Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

438 lines
14 KiB

/******************************Module*Header*******************************\
* Module Name: Brush.c
*
* Handles all brush/pattern initialization and realization.
*
* Copyright (c) 1992-1994 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* VOID vRealizeDitherPattern
*
* Generates an 8x8 dither pattern, in our internal realization format, for
* the colour ulRGBToDither. Note that the high byte of ulRGBToDither does
* not need to be set to zero, because vComputeSubspaces ignores it.
\**************************************************************************/
VOID vRealizeDitherPattern(
RBRUSH* prb,
ULONG ulRGBToDither)
{
ULONG ulNumVertices;
VERTEX_DATA vVertexData[4];
VERTEX_DATA* pvVertexData;
// Calculate what colour subspaces are involved in the dither:
pvVertexData = vComputeSubspaces(ulRGBToDither, vVertexData);
// Now that we have found the bounding vertices and the number of
// pixels to dither for each vertex, we can create the dither pattern
ulNumVertices = pvVertexData - vVertexData;
// # of vertices with more than zero pixels in the dither
// Do the actual dithering:
vDitherColor(&prb->aulPattern[0], vVertexData, pvVertexData, ulNumVertices);
prb->fl = 0;
prb->ptlBrushOrg.x = -1;
prb->pbe = NULL; // Initialize the fields we need
}
/******************************Public*Routine******************************\
* BOOL DrvRealizeBrush
*
* This function allows us to convert GDI brushes into an internal form
* we can use. It is called by GDI when we've called BRUSHOBJ_pvGetRbrush
* in some other function like DrvBitBlt, and GDI doesn't happen have a cached
* realization lying around.
*
* Input:
*
* ppdev->bRealizeTransparent -- Hint for whether or not the brush should be
* realized for transparency. If this hint is
* wrong, there will be no error, but the brush
* will have to be unnecessarily re-realized.
*
* Note: You should always set 'ppdev->bRealizeTransparent' before calling
* BRUSHOBJ_pvGetRbrush!
*
\**************************************************************************/
BOOL DrvRealizeBrush(
BRUSHOBJ* pbo,
SURFOBJ* psoDst,
SURFOBJ* psoPattern,
SURFOBJ* psoMask,
XLATEOBJ* pxlo,
ULONG iHatch)
{
PDEV* ppdev;
ULONG iPatternFormat;
BYTE* pjSrc;
BYTE* pjDst;
LONG lSrcDelta;
LONG cj;
LONG i;
LONG j;
RBRUSH* prb;
ULONG* pulXlate;
ppdev = (PDEV*) psoDst->dhpdev;
// We only handle brushes if we have an off-screen brush cache
// available. If there isn't one, we can simply fail the realization,
// and eventually GDI will do the drawing for us (although a lot
// slower than we could have done it):
if (!(ppdev->flStatus & STAT_BRUSH_CACHE))
goto ReturnFalse;
// We have a fast path for dithers when we set GCAPS_DITHERONREALIZE:
if (iHatch & RB_DITHERCOLOR)
{
// Implementing DITHERONREALIZE increased our score on a certain
// unmentionable benchmark by 0.4 million 'megapixels'. Too bad
// this didn't work in the first version of NT.
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE << ppdev->cPelSize));
if (prb == NULL)
goto ReturnFalse;
vRealizeDitherPattern(prb, iHatch);
goto ReturnTrue;
}
// We only accelerate 8x8 patterns. Since Win3.1 and Chicago don't
// support patterns of any other size, it's a safe bet that 99.9%
// of the patterns we'll ever get will be 8x8:
if ((psoPattern->sizlBitmap.cx != 8) ||
(psoPattern->sizlBitmap.cy != 8))
goto ReturnFalse;
// At 8bpp, we handle patterns at 1bpp, 4bpp and 8bpp with/without an xlate.
// At 16bpp, we handle patterns at 1bpp and 16bpp without an xlate.
// At 32bpp, we handle patterns at 1bpp and 32bpp without an xlate.
iPatternFormat = psoPattern->iBitmapFormat;
if ((iPatternFormat == BMF_1BPP) ||
(iPatternFormat == ppdev->iBitmapFormat) ||
(iPatternFormat == BMF_4BPP) && (ppdev->iBitmapFormat == BMF_8BPP))
{
prb = BRUSHOBJ_pvAllocRbrush(pbo,
sizeof(RBRUSH) + (TOTAL_BRUSH_SIZE << ppdev->cPelSize));
if (prb == NULL)
goto ReturnFalse;
prb->fl = 0;
prb->ptlBrushOrg.x = -1;
prb->pbe = NULL; // Initialize the fields we need
lSrcDelta = psoPattern->lDelta;
pjSrc = (BYTE*) psoPattern->pvScan0;
pjDst = (BYTE*) &prb->aulPattern[0];
if (ppdev->iBitmapFormat == iPatternFormat)
{
if ((pxlo == NULL) || (pxlo->flXlate & XO_TRIVIAL))
{
DISPDBG((1, "Realizing un-translated brush"));
// The pattern is the same colour depth as the screen, and
// there's no translation to be done:
cj = (8 << ppdev->cPelSize); // Every pattern is 8 pels wide
for (i = 8; i != 0; i--)
{
RtlCopyMemory(pjDst, pjSrc, cj);
pjSrc += lSrcDelta;
pjDst += cj;
}
}
else if (ppdev->iBitmapFormat == BMF_8BPP)
{
DISPDBG((1, "Realizing 8bpp translated brush"));
// The screen is 8bpp, and there's translation to be done:
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--)
{
for (j = 8; j != 0; j--)
{
*pjDst++ = (BYTE) pulXlate[*pjSrc++];
}
pjSrc += lSrcDelta - 8;
}
}
else
{
// I don't feel like writing code to handle translations
// when our screen is 16bpp or higher (although I probably
// should; we could allocate a temporary buffer and use
// GDI to convert, like is done in the VGA driver).
goto ReturnFalse;
}
}
else if (iPatternFormat == BMF_1BPP)
{
DISPDBG((1, "Realizing 1bpp brush"));
// We word align the monochrome bitmap so that every row starts
// on a new word (so that we can do word writes later to transfer
// the bitmap):
for (i = 8; i != 0; i--)
{
*pjDst = *pjSrc;
pjDst += sizeof(WORD);
pjSrc += lSrcDelta;
}
pulXlate = pxlo->pulXlate;
prb->fl |= RBRUSH_2COLOR;
prb->ulForeColor = pulXlate[1];
prb->ulBackColor = pulXlate[0];
}
else
{
DISPDBG((1, "Realizing 4bpp brush"));
// The screen is 8bpp and the pattern is 4bpp:
ASSERTDD((ppdev->iBitmapFormat == BMF_8BPP) &&
(iPatternFormat == BMF_4BPP),
"Messed up brush logic");
pulXlate = pxlo->pulXlate;
for (i = 8; i != 0; i--)
{
// Inner loop is repeated only 4 times because each loop
// handles 2 pixels:
for (j = 4; j != 0; j--)
{
*pjDst++ = (BYTE) pulXlate[*pjSrc >> 4];
*pjDst++ = (BYTE) pulXlate[*pjSrc & 15];
pjSrc++;
}
pjSrc += lSrcDelta - 4;
}
}
ReturnTrue:
#if SLOWFILL_PATTERNS
{
#if FASTFILL_PATTERNS
if (!(ppdev->flCaps & CAPS_HW_PATTERNS))
#endif
{
// The last time I checked, GDI took some 500 odd instructions to
// get from here back to whereever we called 'BRUSHOBJ_pvGetRbrush'.
// We can at least use this time to get some overlap between the
// CPU and the display hardware: we'll initialize the 72x72 off-
// screen cache entry now, which will keep the accelerator busy for
// a while.
//
// We don't do this if we have hardware patterns because:
//
// a) S3 hardware patterns require that the off-screen cached
// brush be correctly aligned, and at this point we don't have
// access to the 'pptlBrush' brush origin (although we could
// have copied it into the PDEV before calling
// BRUSHOBJ_pvGetRbrush).
//
// b) S3 hardware patterns require only an 8x8 copy of the
// pattern; it is not expanded to 72x72, so there isn't even
// any opportunity for CPU/accelerator processing overlap.
vIoSlowPatRealize(ppdev, prb, ppdev->bRealizeTransparent);
}
}
#endif
return(TRUE);
}
ReturnFalse:
if (psoPattern != NULL)
{
DISPDBG((1, "Failed realization -- Type: %li Format: %li cx: %li cy: %li",
psoPattern->iType, psoPattern->iBitmapFormat,
psoPattern->sizlBitmap.cx, psoPattern->sizlBitmap.cy));
}
return(FALSE);
}
/******************************Public*Routine******************************\
* BOOL bEnableBrushCache
*
* Allocates off-screen memory for storing the brush cache.
\**************************************************************************/
BOOL bEnableBrushCache(
PDEV* ppdev)
{
OH* poh; // Points to off-screen chunk of memory
BRUSHENTRY* pbe; // Pointer to the brush-cache entry
LONG i;
pbe = &ppdev->abe[0]; // Points to where we'll put the first brush
// cache entry
#if FASTFILL_PATTERNS
if (ppdev->flCaps & CAPS_HW_PATTERNS)
{
LONG x;
LONG y;
poh = pohAllocatePermanent(ppdev,
(FAST_BRUSH_COUNT + 1) * FAST_BRUSH_ALLOCATION,
FAST_BRUSH_ALLOCATION);
if (poh == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = FAST_BRUSH_COUNT;
// Hardware brushes require that the x-coordinate start on an 8
// pixel boundary. The heap manager doesn't guarantee us any such
// alignment, so we allocate a bit of extra room so that we can
// do the alignment ourselves:
x = (poh->x + 7) & ~7L;
y = poh->y;
for (i = FAST_BRUSH_COUNT; i != 0; i--)
{
// If we hadn't allocated 'ppdev' with LMEM_ZEROINIT,
// we would have to initialize pbe->prbVerify too...
pbe->x = x;
pbe->y = y;
x += FAST_BRUSH_ALLOCATION;
pbe++;
}
}
#endif
#if SLOWFILL_PATTERNS && FASTFILL_PATTERNS
else
#endif
#if SLOWFILL_PATTERNS
{
LONG j;
ppdev->pfnFillPat = vIoFillPatSlow; // Override FillPatFast
// Typically, we'll be running at 1024x768x256 on a 1meg board,
// giving us off-screen memory of the dimension 1024x253 (accounting
// for the space taken by the hardware pointer). If we allocate
// the brush cache as one long one-high row of brushes, the heap
// manager would shave that amount off the largest chunk of memory
// we could allocate (meaning the largest bitmap potentially stored
// in off-screen memory couldn't be larger than 253 - 64 = 189 pels
// high, but it could be 1024 wide).
//
// To make this more square, I want to shave off a left-side chunk
// for the brush cache, and I want at least 8 brushes cached.
// Since floor(253/64) = 3, we'll allocate a 3 x 3 cache:
poh = pohAllocatePermanent(ppdev,
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION,
SLOW_BRUSH_CACHE_DIM * SLOW_BRUSH_ALLOCATION);
if (poh == NULL)
goto ReturnTrue; // See note about why we can return TRUE...
ppdev->cBrushCache = SLOW_BRUSH_COUNT;
for (i = 0; i < SLOW_BRUSH_CACHE_DIM; i++)
{
for (j = 0; j < SLOW_BRUSH_CACHE_DIM; j++)
{
pbe->x = poh->x + (i * SLOW_BRUSH_ALLOCATION);
pbe->y = poh->y + (j * SLOW_BRUSH_ALLOCATION);
pbe++;
}
}
}
#endif // SLOWFILL_PATTERNS
// Note that we don't have to remember 'poh' for when we have
// to disable brushes -- the off-screen heap frees any
// off-screen heap allocations automatically.
// We successfully allocated the brush cache, so let's turn
// on the switch showing that we can use it:
ppdev->flStatus |= STAT_BRUSH_CACHE;
ReturnTrue:
// If we couldn't allocate a brush cache, it's not a catastrophic
// failure; patterns will still work, although they'll be a bit
// slower since they'll go through GDI. As a result we don't
// actually have to fail this call:
DISPDBG((5, "Passed bEnableBrushCache"));
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID vDisableBrushCache
*
* Cleans up anything done in bEnableBrushCache.
\**************************************************************************/
VOID vDisableBrushCache(PDEV* ppdev)
{
// We ain't gotta do nothin'
}
/******************************Public*Routine******************************\
* VOID vAssertModeBrushCache
*
* Resets the brush cache when we exit out of full-screen.
\**************************************************************************/
VOID vAssertModeBrushCache(
PDEV* ppdev,
BOOL bEnable)
{
BRUSHENTRY* pbe;
LONG i;
if (bEnable)
{
// Invalidate the brush cache:
pbe = &ppdev->abe[0];
for (i = ppdev->cBrushCache; i != 0; i--)
{
pbe->prbVerify = NULL;
pbe++;
}
}
}