mirror of https://github.com/tongzx/nt5src
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
438 lines
14 KiB
438 lines
14 KiB
/******************************Module*Header*******************************\
|
|
* Module Name: Brush.c
|
|
*
|
|
* Handles all brush/pattern initialization and realization.
|
|
*
|
|
* Copyright (c) 1992-1994 Microsoft Corporation
|
|
*
|
|
\**************************************************************************/
|
|
|
|
#include "precomp.h"
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vRealizeDitherPattern
|
|
*
|
|
* Generates an 8x8 dither pattern, in our internal realization format, for
|
|
* the colour ulRGBToDither. Note that the high byte of ulRGBToDither does
|
|
* not need to be set to zero, because vComputeSubspaces ignores it.
|
|
\**************************************************************************/
|
|
|
|
VOID vRealizeDitherPattern(
|
|
RBRUSH* prb,
|
|
ULONG ulRGBToDither)
|
|
{
|
|
ULONG ulNumVertices;
|
|
VERTEX_DATA vVertexData[4];
|
|
VERTEX_DATA* pvVertexData;
|
|
|
|
// Calculate what colour subspaces are involved in the dither:
|
|
|
|
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
|
|
|
|
// Now that we have found the bounding vertices and the number of
|
|
// pixels to dither for each vertex, we can create the dither pattern
|
|
|
|
ulNumVertices = pvVertexData - vVertexData;
|
|
// # of vertices with more than zero pixels in the dither
|
|
|
|
// Do the actual dithering:
|
|
|
|
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
|
|
|
|
prb->fl = 0;
|
|
prb->ptlBrushOrg.x = -1;
|
|
prb->pbe = NULL; // Initialize the fields we need
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL DrvRealizeBrush
|
|
*
|
|
* This function allows us to convert GDI brushes into an internal form
|
|
* we can use. It is called by GDI when we've called BRUSHOBJ_pvGetRbrush
|
|
* in some other function like DrvBitBlt, and GDI doesn't happen have a cached
|
|
* realization lying around.
|
|
*
|
|
* Input:
|
|
*
|
|
* ppdev->bRealizeTransparent -- Hint for whether or not the brush should be
|
|
* realized for transparency. If this hint is
|
|
* wrong, there will be no error, but the brush
|
|
* will have to be unnecessarily re-realized.
|
|
*
|
|
* Note: You should always set 'ppdev->bRealizeTransparent' before calling
|
|
* BRUSHOBJ_pvGetRbrush!
|
|
*
|
|
\**************************************************************************/
|
|
|
|
BOOL DrvRealizeBrush(
|
|
BRUSHOBJ* pbo,
|
|
SURFOBJ* psoDst,
|
|
SURFOBJ* psoPattern,
|
|
SURFOBJ* psoMask,
|
|
XLATEOBJ* pxlo,
|
|
ULONG iHatch)
|
|
{
|
|
PDEV* ppdev;
|
|
ULONG iPatternFormat;
|
|
BYTE* pjSrc;
|
|
BYTE* pjDst;
|
|
LONG lSrcDelta;
|
|
LONG cj;
|
|
LONG i;
|
|
LONG j;
|
|
RBRUSH* prb;
|
|
ULONG* pulXlate;
|
|
|
|
ppdev = (PDEV*) psoDst->dhpdev;
|
|
|
|
// We only handle brushes if we have an off-screen brush cache
|
|
// available. If there isn't one, we can simply fail the realization,
|
|
// and eventually GDI will do the drawing for us (although a lot
|
|
// slower than we could have done it):
|
|
|
|
if (!(ppdev->flStatus & STAT_BRUSH_CACHE))
|
|
goto ReturnFalse;
|
|
|
|
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
|
|
|
|
if (iHatch & RB_DITHERCOLOR)
|
|
{
|
|
// Implementing DITHERONREALIZE increased our score on a certain
|
|
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
|
|
// this didn't work in the first version of NT.
|
|
|
|
prb = BRUSHOBJ_pvAllocRbrush(pbo,
|
|
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE << ppdev->cPelSize));
|
|
if (prb == NULL)
|
|
goto ReturnFalse;
|
|
|
|
vRealizeDitherPattern(prb, iHatch);
|
|
goto ReturnTrue;
|
|
}
|
|
|
|
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
|
|
// support patterns of any other size, it's a safe bet that 99.9%
|
|
// of the patterns we'll ever get will be 8x8:
|
|
|
|
if ((psoPattern->sizlBitmap.cx != 8) ||
|
|
(psoPattern->sizlBitmap.cy != 8))
|
|
goto ReturnFalse;
|
|
|
|
// At 8bpp, we handle patterns at 1bpp, 4bpp and 8bpp with/without an xlate.
|
|
// At 16bpp, we handle patterns at 1bpp and 16bpp without an xlate.
|
|
// At 32bpp, we handle patterns at 1bpp and 32bpp without an xlate.
|
|
|
|
iPatternFormat = psoPattern->iBitmapFormat;
|
|
|
|
if ((iPatternFormat == BMF_1BPP) ||
|
|
(iPatternFormat == ppdev->iBitmapFormat) ||
|
|
(iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP))
|
|
{
|
|
prb = BRUSHOBJ_pvAllocRbrush(pbo,
|
|
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE << ppdev->cPelSize));
|
|
if (prb == NULL)
|
|
goto ReturnFalse;
|
|
|
|
prb->fl = 0;
|
|
prb->ptlBrushOrg.x = -1;
|
|
prb->pbe = NULL; // Initialize the fields we need
|
|
|
|
lSrcDelta = psoPattern->lDelta;
|
|
pjSrc = (BYTE*) psoPattern->pvScan0;
|
|
pjDst = (BYTE*) &prb->aulPattern[0];
|
|
|
|
if (ppdev->iBitmapFormat == iPatternFormat)
|
|
{
|
|
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))
|
|
{
|
|
DISPDBG((1, "Realizing un-translated brush"));
|
|
|
|
// The pattern is the same colour depth as the screen, and
|
|
// there's no translation to be done:
|
|
|
|
cj = (8 << ppdev->cPelSize); // Every pattern is 8 pels wide
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
RtlCopyMemory(pjDst, pjSrc, cj);
|
|
|
|
pjSrc += lSrcDelta;
|
|
pjDst += cj;
|
|
}
|
|
}
|
|
else if (ppdev->iBitmapFormat == BMF_8BPP)
|
|
{
|
|
DISPDBG((1, "Realizing 8bpp translated brush"));
|
|
|
|
// The screen is 8bpp, and there's translation to be done:
|
|
|
|
pulXlate = pxlo->pulXlate;
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
for (j = 8; j != 0; j--)
|
|
{
|
|
*pjDst++ = (BYTE) pulXlate[*pjSrc++];
|
|
}
|
|
|
|
pjSrc += lSrcDelta - 8;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// I don't feel like writing code to handle translations
|
|
// when our screen is 16bpp or higher (although I probably
|
|
// should; we could allocate a temporary buffer and use
|
|
// GDI to convert, like is done in the VGA driver).
|
|
|
|
goto ReturnFalse;
|
|
}
|
|
}
|
|
else if (iPatternFormat == BMF_1BPP)
|
|
{
|
|
DISPDBG((1, "Realizing 1bpp brush"));
|
|
|
|
// We word align the monochrome bitmap so that every row starts
|
|
// on a new word (so that we can do word writes later to transfer
|
|
// the bitmap):
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
*pjDst = *pjSrc;
|
|
pjDst += sizeof(WORD);
|
|
pjSrc += lSrcDelta;
|
|
}
|
|
|
|
pulXlate = pxlo->pulXlate;
|
|
prb->fl |= RBRUSH_2COLOR;
|
|
prb->ulForeColor = pulXlate[1];
|
|
prb->ulBackColor = pulXlate[0];
|
|
}
|
|
else
|
|
{
|
|
DISPDBG((1, "Realizing 4bpp brush"));
|
|
|
|
// The screen is 8bpp and the pattern is 4bpp:
|
|
|
|
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) &&
|
|
(iPatternFormat == BMF_4BPP),
|
|
"Messed up brush logic");
|
|
|
|
pulXlate = pxlo->pulXlate;
|
|
|
|
for (i = 8; i != 0; i--)
|
|
{
|
|
// Inner loop is repeated only 4 times because each loop
|
|
// handles 2 pixels:
|
|
|
|
for (j = 4; j != 0; j--)
|
|
{
|
|
*pjDst++ = (BYTE) pulXlate[*pjSrc >> 4];
|
|
*pjDst++ = (BYTE) pulXlate[*pjSrc & 15];
|
|
pjSrc++;
|
|
}
|
|
|
|
pjSrc += lSrcDelta - 4;
|
|
}
|
|
}
|
|
|
|
ReturnTrue:
|
|
|
|
#if SLOWFILL_PATTERNS
|
|
{
|
|
#if FASTFILL_PATTERNS
|
|
if (!(ppdev->flCaps & CAPS_HW_PATTERNS))
|
|
#endif
|
|
{
|
|
// The last time I checked, GDI took some 500 odd instructions to
|
|
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
|
|
// We can at least use this time to get some overlap between the
|
|
// CPU and the display hardware: we'll initialize the 72x72 off-
|
|
// screen cache entry now, which will keep the accelerator busy for
|
|
// a while.
|
|
//
|
|
// We don't do this if we have hardware patterns because:
|
|
//
|
|
// a) S3 hardware patterns require that the off-screen cached
|
|
// brush be correctly aligned, and at this point we don't have
|
|
// access to the 'pptlBrush' brush origin (although we could
|
|
// have copied it into the PDEV before calling
|
|
// BRUSHOBJ_pvGetRbrush).
|
|
//
|
|
// b) S3 hardware patterns require only an 8x8 copy of the
|
|
// pattern; it is not expanded to 72x72, so there isn't even
|
|
// any opportunity for CPU/accelerator processing overlap.
|
|
|
|
vIoSlowPatRealize(ppdev, prb, ppdev->bRealizeTransparent);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
ReturnFalse:
|
|
|
|
if (psoPattern != NULL)
|
|
{
|
|
DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li",
|
|
psoPattern->iType, psoPattern->iBitmapFormat,
|
|
psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy));
|
|
}
|
|
|
|
return(FALSE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* BOOL bEnableBrushCache
|
|
*
|
|
* Allocates off-screen memory for storing the brush cache.
|
|
\**************************************************************************/
|
|
|
|
BOOL bEnableBrushCache(
|
|
PDEV* ppdev)
|
|
{
|
|
OH* poh; // Points to off-screen chunk of memory
|
|
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
|
|
LONG i;
|
|
|
|
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
|
|
// cache entry
|
|
|
|
#if FASTFILL_PATTERNS
|
|
if (ppdev->flCaps & CAPS_HW_PATTERNS)
|
|
{
|
|
LONG x;
|
|
LONG y;
|
|
|
|
poh = pohAllocatePermanent(ppdev,
|
|
(FAST_BRUSH_COUNT + 1) * FAST_BRUSH_ALLOCATION,
|
|
FAST_BRUSH_ALLOCATION);
|
|
|
|
if (poh == NULL)
|
|
goto ReturnTrue; // See note about why we can return TRUE...
|
|
|
|
ppdev->cBrushCache = FAST_BRUSH_COUNT;
|
|
|
|
// Hardware brushes require that the x-coordinate start on an 8
|
|
// pixel boundary. The heap manager doesn't guarantee us any such
|
|
// alignment, so we allocate a bit of extra room so that we can
|
|
// do the alignment ourselves:
|
|
|
|
x = (poh->x + 7) & ~7L;
|
|
y = poh->y;
|
|
|
|
for (i = FAST_BRUSH_COUNT; i != 0; i--)
|
|
{
|
|
// If we hadn't allocated 'ppdev' with LMEM_ZEROINIT,
|
|
// we would have to initialize pbe->prbVerify too...
|
|
|
|
pbe->x = x;
|
|
pbe->y = y;
|
|
|
|
x += FAST_BRUSH_ALLOCATION;
|
|
pbe++;
|
|
}
|
|
}
|
|
#endif
|
|
#if SLOWFILL_PATTERNS && FASTFILL_PATTERNS
|
|
else
|
|
#endif
|
|
#if SLOWFILL_PATTERNS
|
|
{
|
|
LONG j;
|
|
|
|
ppdev->pfnFillPat = vIoFillPatSlow; // Override FillPatFast
|
|
|
|
// Typically, we'll be running at 1024x768x256 on a 1meg board,
|
|
// giving us off-screen memory of the dimension 1024x253 (accounting
|
|
// for the space taken by the hardware pointer). If we allocate
|
|
// the brush cache as one long one-high row of brushes, the heap
|
|
// manager would shave that amount off the largest chunk of memory
|
|
// we could allocate (meaning the largest bitmap potentially stored
|
|
// in off-screen memory couldn't be larger than 253 - 64 = 189 pels
|
|
// high, but it could be 1024 wide).
|
|
//
|
|
// To make this more square, I want to shave off a left-side chunk
|
|
// for the brush cache, and I want at least 8 brushes cached.
|
|
// Since floor(253/64) = 3, we'll allocate a 3 x 3 cache:
|
|
|
|
poh = pohAllocatePermanent(ppdev,
|
|
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION,
|
|
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION);
|
|
|
|
if (poh == NULL)
|
|
goto ReturnTrue; // See note about why we can return TRUE...
|
|
|
|
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
|
|
|
|
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++)
|
|
{
|
|
for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++)
|
|
{
|
|
pbe->x = poh->x + (i * SLOW_BRUSH_ALLOCATION);
|
|
pbe->y = poh->y + (j * SLOW_BRUSH_ALLOCATION);
|
|
pbe++;
|
|
}
|
|
}
|
|
}
|
|
#endif // SLOWFILL_PATTERNS
|
|
|
|
// Note that we don't have to remember 'poh' for when we have
|
|
// to disable brushes -- the off-screen heap frees any
|
|
// off-screen heap allocations automatically.
|
|
|
|
// We successfully allocated the brush cache, so let's turn
|
|
// on the switch showing that we can use it:
|
|
|
|
ppdev->flStatus |= STAT_BRUSH_CACHE;
|
|
|
|
ReturnTrue:
|
|
|
|
// If we couldn't allocate a brush cache, it's not a catastrophic
|
|
// failure; patterns will still work, although they'll be a bit
|
|
// slower since they'll go through GDI. As a result we don't
|
|
// actually have to fail this call:
|
|
|
|
DISPDBG((5, "Passed bEnableBrushCache"));
|
|
|
|
return(TRUE);
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vDisableBrushCache
|
|
*
|
|
* Cleans up anything done in bEnableBrushCache.
|
|
\**************************************************************************/
|
|
|
|
VOID vDisableBrushCache(PDEV* ppdev)
|
|
{
|
|
// We ain't gotta do nothin'
|
|
}
|
|
|
|
/******************************Public*Routine******************************\
|
|
* VOID vAssertModeBrushCache
|
|
*
|
|
* Resets the brush cache when we exit out of full-screen.
|
|
\**************************************************************************/
|
|
|
|
VOID vAssertModeBrushCache(
|
|
PDEV* ppdev,
|
|
BOOL bEnable)
|
|
{
|
|
BRUSHENTRY* pbe;
|
|
LONG i;
|
|
|
|
if (bEnable)
|
|
{
|
|
// Invalidate the brush cache:
|
|
|
|
pbe = &ppdev->abe[0];
|
|
|
|
for (i = ppdev->cBrushCache; i != 0; i--)
|
|
{
|
|
pbe->prbVerify = NULL;
|
|
pbe++;
|
|
}
|
|
}
|
|
}
|