an NT object
attributes structure.
ObjectName - Supplies a name for the object relative to the
BaseNamedObjectDirectory object directory.
Return Value:
NULL - A value of null should be used to mimic the behavior of the
specified SecurityAttributes structure.
NON-NULL - Returns the ObjectAttributes value. The structure is
properly initialized by this function.
--*/
{
HANDLE RootDirectory;
ULONG Attributes;
PVOID SecurityDescriptor;
if ( ARGUMENT_PRESENT(SecurityAttributes) ||
ARGUMENT_PRESENT(ObjectName) ) {
if ( ARGUMENT_PRESENT(ObjectName) ) {
RootDirectory = WmipBaseGetNamedObjectDirectory();
}
else {
RootDirectory = NULL;
}
if ( SecurityAttributes ) {
Attributes = (SecurityAttributes->bInheritHandle ? OBJ_INHERIT : 0);
SecurityDescriptor = SecurityAttributes->lpSecurityDescriptor;
}
else {
Attributes = 0;
SecurityDescriptor = NULL;
}
if ( ARGUMENT_PRESENT(ObjectName) ) {
Attributes |= OBJ_OPENIF;
}
InitializeObjectAttributes(
ObjectAttributes,
ObjectName,
Attributes,
RootDirectory,
SecurityDescriptor
);
return ObjectAttributes;
}
else {
return NULL;
}
}
HANDLE
WINAPI
WmipCreateFileA(
LPCSTR lpFileName,
DWORD dwDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD dwCreationDisposition,
DWORD dwFlagsAndAttributes,
HANDLE hTemplateFile
)
/*++
Routine Description:
ANSI thunk to CreateFileW
--*/
{
PUNICODE_STRING Unicode;
Unicode = WmipBasep8BitStringToStaticUnicodeString( lpFileName );
if (Unicode == NULL) {
return INVALID_HANDLE_VALUE;
}
return WmipCreateFileW( Unicode->Buffer,
dwDesiredAccess,
dwShareMode,
lpSecurityAttributes,
dwCreationDisposition,
dwFlagsAndAttributes,
hTemplateFile
);
}
HANDLE
APIENTRY
WmipCreateEventW(
LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset,
BOOL bInitialState,
LPCWSTR lpName
)
/*++
Routine Description:
An event object is created and a handle opened for access to the
object with the CreateEvent function.
The CreateEvent function creates an event object with the specified
initial state. If an event is in the Signaled state (TRUE), a wait
operation on the event does not block. If the event is in the Not-
Signaled state (FALSE), a wait operation on the event blocks until
the specified event attains a state of Signaled, or the timeout
value is exceeded.
In addition to the STANDARD_RIGHTS_REQUIRED access flags, the following
object type specific access flags are valid for event objects:
- EVENT_MODIFY_STATE - Modify state access (set and reset) to
the event is desired.
- SYNCHRONIZE - Synchronization access (wait) to the event is
desired.
- EVENT_ALL_ACCESS - This set of access flags specifies all of
the possible access flags for an event object.
Arguments:
lpEventAttributes - An optional parameter that may be used to
specify the attributes of the new event. If the parameter is
not specified, then the event is created without a security
descriptor, and the resulting handle is not inherited on process
creation.
bManualReset - Supplies a flag which if TRUE specifies that the
event must be manually reset. If the value is FALSE, then after
releasing a single waiter, the system automaticaly resets the
event.
bInitialState - The initial state of the event object, one of TRUE
or FALSE. If the InitialState is specified as TRUE, the event's
current state value is set to one, otherwise it is set to zero.
lpName - Optional unicode name of event
Return Value:
NON-NULL - Returns a handle to the new event. The handle has full
access to the new event and may be used in any API that requires
a handle to an event object.
FALSE/NULL - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
OBJECT_ATTRIBUTES Obja;
POBJECT_ATTRIBUTES pObja;
HANDLE Handle;
UNICODE_STRING ObjectName;
PWCHAR pstrNewObjName = NULL;
if ( ARGUMENT_PRESENT(lpName) ) {
if (gpTermsrvFormatObjectName &&
(pstrNewObjName = gpTermsrvFormatObjectName(lpName))) {
RtlInitUnicodeString(&ObjectName,pstrNewObjName);
} else {
RtlInitUnicodeString(&ObjectName,lpName);
}
pObja = WmipBaseFormatObjectAttributes(&Obja,lpEventAttributes,&ObjectName);
}
else {
pObja = WmipBaseFormatObjectAttributes(&Obja,lpEventAttributes,NULL);
}
Status = NtCreateEvent(
&Handle,
EVENT_ALL_ACCESS,
pObja,
bManualReset ? NotificationEvent : SynchronizationEvent,
(BOOLEAN)bInitialState
);
if (pstrNewObjName) {
RtlFreeHeap(RtlProcessHeap(), 0, pstrNewObjName);
}
if ( NT_SUCCESS(Status) ) {
if ( Status == STATUS_OBJECT_NAME_EXISTS ) {
WmipSetLastError(ERROR_ALREADY_EXISTS);
}
else {
WmipSetLastError(0);
}
return Handle;
}
else {
WmipBaseSetLastNTError(Status);
return NULL;
}
}
//
// Event Services
//
HANDLE
APIENTRY
WmipCreateEventA(
LPSECURITY_ATTRIBUTES lpEventAttributes,
BOOL bManualReset,
BOOL bInitialState,
LPCSTR lpName
)
/*++
Routine Description:
ANSI thunk to CreateEventW
--*/
{
PUNICODE_STRING Unicode;
ANSI_STRING AnsiString;
NTSTATUS Status;
LPCWSTR NameBuffer;
NameBuffer = NULL;
if ( ARGUMENT_PRESENT(lpName) ) {
Unicode = &NtCurrentTeb()->StaticUnicodeString;
RtlInitAnsiString(&AnsiString,lpName);
Status = RtlAnsiStringToUnicodeString(Unicode,&AnsiString,FALSE);
if ( !NT_SUCCESS(Status) ) {
if ( Status == STATUS_BUFFER_OVERFLOW ) {
WmipSetLastError(ERROR_FILENAME_EXCED_RANGE);
}
else {
WmipBaseSetLastNTError(Status);
}
return NULL;
}
NameBuffer = (LPCWSTR)Unicode->Buffer;
}
return WmipCreateEventW(
lpEventAttributes,
bManualReset,
bInitialState,
NameBuffer
);
}
DWORD
WINAPI
WmipSetFilePointer(
HANDLE hFile,
LONG lDistanceToMove,
PLONG lpDistanceToMoveHigh,
DWORD dwMoveMethod
)
/*++
Routine Description:
An open file's file pointer can be set using SetFilePointer.
The purpose of this function is to update the current value of a
file's file pointer. Care should be taken in multi-threaded
applications that have multiple threads sharing a file handle with
each thread updating the file pointer and then doing a read. This
sequence should be treated as a critical section of code and should
be protected using either a critical section object or a mutex
object.
This API provides the same functionality as DOS (int 21h, function
42h) and OS/2's DosSetFilePtr.
Arguments:
hFile - Supplies an open handle to a file whose file pointer is to be
moved. The file handle must have been created with
GENERIC_READ or GENERIC_WRITE access to the file.
lDistanceToMove - Supplies the number of bytes to move the file
pointer. A positive value moves the pointer forward in the file
and a negative value moves backwards in the file.
lpDistanceToMoveHigh - An optional parameter that if specified
supplies the high order 32-bits of the 64-bit distance to move.
If the value of this parameter is NULL, this API can only
operate on files whose maximum size is (2**32)-2. If this
parameter is specified, than the maximum file size is (2**64)-2.
This value also returns the high order 32-bits of the new value
of the file pointer. If this value, and the return value
are 0xffffffff, then an error is indicated.
dwMoveMethod - Supplies a value that specifies the starting point
for the file pointer move.
FILE_BEGIN - The starting point is zero or the beginning of the
file. If FILE_BEGIN is specified, then DistanceToMove is
interpreted as an unsigned location for the new
file pointer.
FILE_CURRENT - The current value of the file pointer is used as
the starting point.
FILE_END - The current end of file position is used as the
starting point.
Return Value:
Not -1 - Returns the low order 32-bits of the new value of the file
pointer.
0xffffffff - If the value of lpDistanceToMoveHigh was NULL, then The
operation failed. Extended error status is available using
WmipGetLastError. Otherwise, this is the low order 32-bits of the
new value of the file pointer.
--*/
{
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
FILE_POSITION_INFORMATION CurrentPosition;
FILE_STANDARD_INFORMATION StandardInfo;
LARGE_INTEGER Large;
if (CONSOLE_HANDLE(hFile)) {
WmipBaseSetLastNTError(STATUS_INVALID_HANDLE);
return (DWORD)-1;
}
if (ARGUMENT_PRESENT(lpDistanceToMoveHigh)) {
Large.HighPart = *lpDistanceToMoveHigh;
Large.LowPart = lDistanceToMove;
}
else {
Large.QuadPart = lDistanceToMove;
}
switch (dwMoveMethod) {
case FILE_BEGIN :
CurrentPosition.CurrentByteOffset = Large;
break;
case FILE_CURRENT :
//
// Get the current position of the file pointer
//
Status = NtQueryInformationFile(
hFile,
&IoStatusBlock,
&CurrentPosition,
sizeof(CurrentPosition),
FilePositionInformation
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
return (DWORD)-1;
}
CurrentPosition.CurrentByteOffset.QuadPart += Large.QuadPart;
break;
case FILE_END :
Status = NtQueryInformationFile(
hFile,
&IoStatusBlock,
&StandardInfo,
sizeof(StandardInfo),
FileStandardInformation
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
return (DWORD)-1;
}
CurrentPosition.CurrentByteOffset.QuadPart =
StandardInfo.EndOfFile.QuadPart + Large.QuadPart;
break;
default:
WmipSetLastError(ERROR_INVALID_PARAMETER);
return (DWORD)-1;
break;
}
//
// If the resulting file position is negative, or if the app is not
// prepared for greater than
// then 32 bits than fail
//
if ( CurrentPosition.CurrentByteOffset.QuadPart < 0 ) {
WmipSetLastError(ERROR_NEGATIVE_SEEK);
return (DWORD)-1;
}
if ( !ARGUMENT_PRESENT(lpDistanceToMoveHigh) &&
(CurrentPosition.CurrentByteOffset.HighPart & MAXLONG) ) {
WmipSetLastError(ERROR_INVALID_PARAMETER);
return (DWORD)-1;
}
//
// Set the current file position
//
Status = NtSetInformationFile(
hFile,
&IoStatusBlock,
&CurrentPosition,
sizeof(CurrentPosition),
FilePositionInformation
);
if ( NT_SUCCESS(Status) ) {
if (ARGUMENT_PRESENT(lpDistanceToMoveHigh)){
*lpDistanceToMoveHigh = CurrentPosition.CurrentByteOffset.HighPart;
}
if ( CurrentPosition.CurrentByteOffset.LowPart == -1 ) {
WmipSetLastError(0);
}
return CurrentPosition.CurrentByteOffset.LowPart;
}
else {
WmipBaseSetLastNTError(Status);
if (ARGUMENT_PRESENT(lpDistanceToMoveHigh)){
*lpDistanceToMoveHigh = -1;
}
return (DWORD)-1;
}
}
BOOL
WINAPI
WmipReadFile(
HANDLE hFile,
LPVOID lpBuffer,
DWORD nNumberOfBytesToRead,
LPDWORD lpNumberOfBytesRead,
LPOVERLAPPED lpOverlapped
)
/*++
Routine Description:
Data can be read from a file using ReadFile.
This API is used to read data from a file. Data is read from the
file from the position indicated by the file pointer. After the
read completes, the file pointer is adjusted by the number of bytes
actually read. A return value of TRUE coupled with a bytes read of
0 indicates that the file pointer was beyond the current end of the
file at the time of the read.
Arguments:
hFile - Supplies an open handle to a file that is to be read. The
file handle must have been created with GENERIC_READ access to
the file.
lpBuffer - Supplies the address of a buffer to receive the data read
from the file.
nNumberOfBytesToRead - Supplies the number of bytes to read from the
file.
lpNumberOfBytesRead - Returns the number of bytes read by this call.
This parameter is always set to 0 before doing any IO or error
checking.
lpOverlapped - Optionally points to an OVERLAPPED structure to be used with the
request. If NULL then the transfer starts at the current file position
and ReadFile will not return until the operation completes.
If the handle hFile was created without specifying FILE_FLAG_OVERLAPPED
the file pointer is moved to the specified offset plus
lpNumberOfBytesRead before ReadFile returns. ReadFile will wait for the
request to complete before returning (it will not return
ERROR_IO_PENDING).
When FILE_FLAG_OVERLAPPED is specified, ReadFile may return
ERROR_IO_PENDING to allow the calling function to continue processing
while the operation completes. The event (or hFile if hEvent is NULL) will
be set to the signalled state upon completion of the request.
When the handle is created with FILE_FLAG_OVERLAPPED and lpOverlapped
is set to NULL, ReadFile will return ERROR_INVALID_PARAMTER because
the file offset is required.
Return Value:
TRUE - The operation was successul.
FALSE - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
PPEB Peb;
DWORD InputMode;
if ( ARGUMENT_PRESENT(lpNumberOfBytesRead) ) {
*lpNumberOfBytesRead = 0;
}
Peb = NtCurrentPeb();
switch( HandleToUlong(hFile) ) {
case STD_INPUT_HANDLE: hFile = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: hFile = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: hFile = Peb->ProcessParameters->StandardError;
break;
}
if ( ARGUMENT_PRESENT( lpOverlapped ) ) {
LARGE_INTEGER Li;
lpOverlapped->Internal = (DWORD)STATUS_PENDING;
Li.LowPart = lpOverlapped->Offset;
Li.HighPart = lpOverlapped->OffsetHigh;
Status = NtReadFile(
hFile,
lpOverlapped->hEvent,
NULL,
(ULONG_PTR)lpOverlapped->hEvent & 1 ? NULL : lpOverlapped,
(PIO_STATUS_BLOCK)&lpOverlapped->Internal,
lpBuffer,
nNumberOfBytesToRead,
&Li,
NULL
);
if ( NT_SUCCESS(Status) && Status != STATUS_PENDING) {
if ( ARGUMENT_PRESENT(lpNumberOfBytesRead) ) {
try {
*lpNumberOfBytesRead = (DWORD)lpOverlapped->InternalHigh;
}
except(EXCEPTION_EXECUTE_HANDLER) {
*lpNumberOfBytesRead = 0;
}
}
return TRUE;
}
else
if (Status == STATUS_END_OF_FILE) {
if ( ARGUMENT_PRESENT(lpNumberOfBytesRead) ) {
*lpNumberOfBytesRead = 0;
}
WmipBaseSetLastNTError(Status);
return FALSE;
}
else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
else
{
Status = NtReadFile(
hFile,
NULL,
NULL,
NULL,
&IoStatusBlock,
lpBuffer,
nNumberOfBytesToRead,
NULL,
NULL
);
if ( Status == STATUS_PENDING) {
// Operation must complete before return & IoStatusBlock destroyed
Status = NtWaitForSingleObject( hFile, FALSE, NULL );
if ( NT_SUCCESS(Status)) {
Status = IoStatusBlock.Status;
}
}
if ( NT_SUCCESS(Status) ) {
*lpNumberOfBytesRead = (DWORD)IoStatusBlock.Information;
return TRUE;
}
else
if (Status == STATUS_END_OF_FILE) {
*lpNumberOfBytesRead = 0;
return TRUE;
}
else {
if ( NT_WARNING(Status) ) {
*lpNumberOfBytesRead = (DWORD)IoStatusBlock.Information;
}
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
}
BOOL
WmipCloseHandle(
HANDLE hObject
)
{
NTSTATUS Status;
Status = NtClose(hObject);
if ( NT_SUCCESS(Status) ) {
return TRUE;
} else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
DWORD
APIENTRY
WmipWaitForSingleObjectEx(
HANDLE hHandle,
DWORD dwMilliseconds,
BOOL bAlertable
)
/*++
Routine Description:
A wait operation on a waitable object is accomplished with the
WaitForSingleObjectEx function.
Waiting on an object checks the current state of the object. If the
current state of the object allows continued execution, any
adjustments to the object state are made (for example, decrementing
the semaphore count for a semaphore object) and the thread continues
execution. If the current state of the object does not allow
continued execution, the thread is placed into the wait state
pending the change of the object's state or time-out.
If the bAlertable parameter is FALSE, the only way the wait
terminates is because the specified timeout period expires, or
because the specified object entered the signaled state. If the
bAlertable parameter is TRUE, then the wait can return due to any
one of the above wait termination conditions, or because an I/O
completion callback terminated the wait early (return value of
WAIT_IO_COMPLETION).
Arguments:
hHandle - An open handle to a waitable object. The handle must have
SYNCHRONIZE access to the object.
dwMilliseconds - A time-out value that specifies the relative time,
in milliseconds, over which the wait is to be completed. A
timeout value of 0 specified that the wait is to timeout
immediately. This allows an application to test an object to
determine if it is in the signaled state. A timeout value of
0xffffffff specifies an infinite timeout period.
bAlertable - Supplies a flag that controls whether or not the
wait may terminate early due to an I/O completion callback.
A value of TRUE allows this API to complete early due to an I/O
completion callback. A value of FALSE will not allow I/O
completion callbacks to terminate this call early.
Return Value:
WAIT_TIME_OUT - Indicates that the wait was terminated due to the
TimeOut conditions.
0 - indicates the specified object attained a Signaled
state thus completing the wait.
0xffffffff - The wait terminated due to an error. WmipGetLastError may be
used to get additional error information.
WAIT_ABANDONED - indicates the specified object attained a Signaled
state but was abandoned.
WAIT_IO_COMPLETION - The wait terminated due to one or more I/O
completion callbacks.
--*/
{
NTSTATUS Status;
LARGE_INTEGER TimeOut;
PLARGE_INTEGER pTimeOut;
PPEB Peb;
RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME Frame = { sizeof(Frame), RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME_FORMAT_WHISTLER };
RtlActivateActivationContextUnsafeFast(&Frame, NULL); // make the process default activation context active so that APCs are delivered under it
__try {
Peb = NtCurrentPeb();
switch( HandleToUlong(hHandle) ) {
case STD_INPUT_HANDLE: hHandle = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: hHandle = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: hHandle = Peb->ProcessParameters->StandardError;
break;
}
pTimeOut = WmipBaseFormatTimeOut(&TimeOut,dwMilliseconds);
rewait:
Status = NtWaitForSingleObject(hHandle,(BOOLEAN)bAlertable,pTimeOut);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
Status = (NTSTATUS)0xffffffff;
}
else {
if ( bAlertable && Status == STATUS_ALERTED ) {
goto rewait;
}
}
} __finally {
RtlDeactivateActivationContextUnsafeFast(&Frame);
}
return (DWORD)Status;
}
BOOL
WINAPI
WmipGetOverlappedResult(
HANDLE hFile,
LPOVERLAPPED lpOverlapped,
LPDWORD lpNumberOfBytesTransferred,
BOOL bWait
)
/*++
Routine Description:
The GetOverlappedResult function returns the result of the last
operation that used lpOverlapped and returned ERROR_IO_PENDING.
Arguments:
hFile - Supplies the open handle to the file that the overlapped
structure lpOverlapped was supplied to ReadFile, WriteFile,
ConnectNamedPipe, WaitNamedPipe or TransactNamedPipe.
lpOverlapped - Points to an OVERLAPPED structure previously supplied to
ReadFile, WriteFile, ConnectNamedPipe, WaitNamedPipe or
TransactNamedPipe.
lpNumberOfBytesTransferred - Returns the number of bytes transferred
by the operation.
bWait - A boolean value that affects the behavior when the operation
is still in progress. If TRUE and the operation is still in progress,
GetOverlappedResult will wait for the operation to complete before
returning. If FALSE and the operation is incomplete,
GetOverlappedResult will return FALSE. In this case the extended
error information available from the WmipGetLastError function will be
set to ERROR_IO_INCOMPLETE.
Return Value:
TRUE -- The operation was successful, the pipe is in the
connected state.
FALSE -- The operation failed. Extended error status is available using
WmipGetLastError.
--*/
{
DWORD WaitReturn;
//
// Did caller specify an event to the original operation or was the
// default (file handle) used?
//
if (lpOverlapped->Internal == (DWORD)STATUS_PENDING ) {
if ( bWait ) {
WaitReturn = WmipWaitForSingleObject(
( lpOverlapped->hEvent != NULL ) ?
lpOverlapped->hEvent : hFile,
INFINITE
);
}
else {
WaitReturn = WAIT_TIMEOUT;
}
if ( WaitReturn == WAIT_TIMEOUT ) {
// !bWait and event in not signalled state
WmipSetLastError( ERROR_IO_INCOMPLETE );
return FALSE;
}
if ( WaitReturn != 0 ) {
return FALSE; // WaitForSingleObject calls BaseSetLastError
}
}
*lpNumberOfBytesTransferred = (DWORD)lpOverlapped->InternalHigh;
if ( NT_SUCCESS((NTSTATUS)lpOverlapped->Internal) ){
return TRUE;
}
else {
WmipBaseSetLastNTError( (NTSTATUS)lpOverlapped->Internal );
return FALSE;
}
}
PLARGE_INTEGER
WmipBaseFormatTimeOut(
OUT PLARGE_INTEGER TimeOut,
IN DWORD Milliseconds
)
/*++
Routine Description:
This function translates a Win32 style timeout to an NT relative
timeout value.
Arguments:
TimeOut - Returns an initialized NT timeout value that is equivalent
to the Milliseconds parameter.
Milliseconds - Supplies the timeout value in milliseconds. A value
of -1 indicates indefinite timeout.
Return Value:
NULL - A value of null should be used to mimic the behavior of the
specified Milliseconds parameter.
NON-NULL - Returns the TimeOut value. The structure is properly
initialized by this function.
--*/
{
if ( (LONG) Milliseconds == -1 ) {
return( NULL );
}
TimeOut->QuadPart = UInt32x32To64( Milliseconds, 10000 );
TimeOut->QuadPart *= -1;
return TimeOut;
}
DWORD
WmipWaitForSingleObject(
HANDLE hHandle,
DWORD dwMilliseconds
)
/*++
Routine Description:
A wait operation on a waitable object is accomplished with the
WaitForSingleObject function.
Waiting on an object checks the current state of the object. If the
current state of the object allows continued execution, any
adjustments to the object state are made (for example, decrementing
the semaphore count for a semaphore object) and the thread continues
execution. If the current state of the object does not allow
continued execution, the thread is placed into the wait state
pending the change of the object's state or time-out.
Arguments:
hHandle - An open handle to a waitable object. The handle must have
SYNCHRONIZE access to the object.
dwMilliseconds - A time-out value that specifies the relative time,
in milliseconds, over which the wait is to be completed. A
timeout value of 0 specified that the wait is to timeout
immediately. This allows an application to test an object to
determine if it is in the signaled state. A timeout value of -1
specifies an infinite timeout period.
Return Value:
WAIT_TIME_OUT - Indicates that the wait was terminated due to the
TimeOut conditions.
0 - indicates the specified object attained a Signaled
state thus completing the wait.
WAIT_ABANDONED - indicates the specified object attained a Signaled
state but was abandoned.
--*/
{
return WmipWaitForSingleObjectEx(hHandle,dwMilliseconds,FALSE);
}
BOOL
WINAPI
WmipDeviceIoControl(
HANDLE hDevice,
DWORD dwIoControlCode,
LPVOID lpInBuffer,
DWORD nInBufferSize,
LPVOID lpOutBuffer,
DWORD nOutBufferSize,
LPDWORD lpBytesReturned,
LPOVERLAPPED lpOverlapped
)
/*++
Routine Description:
An operation on a device may be performed by calling the device driver
directly using the DeviceIoContrl function.
The device driver must first be opened to get a valid handle.
Arguments:
hDevice - Supplies an open handle a device on which the operation is to
be performed.
dwIoControlCode - Supplies the control code for the operation. This
control code determines on which type of device the operation must
be performed and determines exactly what operation is to be
performed.
lpInBuffer - Suplies an optional pointer to an input buffer that contains
the data required to perform the operation. Whether or not the
buffer is actually optional is dependent on the IoControlCode.
nInBufferSize - Supplies the length of the input buffer in bytes.
lpOutBuffer - Suplies an optional pointer to an output buffer into which
the output data will be copied. Whether or not the buffer is actually
optional is dependent on the IoControlCode.
nOutBufferSize - Supplies the length of the output buffer in bytes.
lpBytesReturned - Supplies a pointer to a dword which will receive the
actual length of the data returned in the output buffer.
lpOverlapped - An optional parameter that supplies an overlap structure to
be used with the request. If NULL or the handle was created without
FILE_FLAG_OVERLAPPED then the DeviceIoControl will not return until
the operation completes.
When lpOverlapped is supplied and FILE_FLAG_OVERLAPPED was specified
when the handle was created, DeviceIoControl may return
ERROR_IO_PENDING to allow the caller to continue processing while the
operation completes. The event (or File handle if hEvent == NULL) will
be set to the not signalled state before ERROR_IO_PENDING is
returned. The event will be set to the signalled state upon completion
of the request. GetOverlappedResult is used to determine the result
when ERROR_IO_PENDING is returned.
Return Value:
TRUE -- The operation was successful.
FALSE -- The operation failed. Extended error status is available using
WmipGetLastError.
--*/
{
NTSTATUS Status;
BOOLEAN DevIoCtl;
if ( dwIoControlCode >> 16 == FILE_DEVICE_FILE_SYSTEM ) {
DevIoCtl = FALSE;
}
else {
DevIoCtl = TRUE;
}
if ( ARGUMENT_PRESENT( lpOverlapped ) ) {
lpOverlapped->Internal = (DWORD)STATUS_PENDING;
if ( DevIoCtl ) {
Status = NtDeviceIoControlFile(
hDevice,
lpOverlapped->hEvent,
NULL, // APC routine
(ULONG_PTR)lpOverlapped->hEvent & 1 ? NULL : lpOverlapped,
(PIO_STATUS_BLOCK)&lpOverlapped->Internal,
dwIoControlCode, // IoControlCode
lpInBuffer, // Buffer for data to the FS
nInBufferSize,
lpOutBuffer, // OutputBuffer for data from the FS
nOutBufferSize // OutputBuffer Length
);
}
else {
Status = NtFsControlFile(
hDevice,
lpOverlapped->hEvent,
NULL, // APC routine
(ULONG_PTR)lpOverlapped->hEvent & 1 ? NULL : lpOverlapped,
(PIO_STATUS_BLOCK)&lpOverlapped->Internal,
dwIoControlCode, // IoControlCode
lpInBuffer, // Buffer for data to the FS
nInBufferSize,
lpOutBuffer, // OutputBuffer for data from the FS
nOutBufferSize // OutputBuffer Length
);
}
// handle warning value STATUS_BUFFER_OVERFLOW somewhat correctly
if ( !NT_ERROR(Status) && ARGUMENT_PRESENT(lpBytesReturned) ) {
try {
*lpBytesReturned = (DWORD)lpOverlapped->InternalHigh;
}
except(EXCEPTION_EXECUTE_HANDLER) {
*lpBytesReturned = 0;
}
}
if ( NT_SUCCESS(Status) && Status != STATUS_PENDING) {
return TRUE;
}
else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
else
{
IO_STATUS_BLOCK Iosb;
if ( DevIoCtl ) {
Status = NtDeviceIoControlFile(
hDevice,
NULL,
NULL, // APC routine
NULL, // APC Context
&Iosb,
dwIoControlCode, // IoControlCode
lpInBuffer, // Buffer for data to the FS
nInBufferSize,
lpOutBuffer, // OutputBuffer for data from the FS
nOutBufferSize // OutputBuffer Length
);
}
else {
Status = NtFsControlFile(
hDevice,
NULL,
NULL, // APC routine
NULL, // APC Context
&Iosb,
dwIoControlCode, // IoControlCode
lpInBuffer, // Buffer for data to the FS
nInBufferSize,
lpOutBuffer, // OutputBuffer for data from the FS
nOutBufferSize // OutputBuffer Length
);
}
if ( Status == STATUS_PENDING) {
// Operation must complete before return & Iosb destroyed
Status = NtWaitForSingleObject( hDevice, FALSE, NULL );
if ( NT_SUCCESS(Status)) {
Status = Iosb.Status;
}
}
if ( NT_SUCCESS(Status) ) {
*lpBytesReturned = (DWORD)Iosb.Information;
return TRUE;
}
else {
// handle warning value STATUS_BUFFER_OVERFLOW somewhat correctly
if ( !NT_ERROR(Status) ) {
*lpBytesReturned = (DWORD)Iosb.Information;
}
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
}
BOOL
WINAPI
WmipCancelIo(
HANDLE hFile
)
/*++
Routine Description:
This routine cancels all of the outstanding I/O for the specified handle
for the specified file.
Arguments:
hFile - Supplies the handle to the file whose pending I/O is to be
canceled.
Return Value:
TRUE -- The operation was successful.
FALSE -- The operation failed. Extended error status is available using
WmipGetLastError.
--*/
{
NTSTATUS Status;
IO_STATUS_BLOCK IoStatusBlock;
//
// Simply cancel the I/O for the specified file.
//
Status = NtCancelIoFile(hFile, &IoStatusBlock);
if ( NT_SUCCESS(Status) ) {
return TRUE;
}
else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
VOID
APIENTRY
WmipExitThread(
DWORD dwExitCode
)
{
RtlExitUserThread(dwExitCode);
}
DWORD
WINAPI
WmipGetCurrentProcessId(
VOID
)
/*++
Routine Description:
The process ID of the current process may be retrieved using
GetCurrentProcessId.
Arguments:
None.
Return Value:
Returns a unique value representing the process ID of the currently
executing process. The return value may be used to open a handle to
a process.
--*/
{
return HandleToUlong(NtCurrentTeb()->ClientId.UniqueProcess);
}
DWORD
APIENTRY
WmipGetCurrentThreadId(
VOID
)
/*++
Routine Description:
The thread ID of the current thread may be retrieved using
GetCurrentThreadId.
Arguments:
None.
Return Value:
Returns a unique value representing the thread ID of the currently
executing thread. The return value may be used to identify a thread
in the system.
--*/
{
return HandleToUlong(NtCurrentTeb()->ClientId.UniqueThread);
}
HANDLE
WINAPI
WmipGetCurrentProcess(
VOID
)
/*++
Routine Description:
A pseudo handle to the current process may be retrieved using
GetCurrentProcess.
A special constant is exported by Win32 that is interpreted as a
handle to the current process. This handle may be used to specify
the current process whenever a process handle is required. On
Win32, this handle has PROCESS_ALL_ACCESS to the current process.
On NT/Win32, this handle has the maximum access allowed by any
security descriptor placed on the current process.
Arguments:
None.
Return Value:
Returns the pseudo handle of the current process.
--*/
{
return NtCurrentProcess();
}
BOOL
WmipSetEvent(
HANDLE hEvent
)
/*++
Routine Description:
An event can be set to the signaled state (TRUE) with the SetEvent
function.
Setting the event causes the event to attain a state of Signaled,
which releases all currently waiting threads (for manual reset
events), or a single waiting thread (for automatic reset events).
Arguments:
hEvent - Supplies an open handle to an event object. The
handle must have EVENT_MODIFY_STATE access to the event.
Return Value:
TRUE - The operation was successful
FALSE/NULL - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
Status = NtSetEvent(hEvent,NULL);
if ( NT_SUCCESS(Status) ) {
return TRUE;
}
else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
}
VOID
WINAPI
WmipGetSystemInfo(
LPSYSTEM_INFO lpSystemInfo
)
/*++
Routine Description:
The GetSystemInfo function is used to return information about the
current system. This includes the processor type, page size, oem
id, and other interesting pieces of information.
Arguments:
lpSystemInfo - Returns information about the current system.
SYSTEM_INFO Structure:
WORD wProcessorArchitecture - returns the architecture of the
processors in the system: e.g. Intel, Mips, Alpha or PowerPC
DWORD dwPageSize - Returns the page size. This is specifies the
granularity of page protection and commitment.
LPVOID lpMinimumApplicationAddress - Returns the lowest memory
address accessible to applications and DLLs.
LPVOID lpMaximumApplicationAddress - Returns the highest memory
address accessible to applications and DLLs.
DWORD dwActiveProcessorMask - Returns a mask representing the
set of processors configured into the system. Bit 0 is
processor 0, bit 31 is processor 31.
DWORD dwNumberOfProcessors - Returns the number of processors in
the system.
WORD wProcessorLevel - Returns the level of the processors in the
system. All processors are assumed to be of the same level,
stepping, and are configured with the same options.
WORD wProcessorRevision - Returns the revision or stepping of the
processors in the system. All processors are assumed to be
of the same level, stepping, and are configured with the
same options.
Return Value:
None.
--*/
{
NTSTATUS Status;
SYSTEM_BASIC_INFORMATION BasicInfo;
SYSTEM_PROCESSOR_INFORMATION ProcessorInfo;
RtlZeroMemory(lpSystemInfo,sizeof(*lpSystemInfo));
Status = NtQuerySystemInformation(
SystemBasicInformation,
&BasicInfo,
sizeof(BasicInfo),
NULL
);
if ( !NT_SUCCESS(Status) ) {
return;
}
Status = NtQuerySystemInformation(
SystemProcessorInformation,
&ProcessorInfo,
sizeof(ProcessorInfo),
NULL
);
if ( !NT_SUCCESS(Status) ) {
return;
}
lpSystemInfo->wProcessorArchitecture = ProcessorInfo.ProcessorArchitecture;
lpSystemInfo->wReserved = 0;
lpSystemInfo->dwPageSize = BasicInfo.PageSize;
lpSystemInfo->lpMinimumApplicationAddress = (LPVOID)BasicInfo.MinimumUserModeAddress;
lpSystemInfo->lpMaximumApplicationAddress = (LPVOID)BasicInfo.MaximumUserModeAddress;
lpSystemInfo->dwActiveProcessorMask = BasicInfo.ActiveProcessorsAffinityMask;
lpSystemInfo->dwNumberOfProcessors = BasicInfo.NumberOfProcessors;
lpSystemInfo->wProcessorLevel = ProcessorInfo.ProcessorLevel;
lpSystemInfo->wProcessorRevision = ProcessorInfo.ProcessorRevision;
if (ProcessorInfo.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_INTEL) {
if (ProcessorInfo.ProcessorLevel == 3) {
lpSystemInfo->dwProcessorType = PROCESSOR_INTEL_386;
}
else
if (ProcessorInfo.ProcessorLevel == 4) {
lpSystemInfo->dwProcessorType = PROCESSOR_INTEL_486;
}
else {
lpSystemInfo->dwProcessorType = PROCESSOR_INTEL_PENTIUM;
}
}
else
if (ProcessorInfo.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_MIPS) {
lpSystemInfo->dwProcessorType = PROCESSOR_MIPS_R4000;
}
else
if (ProcessorInfo.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_ALPHA) {
lpSystemInfo->dwProcessorType = PROCESSOR_ALPHA_21064;
}
else
if (ProcessorInfo.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_PPC) {
lpSystemInfo->dwProcessorType = 604; // backward compatibility
}
else
if (ProcessorInfo.ProcessorArchitecture == PROCESSOR_ARCHITECTURE_IA64) {
lpSystemInfo->dwProcessorType = PROCESSOR_INTEL_IA64;
}
else {
lpSystemInfo->dwProcessorType = 0;
}
lpSystemInfo->dwAllocationGranularity = BasicInfo.AllocationGranularity;
//
// for apps less than 3.51, then return 0 in dwReserved. This allows borlands
// debugger to continue to run since it mistakenly used dwReserved
// as AllocationGranularity
//
/* commented by Digvijay
if ( WmipGetProcessVersion(0) < 0x30033 ) {
lpSystemInfo->wProcessorLevel = 0;
lpSystemInfo->wProcessorRevision = 0;
}*/
return;
}
VOID
WINAPI
WmipGlobalMemoryStatus(
LPMEMORYSTATUS lpBuffer
)
{
DWORD NumberOfPhysicalPages;
SYSTEM_PERFORMANCE_INFORMATION PerfInfo;
VM_COUNTERS VmCounters;
QUOTA_LIMITS QuotaLimits;
NTSTATUS Status;
PPEB Peb;
PIMAGE_NT_HEADERS NtHeaders;
DWORDLONG Memory64;
#if defined(BUILD_WOW6432) || defined(_WIN64)
Status = NtQuerySystemInformation(SystemBasicInformation,
&SysInfo,
sizeof(SYSTEM_BASIC_INFORMATION),
NULL
);
if (!NT_SUCCESS(Status)) {
return;
}
#endif
Status = NtQuerySystemInformation(
SystemPerformanceInformation,
&PerfInfo,
sizeof(PerfInfo),
NULL
);
ASSERT(NT_SUCCESS(Status));
lpBuffer->dwLength = sizeof( *lpBuffer );
//
// Capture the number of physical pages as it can change dynamically.
// If it goes up or down in the middle of this routine, the results may
// look strange (ie: available > total, etc), but it will quickly
// right itself.
//
NumberOfPhysicalPages = USER_SHARED_DATA->NumberOfPhysicalPages;
//
// Determine the memory load. < 100 available pages is 100
// Otherwise load is ((TotalPhys - AvailPhys) * 100) / TotalPhys
//
if (PerfInfo.AvailablePages < 100) {
lpBuffer->dwMemoryLoad = 100;
}
else {
lpBuffer->dwMemoryLoad =
((DWORD)(NumberOfPhysicalPages - PerfInfo.AvailablePages) * 100) /
NumberOfPhysicalPages;
}
Memory64 = (DWORDLONG)NumberOfPhysicalPages * BASE_SYSINFO.PageSize;
lpBuffer->dwTotalPhys = (SIZE_T) __min(Memory64, MAXULONG_PTR);
Memory64 = ((DWORDLONG)PerfInfo.AvailablePages * (DWORDLONG)BASE_SYSINFO.PageSize);
lpBuffer->dwAvailPhys = (SIZE_T) __min(Memory64, MAXULONG_PTR);
if (gpTermsrvAdjustPhyMemLimits) {
gpTermsrvAdjustPhyMemLimits(&(lpBuffer->dwTotalPhys),
&(lpBuffer->dwAvailPhys),
BASE_SYSINFO.PageSize);
}
//
// Zero returned values in case the query process fails.
//
RtlZeroMemory (&QuotaLimits, sizeof (QUOTA_LIMITS));
RtlZeroMemory (&VmCounters, sizeof (VM_COUNTERS));
Status = NtQueryInformationProcess (NtCurrentProcess(),
ProcessQuotaLimits,
&QuotaLimits,
sizeof(QUOTA_LIMITS),
NULL );
Status = NtQueryInformationProcess (NtCurrentProcess(),
ProcessVmCounters,
&VmCounters,
sizeof(VM_COUNTERS),
NULL );
//
// Determine the total page file space with respect to this process.
//
Memory64 = __min(PerfInfo.CommitLimit, QuotaLimits.PagefileLimit);
Memory64 *= BASE_SYSINFO.PageSize;
lpBuffer->dwTotalPageFile = (SIZE_T)__min(Memory64, MAXULONG_PTR);
//
// Determine remaining page file space with respect to this process.
//
Memory64 = __min(PerfInfo.CommitLimit - PerfInfo.CommittedPages,
QuotaLimits.PagefileLimit - VmCounters.PagefileUsage);
Memory64 *= BASE_SYSINFO.PageSize;
lpBuffer->dwAvailPageFile = (SIZE_T) __min(Memory64, MAXULONG_PTR);
lpBuffer->dwTotalVirtual = (BASE_SYSINFO.MaximumUserModeAddress -
BASE_SYSINFO.MinimumUserModeAddress) + 1;
lpBuffer->dwAvailVirtual = lpBuffer->dwTotalVirtual - VmCounters.VirtualSize;
#if !defined(_WIN64)
//
// Lie about available memory if application can't handle large (>2GB) addresses
//
Peb = NtCurrentPeb();
NtHeaders = RtlImageNtHeader( Peb->ImageBaseAddress );
if (NtHeaders && !(NtHeaders->FileHeader.Characteristics & IMAGE_FILE_LARGE_ADDRESS_AWARE)) {
if (lpBuffer->dwTotalPhys > 0x7FFFFFFF) {
lpBuffer->dwTotalPhys = 0x7FFFFFFF;
}
if (lpBuffer->dwAvailPhys > 0x7FFFFFFF) {
lpBuffer->dwAvailPhys = 0x7FFFFFFF;
}
if (lpBuffer->dwTotalVirtual > 0x7FFFFFFF) {
lpBuffer->dwTotalVirtual = 0x7FFFFFFF;
}
if (lpBuffer->dwAvailVirtual > 0x7FFFFFFF) {
lpBuffer->dwAvailVirtual = 0x7FFFFFFF;
}
}
#endif
return;
}
DWORD
APIENTRY
WmipWaitForMultipleObjectsEx(
DWORD nCount,
CONST HANDLE *lpHandles,
BOOL bWaitAll,
DWORD dwMilliseconds,
BOOL bAlertable
)
/*++
Routine Description:
A wait operation on multiple waitable objects (up to
MAXIMUM_WAIT_OBJECTS) is accomplished with the
WaitForMultipleObjects function.
This API can be used to wait on any of the specified objects to
enter the signaled state, or all of the objects to enter the
signaled state.
If the bAlertable parameter is FALSE, the only way the wait
terminates is because the specified timeout period expires, or
because the specified objects entered the signaled state. If the
bAlertable parameter is TRUE, then the wait can return due to any one of
the above wait termination conditions, or because an I/O completion
callback terminated the wait early (return value of
WAIT_IO_COMPLETION).
Arguments:
nCount - A count of the number of objects that are to be waited on.
lpHandles - An array of object handles. Each handle must have
SYNCHRONIZE access to the associated object.
bWaitAll - A flag that supplies the wait type. A value of TRUE
indicates a "wait all". A value of false indicates a "wait
any".
dwMilliseconds - A time-out value that specifies the relative time,
in milliseconds, over which the wait is to be completed. A
timeout value of 0 specified that the wait is to timeout
immediately. This allows an application to test an object to
determine if it is in the signaled state. A timeout value of
0xffffffff specifies an infinite timeout period.
bAlertable - Supplies a flag that controls whether or not the
wait may terminate early due to an I/O completion callback.
A value of TRUE allows this API to complete early due to an I/O
completion callback. A value of FALSE will not allow I/O
completion callbacks to terminate this call early.
Return Value:
WAIT_TIME_OUT - indicates that the wait was terminated due to the
TimeOut conditions.
0 to MAXIMUM_WAIT_OBJECTS-1, indicates, in the case of wait for any
object, the object number which satisfied the wait. In the case
of wait for all objects, the value only indicates that the wait
was completed successfully.
0xffffffff - The wait terminated due to an error. WmipGetLastError may be
used to get additional error information.
WAIT_ABANDONED_0 to (WAIT_ABANDONED_0)+(MAXIMUM_WAIT_OBJECTS - 1),
indicates, in the case of wait for any object, the object number
which satisfied the event, and that the object which satisfied
the event was abandoned. In the case of wait for all objects,
the value indicates that the wait was completed successfully and
at least one of the objects was abandoned.
WAIT_IO_COMPLETION - The wait terminated due to one or more I/O
completion callbacks.
--*/
{
NTSTATUS Status;
LARGE_INTEGER TimeOut;
PLARGE_INTEGER pTimeOut;
DWORD i;
LPHANDLE HandleArray;
HANDLE Handles[ 8 ];
PPEB Peb;
RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME Frame = { sizeof(Frame), RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME_FORMAT_WHISTLER };
RtlActivateActivationContextUnsafeFast(&Frame, NULL); // make the process default activation context active so that APCs are delivered under it
__try {
if (nCount > 8) {
HandleArray = (LPHANDLE) RtlAllocateHeap(RtlProcessHeap(), MAKE_TAG( TMP_TAG ), nCount*sizeof(HANDLE));
if (HandleArray == NULL) {
WmipBaseSetLastNTError(STATUS_NO_MEMORY);
return 0xffffffff;
}
} else {
HandleArray = Handles;
}
RtlCopyMemory(HandleArray,(LPVOID)lpHandles,nCount*sizeof(HANDLE));
Peb = NtCurrentPeb();
for (i=0;i<nCount;i++) {
switch( HandleToUlong(HandleArray[i]) ) {
case STD_INPUT_HANDLE: HandleArray[i] = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: HandleArray[i] = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: HandleArray[i] = Peb->ProcessParameters->StandardError;
break;
}
}
pTimeOut = WmipBaseFormatTimeOut(&TimeOut,dwMilliseconds);
rewait:
Status = NtWaitForMultipleObjects(
(CHAR)nCount,
HandleArray,
bWaitAll ? WaitAll : WaitAny,
(BOOLEAN)bAlertable,
pTimeOut
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
Status = (NTSTATUS)0xffffffff;
}
else {
if ( bAlertable && Status == STATUS_ALERTED ) {
goto rewait;
}
}
if (HandleArray != Handles) {
RtlFreeHeap(RtlProcessHeap(), 0, HandleArray);
}
} __finally {
RtlDeactivateActivationContextUnsafeFast(&Frame);
}
return (DWORD)Status;
}
VOID
WmipSleep(
DWORD dwMilliseconds
)
/*++
Routine Description:
The execution of the current thread can be delayed for a specified
interval of time with the Sleep function.
The Sleep function causes the current thread to enter a
waiting state until the specified interval of time has passed.
Arguments:
dwMilliseconds - A time-out value that specifies the relative time,
in milliseconds, over which the wait is to be completed. A
timeout value of 0 specified that the wait is to timeout
immediately. This allows an application to test an object to
determine if it is in the signaled state. A timeout value of -1
specifies an infinite timeout period.
Return Value:
None.
--*/
{
WmipSleepEx(dwMilliseconds,FALSE);
}
DWORD
APIENTRY
WmipSleepEx(
DWORD dwMilliseconds,
BOOL bAlertable
)
/*++
Routine Description:
The execution of the current thread can be delayed for a specified
interval of time with the SleepEx function.
The SleepEx function causes the current thread to enter a waiting
state until the specified interval of time has passed.
If the bAlertable parameter is FALSE, the only way the SleepEx
returns is when the specified time interval has passed. If the
bAlertable parameter is TRUE, then the SleepEx can return due to the
expiration of the time interval (return value of 0), or because an
I/O completion callback terminated the SleepEx early (return value
of WAIT_IO_COMPLETION).
Arguments:
dwMilliseconds - A time-out value that specifies the relative time,
in milliseconds, over which the wait is to be completed. A
timeout value of 0 specified that the wait is to timeout
immediately. A timeout value of -1 specifies an infinite
timeout period.
bAlertable - Supplies a flag that controls whether or not the
SleepEx may terminate early due to an I/O completion callback.
A value of TRUE allows this API to complete early due to an I/O
completion callback. A value of FALSE will not allow I/O
completion callbacks to terminate this call early.
Return Value:
0 - The SleepEx terminated due to expiration of the time interval.
WAIT_IO_COMPLETION - The SleepEx terminated due to one or more I/O
completion callbacks.
--*/
{
LARGE_INTEGER TimeOut;
PLARGE_INTEGER pTimeOut;
NTSTATUS Status;
RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME Frame = { sizeof(Frame), RTL_CALLER_ALLOCATED_ACTIVATION_CONTEXT_STACK_FRAME_FORMAT_WHISTLER };
RtlActivateActivationContextUnsafeFast(&Frame, NULL); // make the process default activation context active so that APCs are delivered under it
__try {
pTimeOut = WmipBaseFormatTimeOut(&TimeOut,dwMilliseconds);
if (pTimeOut == NULL) {
//
// If Sleep( -1 ) then delay for the longest possible integer
// relative to now.
//
TimeOut.LowPart = 0x0;
TimeOut.HighPart = 0x80000000;
pTimeOut = &TimeOut;
}
rewait:
Status = NtDelayExecution(
(BOOLEAN)bAlertable,
pTimeOut
);
if ( bAlertable && Status == STATUS_ALERTED ) {
goto rewait;
}
} __finally {
RtlDeactivateActivationContextUnsafeFast(&Frame);
}
return Status == STATUS_USER_APC ? WAIT_IO_COMPLETION : 0;
}
BOOL
APIENTRY
WmipSetThreadPriority(
HANDLE hThread,
int nPriority
)
/*++
Routine Description:
The specified thread's priority can be set using SetThreadPriority.
A thread's priority may be set using SetThreadPriority. This call
allows the thread's relative execution importance to be communicated
to the system. The system normally schedules threads according to
their priority. The system is free to temporarily boost the
priority of a thread when signifigant events occur (e.g. keyboard
or mouse input...). Similarly, as a thread runs without blocking,
the system will decay its priority. The system will never decay the
priority below the value set by this call.
In the absence of system originated priority boosts, threads will be
scheduled in a round-robin fashion at each priority level from
THREAD_PRIORITY_TIME_CRITICAL to THREAD_PRIORITY_IDLE. Only when there
are no runnable threads at a higher level, will scheduling of
threads at a lower level take place.
All threads initially start at THREAD_PRIORITY_NORMAL.
If for some reason the thread needs more priority, it can be
switched to THREAD_PRIORITY_ABOVE_NORMAL or THREAD_PRIORITY_HIGHEST.
Switching to THREAD_PRIORITY_TIME_CRITICAL should only be done in extreme
situations. Since these threads are given the highes priority, they
should only run in short bursts. Running for long durations will
soak up the systems processing bandwidth starving threads at lower
levels.
If a thread needs to do low priority work, or should only run there
is nothing else to do, its priority should be set to
THREAD_PRIORITY_BELOW_NORMAL or THREAD_PRIORITY_LOWEST. For extreme
cases, THREAD_PRIORITY_IDLE can be used.
Care must be taken when manipulating priorites. If priorities are
used carelessly (every thread is set to THREAD_PRIORITY_TIME_CRITICAL),
the effects of priority modifications can produce undesireable
effects (e.g. starvation, no effect...).
Arguments:
hThread - Supplies a handle to the thread whose priority is to be
set. The handle must have been created with
THREAD_SET_INFORMATION access.
nPriority - Supplies the priority value for the thread. The
following five priority values (ordered from lowest priority to
highest priority) are allowed.
nPriority Values:
THREAD_PRIORITY_IDLE - The thread's priority should be set to
the lowest possible settable priority.
THREAD_PRIORITY_LOWEST - The thread's priority should be set to
the next lowest possible settable priority.
THREAD_PRIORITY_BELOW_NORMAL - The thread's priority should be
set to just below normal.
THREAD_PRIORITY_NORMAL - The thread's priority should be set to
the normal priority value. This is the value that all
threads begin execution at.
THREAD_PRIORITY_ABOVE_NORMAL - The thread's priority should be
set to just above normal priority.
THREAD_PRIORITY_HIGHEST - The thread's priority should be set to
the next highest possible settable priority.
THREAD_PRIORITY_TIME_CRITICAL - The thread's priority should be set
to the highest possible settable priority. This priority is
very likely to interfere with normal operation of the
system.
Return Value:
TRUE - The operation was successful
FALSE/NULL - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
LONG BasePriority;
BasePriority = (LONG)nPriority;
//
// saturation is indicated by calling with a value of 16 or -16
//
if ( BasePriority == THREAD_PRIORITY_TIME_CRITICAL ) {
BasePriority = ((HIGH_PRIORITY + 1) / 2);
}
else if ( BasePriority == THREAD_PRIORITY_IDLE ) {
BasePriority = -((HIGH_PRIORITY + 1) / 2);
}
Status = NtSetInformationThread(
hThread,
ThreadBasePriority,
&BasePriority,
sizeof(BasePriority)
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
return FALSE;
}
return TRUE;
}
BOOL
WmipDuplicateHandle(
HANDLE hSourceProcessHandle,
HANDLE hSourceHandle,
HANDLE hTargetProcessHandle,
LPHANDLE lpTargetHandle,
DWORD dwDesiredAccess,
BOOL bInheritHandle,
DWORD dwOptions
)
/*++
Routine Description:
A duplicate handle can be created with the DuplicateHandle function.
This is a generic function and operates on the following object
types:
- Process Object
- Thread Object
- Mutex Object
- Event Object
- Semaphore Object
- File Object
Please note that Module Objects are not in this list.
This function requires PROCESS_DUP_ACCESS to both the
SourceProcessHandle and the TargetProcessHandle. This function is
used to pass an object handle from one process to another. Once
this call is complete, the target process needs to be informed of
the value of the target handle. The target process can then operate
on the object using this handle value.
Arguments:
hSourceProcessHandle - An open handle to the process that contains the
handle to be duplicated. The handle must have been created with
PROCESS_DUP_HANDLE access to the process.
hSourceHandle - An open handle to any object that is valid in the
context of the source process.
hTargetProcessHandle - An open handle to the process that is to
receive the duplicated handle. The handle must have been
created with PROCESS_DUP_HANDLE access to the process.
lpTargetHandle - A pointer to a variable which receives the new handle
that points to the same object as SourceHandle does. This
handle value is valid in the context of the target process.
dwDesiredAccess - The access requested to for the new handle. This
parameter is ignored if the DUPLICATE_SAME_ACCESS option is
specified.
bInheritHandle - Supplies a flag that if TRUE, marks the target
handle as inheritable. If this is the case, then the target
handle will be inherited to new processes each time the target
process creates a new process using CreateProcess.
dwOptions - Specifies optional behaviors for the caller.
Options Flags:
DUPLICATE_CLOSE_SOURCE - The SourceHandle will be closed by
this service prior to returning to the caller. This occurs
regardless of any error status returned.
DUPLICATE_SAME_ACCESS - The DesiredAccess parameter is ignored
and instead the GrantedAccess associated with SourceHandle
is used as the DesiredAccess when creating the TargetHandle.
Return Value:
TRUE - The operation was successful.
FALSE/NULL - The operation failed. Extended error status is available
using WmipGetLastError.
--*/
{
NTSTATUS Status;
PPEB Peb;
Peb = NtCurrentPeb();
switch( HandleToUlong(hSourceHandle) ) {
case STD_INPUT_HANDLE: hSourceHandle = Peb->ProcessParameters->StandardInput;
break;
case STD_OUTPUT_HANDLE: hSourceHandle = Peb->ProcessParameters->StandardOutput;
break;
case STD_ERROR_HANDLE: hSourceHandle = Peb->ProcessParameters->StandardError;
break;
}
Status = NtDuplicateObject(
hSourceProcessHandle,
hSourceHandle,
hTargetProcessHandle,
lpTargetHandle,
(ACCESS_MASK)dwDesiredAccess,
bInheritHandle ? OBJ_INHERIT : 0,
dwOptions
);
if ( NT_SUCCESS(Status) ) {
return TRUE;
}
else {
WmipBaseSetLastNTError(Status);
return FALSE;
}
return FALSE;
}
UINT
WmipSetErrorMode(
UINT uMode
)
{
UINT PreviousMode;
UINT NewMode;
PreviousMode = WmipGetErrorMode();
NewMode = uMode;
if (NewMode & SEM_FAILCRITICALERRORS ) {
NewMode &= ~SEM_FAILCRITICALERRORS;
}
else {
NewMode |= SEM_FAILCRITICALERRORS;
}
//
// Once SEM_NOALIGNMENTFAULTEXCEPT has been enabled for a given
// process, it cannot be disabled via this API.
//
NewMode |= (PreviousMode & SEM_NOALIGNMENTFAULTEXCEPT);
if ( NT_SUCCESS(NtSetInformationProcess(
NtCurrentProcess(),
ProcessDefaultHardErrorMode,
(PVOID) &NewMode,
sizeof(NewMode)
) ) ){
}
return( PreviousMode );
}
UINT
WmipGetErrorMode()
{
UINT PreviousMode;
NTSTATUS Status;
Status = NtQueryInformationProcess(
NtCurrentProcess(),
ProcessDefaultHardErrorMode,
(PVOID) &PreviousMode,
sizeof(PreviousMode),
NULL
);
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
return 0;
}
if (PreviousMode & 1) {
PreviousMode &= ~SEM_FAILCRITICALERRORS;
}
else {
PreviousMode |= SEM_FAILCRITICALERRORS;
}
return PreviousMode;
}
ULONG WmipBuildGuidObjectAttributes(
IN LPGUID Guid,
OUT POBJECT_ATTRIBUTES ObjectAttributes,
OUT PUNICODE_STRING GuidString,
OUT PWCHAR GuidObjectName
)
{
WCHAR GuidChar[37];
WmipAssert(Guid != NULL);
//
// Build up guid name into the ObjectAttributes
//
swprintf(GuidChar, L"%08lX-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X",
Guid->Data1, Guid->Data2,
Guid->Data3,
Guid->Data4[0], Guid->Data4[1],
Guid->Data4[2], Guid->Data4[3],
Guid->Data4[4], Guid->Data4[5],
Guid->Data4[6], Guid->Data4[7]);
WmipAssert(wcslen(GuidChar) == 36);
wcscpy(GuidObjectName, WmiGuidObjectDirectory);
wcscat(GuidObjectName, GuidChar);
RtlInitUnicodeString(GuidString, GuidObjectName);
memset(ObjectAttributes, 0, sizeof(OBJECT_ATTRIBUTES));
ObjectAttributes->Length = sizeof(OBJECT_ATTRIBUTES);
ObjectAttributes->ObjectName = GuidString;
return(ERROR_SUCCESS);
}
HANDLE
APIENTRY
WmipCreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId
)
{
HANDLE ThreadHandle;
NTSTATUS st =
RtlCreateUserThread(
NtCurrentProcess(), // process handle
lpThreadAttributes, // security descriptor
TRUE, // Create suspended?
0L, // ZeroBits: default
dwStackSize, // Max stack size: default
0L, // Committed stack size: default
lpStartAddress, // Function to start in
lpParameter, // Event the thread signals when ready
&ThreadHandle, // Thread handle return
(PCLIENT_ID)lpThreadId // Thread id
);
if(NT_SUCCESS(st)){
st = NtResumeThread(ThreadHandle,NULL);
}
if(NT_SUCCESS(st)){
return ThreadHandle;
} else {
return NULL;
}
}
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////
// TLS FUNCTIONS
/////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////
DWORD
WmipTlsAlloc(
VOID
)
/*++
Routine Description:
A TLS index may be allocated using TlsAllocHelper. Win32 garuntees a
minimum number of TLS indexes are available in each process. The
constant TLS_MINIMUM_AVAILABLE defines the minimum number of
available indexes. This minimum is at least 64 for all Win32
systems.
Arguments:
None.
Return Value:
Not-0xffffffff - Returns a TLS index that may be used in a
subsequent call to TlsFreeHelper, TlsSetValueHelper, or TlsGetValueHelper. The
storage associated with the index is initialized to NULL.
0xffffffff - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PPEB Peb;
PTEB Teb;
DWORD Index;
Peb = NtCurrentPeb();
Teb = NtCurrentTeb();
RtlAcquirePebLock();
try {
Index = RtlFindClearBitsAndSet((PRTL_BITMAP)Peb->TlsBitmap,1,0);
if ( Index == 0xffffffff ) {
Index = RtlFindClearBitsAndSet((PRTL_BITMAP)Peb->TlsExpansionBitmap,1,0);
if ( Index == 0xffffffff ) {
//WmipSetLastError(RtlNtStatusToDosError(STATUS_NO_MEMORY));
}
else {
if ( !Teb->TlsExpansionSlots ) {
Teb->TlsExpansionSlots = RtlAllocateHeap(
RtlProcessHeap(),
MAKE_TAG( TMP_TAG ) | HEAP_ZERO_MEMORY,
TLS_EXPANSION_SLOTS * sizeof(PVOID)
);
if ( !Teb->TlsExpansionSlots ) {
RtlClearBits((PRTL_BITMAP)Peb->TlsExpansionBitmap,Index,1);
Index = 0xffffffff;
//WmipSetLastError(RtlNtStatusToDosError(STATUS_NO_MEMORY));
return Index;
}
}
Teb->TlsExpansionSlots[Index] = NULL;
Index += TLS_MINIMUM_AVAILABLE;
}
}
else {
Teb->TlsSlots[Index] = NULL;
}
}
finally {
RtlReleasePebLock();
}
#if DBG
Index |= TLS_MASK;
#endif
return Index;
}
LPVOID
WmipTlsGetValue(
DWORD dwTlsIndex
)
/*++
Routine Description:
This function is used to retrive the value in the TLS storage
associated with the specified index.
If the index is valid this function clears the value returned by
GetLastError(), and returns the value stored in the TLS slot
associated with the specified index. Otherwise a value of NULL is
returned with GetLastError updated appropriately.
It is expected, that DLLs will use TlsAllocHelper and TlsGetValueHelper as
follows:
- Upon DLL initialization, a TLS index will be allocated using
TlsAllocHelper. The DLL will then allocate some dynamic storage and
store its address in the TLS slot using TlsSetValueHelper. This
completes the per thread initialization for the initial thread
of the process. The TLS index is stored in instance data for
the DLL.
- Each time a new thread attaches to the DLL, the DLL will
allocate some dynamic storage and store its address in the TLS
slot using TlsSetValueHelper. This completes the per thread
initialization for the new thread.
- Each time an initialized thread makes a DLL call requiring the
TLS, the DLL will call TlsGetValueHelper to get the TLS data for the
thread.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAllocHelper. The
index specifies which TLS slot is to be located. Translating a
TlsIndex does not prevent a TlsFreeHelper call from proceding.
Return Value:
NON-NULL - The function was successful. The value is the data stored
in the TLS slot associated with the specified index.
NULL - The operation failed, or the value associated with the
specified index was NULL. Extended error status is available
using GetLastError. If this returns non-zero, the index was
invalid.
--*/
{
PTEB Teb;
LPVOID *Slot;
#if DBG
// See if the Index passed in is from TlsAllocHelper or random goo...
ASSERTMSG( "BASEDLL: Invalid TlsIndex passed to TlsGetValueHelper\n", (dwTlsIndex & TLS_MASK));
dwTlsIndex &= ~TLS_MASK;
#endif
Teb = NtCurrentTeb();
if ( dwTlsIndex < TLS_MINIMUM_AVAILABLE ) {
Slot = &Teb->TlsSlots[dwTlsIndex];
Teb->LastErrorValue = 0;
return *Slot;
}
else {
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE+TLS_EXPANSION_SLOTS ) {
WmipSetLastError(RtlNtStatusToDosError(STATUS_INVALID_PARAMETER));
return NULL;
}
else {
Teb->LastErrorValue = 0;
if ( Teb->TlsExpansionSlots ) {
return Teb->TlsExpansionSlots[dwTlsIndex-TLS_MINIMUM_AVAILABLE];
}
else {
return NULL;
}
}
}
}
BOOL
WmipTlsSetValue(
DWORD dwTlsIndex,
LPVOID lpTlsValue
)
/*++
Routine Description:
This function is used to store a value in the TLS storage associated
with the specified index.
If the index is valid this function stores the value and returns
TRUE. Otherwise a value of FALSE is returned.
It is expected, that DLLs will use TlsAllocHelper and TlsSetValueHelper as
follows:
- Upon DLL initialization, a TLS index will be allocated using
TlsAllocHelper. The DLL will then allocate some dynamic storage and
store its address in the TLS slot using TlsSetValueHelper. This
completes the per thread initialization for the initial thread
of the process. The TLS index is stored in instance data for
the DLL.
- Each time a new thread attaches to the DLL, the DLL will
allocate some dynamic storage and store its address in the TLS
slot using TlsSetValueHelper. This completes the per thread
initialization for the new thread.
- Each time an initialized thread makes a DLL call requiring the
TLS, the DLL will call TlsGetValueHelper to get the TLS data for the
thread.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAllocHelper. The
index specifies which TLS slot is to be located. Translating a
TlsIndex does not prevent a TlsFreeHelper call from proceding.
lpTlsValue - Supplies the value to be stored in the TLS Slot.
Return Value:
TRUE - The function was successful. The value lpTlsValue was
stored.
FALSE - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PTEB Teb;
#if DBG
// See if the Index passed in is from TlsAllocHelper or random goo...
ASSERTMSG( "BASEDLL: Invalid TlsIndex passed to TlsSetValueHelper\n", (dwTlsIndex & TLS_MASK));
dwTlsIndex &= ~TLS_MASK;
#endif
Teb = NtCurrentTeb();
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE ) {
dwTlsIndex -= TLS_MINIMUM_AVAILABLE;
if ( dwTlsIndex < TLS_EXPANSION_SLOTS ) {
if ( !Teb->TlsExpansionSlots ) {
RtlAcquirePebLock();
if ( !Teb->TlsExpansionSlots ) {
Teb->TlsExpansionSlots = RtlAllocateHeap(
RtlProcessHeap(),
MAKE_TAG( TMP_TAG ) | HEAP_ZERO_MEMORY,
TLS_EXPANSION_SLOTS * sizeof(PVOID)
);
if ( !Teb->TlsExpansionSlots ) {
RtlReleasePebLock();
WmipSetLastError(RtlNtStatusToDosError(STATUS_NO_MEMORY));
return FALSE;
}
}
RtlReleasePebLock();
}
Teb->TlsExpansionSlots[dwTlsIndex] = lpTlsValue;
}
else {
WmipSetLastError(RtlNtStatusToDosError(STATUS_INVALID_PARAMETER));
return FALSE;
}
}
else {
Teb->TlsSlots[dwTlsIndex] = lpTlsValue;
}
return TRUE;
}
BOOL
WmipTlsFree(
DWORD dwTlsIndex
)
/*++
Routine Description:
A valid TLS index may be free'd using TlsFreeHelper.
Arguments:
dwTlsIndex - Supplies a TLS index allocated using TlsAllocHelper. If the
index is a valid index, it is released by this call and is made
available for reuse. DLLs should be carefull to release any
per-thread data pointed to by all of their threads TLS slots
before calling this function. It is expected that DLLs will
only call this function (if at ALL) during their process detach
routine.
Return Value:
TRUE - The operation was successful. Calling TlsTranslateIndex with
this index will fail. TlsAllocHelper is free to reallocate this
index.
FALSE - The operation failed. Extended error status is available
using GetLastError.
--*/
{
PPEB Peb;
BOOLEAN ValidIndex;
PRTL_BITMAP TlsBitmap;
NTSTATUS Status;
DWORD Index2;
#if DBG
// See if the Index passed in is from TlsAllocHelper or random goo...
ASSERTMSG( "BASEDLL: Invalid TlsIndex passed to TlsFreeHelper\n", (dwTlsIndex & TLS_MASK));
dwTlsIndex &= ~TLS_MASK;
#endif
Peb = NtCurrentPeb();
RtlAcquirePebLock();
try {
if ( dwTlsIndex >= TLS_MINIMUM_AVAILABLE ) {
Index2 = dwTlsIndex - TLS_MINIMUM_AVAILABLE;
if ( Index2 >= TLS_EXPANSION_SLOTS ) {
ValidIndex = FALSE;
}
else {
TlsBitmap = (PRTL_BITMAP)Peb->TlsExpansionBitmap;
ValidIndex = RtlAreBitsSet(TlsBitmap,Index2,1);
}
}
else {
TlsBitmap = (PRTL_BITMAP)Peb->TlsBitmap;
Index2 = dwTlsIndex;
ValidIndex = RtlAreBitsSet(TlsBitmap,Index2,1);
}
if ( ValidIndex ) {
Status = NtSetInformationThread(
NtCurrentThread(),
ThreadZeroTlsCell,
&dwTlsIndex,
sizeof(dwTlsIndex)
);
if ( !NT_SUCCESS(Status) ) {
WmipSetLastError(RtlNtStatusToDosError(STATUS_INVALID_PARAMETER));
return FALSE;
}
RtlClearBits(TlsBitmap,Index2,1);
}
else {
WmipSetLastError(RtlNtStatusToDosError(STATUS_INVALID_PARAMETER));
}
}
finally {
RtlReleasePebLock();
}
return ValidIndex;
}
BOOL
WmipBasep8BitStringToDynamicUnicodeString(
OUT PUNICODE_STRING UnicodeString,
IN LPCSTR lpSourceString
)
/*++
Routine Description:
Captures and converts a 8-bit (OEM or ANSI) string into a heap-allocated
UNICODE string
Arguments:
UnicodeString - location where UNICODE_STRING is stored
lpSourceString - string in OEM or ANSI
Return Value:
TRUE if string is correctly stored, FALSE if an error occurred. In the
error case, the last error is correctly set.
--*/
{
ANSI_STRING AnsiString;
NTSTATUS Status;
//
// Convert input into dynamic unicode string
//
RtlInitString( &AnsiString, lpSourceString );
Status = RtlAnsiStringToUnicodeString( UnicodeString, &AnsiString, TRUE );
//
// If we couldn't do this, fail
//
if (!NT_SUCCESS( Status )){
if ( Status == STATUS_BUFFER_OVERFLOW ) {
WmipSetLastError( ERROR_FILENAME_EXCED_RANGE );
} else {
WmipBaseSetLastNTError( Status );
}
return FALSE;
}
return TRUE;
}
DWORD
APIENTRY
WmipGetFullPathNameA(
LPCSTR lpFileName,
DWORD nBufferLength,
LPSTR lpBuffer,
LPSTR *lpFilePart
)
/*++
Routine Description:
ANSI thunk to GetFullPathNameW
--*/
{
NTSTATUS Status;
ULONG UnicodeLength;
UNICODE_STRING UnicodeString;
UNICODE_STRING UnicodeResult;
ANSI_STRING AnsiResult;
PWSTR Ubuff;
PWSTR FilePart;
PWSTR *FilePartPtr;
INT PrefixLength = 0;
if ( ARGUMENT_PRESENT(lpFilePart) ) {
FilePartPtr = &FilePart;
}
else {
FilePartPtr = NULL;
}
if (!WmipBasep8BitStringToDynamicUnicodeString( &UnicodeString, lpFileName )) {
return 0;
}
Ubuff = RtlAllocateHeap(RtlProcessHeap(), MAKE_TAG( TMP_TAG ), (MAX_PATH<<1) + sizeof(UNICODE_NULL));
if ( !Ubuff ) {
RtlFreeUnicodeString(&UnicodeString);
WmipBaseSetLastNTError(STATUS_NO_MEMORY);
return 0;
}
UnicodeLength = RtlGetFullPathName_U(
UnicodeString.Buffer,
(MAX_PATH<<1),
Ubuff,
FilePartPtr
);
//
// UnicodeLength contains the byte count of unicode string.
// Original code does "UnicodeLength / sizeof(WCHAR)" to get
// the size of corresponding ansi string.
// This is correct in SBCS environment. However in DBCS environment,
// it's definitely WRONG.
//
if ( UnicodeLength <= ((MAX_PATH * sizeof(WCHAR) + sizeof(UNICODE_NULL))) ) {
Status = RtlUnicodeToMultiByteSize(&UnicodeLength, Ubuff, UnicodeLength);
//
// At this point, UnicodeLength variable contains
// Ansi based byte length.
//
if ( NT_SUCCESS(Status) ) {
if ( UnicodeLength && ARGUMENT_PRESENT(lpFilePart) && FilePart != NULL ) {
INT UnicodePrefixLength;
UnicodePrefixLength = (INT)(FilePart - Ubuff) * sizeof(WCHAR);
Status = RtlUnicodeToMultiByteSize( &PrefixLength,
Ubuff,
UnicodePrefixLength );
//
// At this point, PrefixLength variable contains
// Ansi based byte length.
//
if ( !NT_SUCCESS(Status) ) {
WmipBaseSetLastNTError(Status);
UnicodeLength = 0;
}
}
} else {
WmipBaseSetLastNTError(Status);
UnicodeLength = 0;
}
} else {
//
// we exceed the MAX_PATH limit. we should log the error and
// return zero. however US code returns the byte count of
// buffer required and doesn't log any error.
//
UnicodeLength = 0;
}
if ( UnicodeLength && UnicodeLength < nBufferLength ) {
RtlInitUnicodeString(&UnicodeResult,Ubuff);
Status = BasepUnicodeStringTo8BitString(&AnsiResult,&UnicodeResult,TRUE);
if ( NT_SUCCESS(Status) ) {
RtlMoveMemory(lpBuffer,AnsiResult.Buffer,UnicodeLength+1);
RtlFreeAnsiString(&AnsiResult);
if ( ARGUMENT_PRESENT(lpFilePart) ) {
if ( FilePart == NULL ) {
*lpFilePart = NULL;
}
else {
*lpFilePart = lpBuffer + PrefixLength;
}
}
}
else {
WmipBaseSetLastNTError(Status);
UnicodeLength = 0;
}
}
else {
if ( UnicodeLength ) {
UnicodeLength++;
}
}
RtlFreeUnicodeString(&UnicodeString);
RtlFreeHeap(RtlProcessHeap(), 0,Ubuff);
return (DWORD)UnicodeLength;
}