Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

1733 lines
59 KiB

/******************************Module*Header*******************************\
* Module Name: enable.c
*
* This module contains the functions that enable and disable the
* driver, the pdev, and the surface.
*
* Copyright (c) 1992-1995 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
#if defined(ALPHA)
/**************************************************************************\
* BOOL isDense
*
* This global is used to distinguish dense space from sparse space on the
* DEC Alpha in order to use the appropriate method of register access.
*
\**************************************************************************/
BOOL isDense = TRUE;
#endif
/******************************Public*Structure****************************\
* GDIINFO ggdiDefault
*
* This contains the default GDIINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
GDIINFO ggdiDefault = {
GDI_DRIVER_VERSION, // ulVersion
DT_RASDISPLAY, // ulTechnology
0, // ulHorzSize (filled in later)
0, // ulVertSize (filled in later)
0, // ulHorzRes (filled in later)
0, // ulVertRes (filled in later)
0, // cBitsPixel (filled in later)
0, // cPlanes (filled in later)
20, // ulNumColors (palette managed)
0, // flRaster (DDI reserved field)
0, // ulLogPixelsX (filled in later)
0, // ulLogPixelsY (filled in later)
TC_RA_ABLE, // flTextCaps -- If we had wanted console windows
// to scroll by repainting the entire window,
// instead of doing a screen-to-screen blt, we
// would have set TC_SCROLLBLT (yes, the flag is
// bass-ackwards).
0, // ulDACRed (filled in later)
0, // ulDACGreen (filled in later)
0, // ulDACBlue (filled in later)
0x0024, // ulAspectX
0x0024, // ulAspectY
0x0033, // ulAspectXY (one-to-one aspect ratio)
1, // xStyleStep
1, // yStyleSte;
3, // denStyleStep -- Styles have a one-to-one aspect
// ratio, and every 'dot' is 3 pixels long
{ 0, 0 }, // ptlPhysOffset
{ 0, 0 }, // szlPhysSize
256, // ulNumPalReg
// These fields are for halftone initialization. The actual values are
// a bit magic, but seem to work well on our display.
{ // ciDevice
{ 6700, 3300, 0 }, // Red
{ 2100, 7100, 0 }, // Green
{ 1400, 800, 0 }, // Blue
{ 1750, 3950, 0 }, // Cyan
{ 4050, 2050, 0 }, // Magenta
{ 4400, 5200, 0 }, // Yellow
{ 3127, 3290, 0 }, // AlignmentWhite
20000, // RedGamma
20000, // GreenGamma
20000, // BlueGamma
0, 0, 0, 0, 0, 0 // No dye correction for raster displays
},
0, // ulDevicePelsDPI (for printers only)
PRIMARY_ORDER_CBA, // ulPrimaryOrder
HT_PATSIZE_4x4_M, // ulHTPatternSize
HT_FORMAT_8BPP, // ulHTOutputFormat
HT_FLAG_ADDITIVE_PRIMS, // flHTFlags
0, // ulVRefresh
0, // ulPanningHorzRes
0, // ulPanningVertRes
0, // ulBltAlignment
};
/******************************Public*Structure****************************\
* DEVINFO gdevinfoDefault
*
* This contains the default DEVINFO fields that are passed back to GDI
* during DrvEnablePDEV.
*
* NOTE: This structure defaults to values for an 8bpp palette device.
* Some fields are overwritten for different colour depths.
\**************************************************************************/
#define SYSTM_LOGFONT {16,7,0,0,700,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_DEFAULT_PRECIS,DEFAULT_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"System"}
#define HELVE_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
VARIABLE_PITCH | FF_DONTCARE,L"MS Sans Serif"}
#define COURI_LOGFONT {12,9,0,0,400,0,0,0,ANSI_CHARSET,OUT_DEFAULT_PRECIS,\
CLIP_STROKE_PRECIS,PROOF_QUALITY,\
FIXED_PITCH | FF_DONTCARE, L"Courier"}
DEVINFO gdevinfoDefault = {
(GCAPS_OPAQUERECT |
GCAPS_DITHERONREALIZE |
GCAPS_PALMANAGED |
GCAPS_ALTERNATEFILL |
GCAPS_WINDINGFILL |
#if TARGET_BUILD > 351
GCAPS_DIRECTDRAW |
#endif
GCAPS_MONO_DITHER |
GCAPS_COLOR_DITHER |
GCAPS_ASYNCMOVE), // NOTE: Only enable ASYNCMOVE if your code
// and hardware can handle DrvMovePointer
// calls at any time, even while another
// thread is in the middle of a drawing
// call such as DrvBitBlt.
// flGraphicsFlags
SYSTM_LOGFONT, // lfDefaultFont
HELVE_LOGFONT, // lfAnsiVarFont
COURI_LOGFONT, // lfAnsiFixFont
0, // cFonts
BMF_8BPP, // iDitherFormat
8, // cxDither
8, // cyDither
0 // hpalDefault (filled in later)
};
/******************************Public*Structure****************************\
* DFVFN gadrvfn[]
*
* Build the driver function table gadrvfn with function index/address
* pairs. This table tells GDI which DDI calls we support, and their
* location (GDI does an indirect call through this table to call us).
*
* Why haven't we implemented DrvSaveScreenBits? To save code.
*
* When the driver doesn't hook DrvSaveScreenBits, USER simulates on-
* the-fly by creating a temporary device-format-bitmap, and explicitly
* calling DrvCopyBits to save/restore the bits. Since we already hook
* DrvCreateDeviceBitmap, we'll end up using off-screen memory to store
* the bits anyway (which would have been the main reason for implementing
* DrvSaveScreenBits). So we may as well save some working set.
\**************************************************************************/
#if MULTI_BOARDS
// Multi-board support has its own thunks...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) MulEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) MulCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) MulDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) MulEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) MulDisableSurface },
{ INDEX_DrvAssertMode, (PFN) MulAssertMode },
{ INDEX_DrvMovePointer, (PFN) MulMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) MulSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) MulDitherColor },
{ INDEX_DrvSetPalette, (PFN) MulSetPalette },
{ INDEX_DrvCopyBits, (PFN) MulCopyBits },
{ INDEX_DrvBitBlt, (PFN) MulBitBlt },
{ INDEX_DrvTextOut, (PFN) MulTextOut },
{ INDEX_DrvGetModes, (PFN) MulGetModes },
{ INDEX_DrvStrokePath, (PFN) MulStrokePath },
{ INDEX_DrvFillPath, (PFN) MulFillPath },
{ INDEX_DrvPaint, (PFN) MulPaint },
{ INDEX_DrvRealizeBrush, (PFN) MulRealizeBrush },
{ INDEX_DrvDestroyFont, (PFN) MulDestroyFont },
#if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
#endif
// Note that we don't support DrvCreateDeviceBitmap for multi-boards
// Note that we don't support DrvDeleteDeviceBitmap for multi-boards
// Note that we don't support DrvStretchBlt for multi-boards
// Note that we don't support DrvLineTo for multi-boards
// Note that we don't support DrvEscape for multi-boards
};
#elif DBG
// On Checked builds, thunk everything through Dbg calls...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DbgEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DbgCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DbgDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DbgEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DbgDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DbgAssertMode },
{ INDEX_DrvMovePointer, (PFN) DbgMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DbgSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) DbgDitherColor },
{ INDEX_DrvSetPalette, (PFN) DbgSetPalette },
{ INDEX_DrvCopyBits, (PFN) DbgCopyBits },
{ INDEX_DrvBitBlt, (PFN) DbgBitBlt },
{ INDEX_DrvTextOut, (PFN) DbgTextOut },
{ INDEX_DrvGetModes, (PFN) DbgGetModes },
{ INDEX_DrvStrokePath, (PFN) DbgStrokePath },
#if TARGET_BUILD > 351
{ INDEX_DrvLineTo, (PFN) DbgLineTo },
#endif
{ INDEX_DrvFillPath, (PFN) DbgFillPath },
{ INDEX_DrvPaint, (PFN) DbgPaint },
{ INDEX_DrvStretchBlt, (PFN) DbgStretchBlt },
{ INDEX_DrvRealizeBrush, (PFN) DbgRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DbgCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DbgDeleteDeviceBitmap },
{ INDEX_DrvDestroyFont, (PFN) DbgDestroyFont },
{ INDEX_DrvEscape, (PFN) DbgEscape },
#if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
#endif
};
#else
// On Free builds, directly call the appropriate functions...
DRVFN gadrvfn[] = {
{ INDEX_DrvEnablePDEV, (PFN) DrvEnablePDEV },
{ INDEX_DrvCompletePDEV, (PFN) DrvCompletePDEV },
{ INDEX_DrvDisablePDEV, (PFN) DrvDisablePDEV },
{ INDEX_DrvEnableSurface, (PFN) DrvEnableSurface },
{ INDEX_DrvDisableSurface, (PFN) DrvDisableSurface },
{ INDEX_DrvAssertMode, (PFN) DrvAssertMode },
{ INDEX_DrvMovePointer, (PFN) DrvMovePointer },
{ INDEX_DrvSetPointerShape, (PFN) DrvSetPointerShape },
{ INDEX_DrvDitherColor, (PFN) DrvDitherColor },
{ INDEX_DrvSetPalette, (PFN) DrvSetPalette },
{ INDEX_DrvCopyBits, (PFN) DrvCopyBits },
{ INDEX_DrvBitBlt, (PFN) DrvBitBlt },
{ INDEX_DrvTextOut, (PFN) DrvTextOut },
{ INDEX_DrvGetModes, (PFN) DrvGetModes },
{ INDEX_DrvStrokePath, (PFN) DrvStrokePath },
#if TARGET_BUILD > 351
{ INDEX_DrvLineTo, (PFN) DrvLineTo },
#endif
{ INDEX_DrvFillPath, (PFN) DrvFillPath },
{ INDEX_DrvPaint, (PFN) DrvPaint },
{ INDEX_DrvStretchBlt, (PFN) DrvStretchBlt },
{ INDEX_DrvRealizeBrush, (PFN) DrvRealizeBrush },
{ INDEX_DrvCreateDeviceBitmap, (PFN) DrvCreateDeviceBitmap },
{ INDEX_DrvDeleteDeviceBitmap, (PFN) DrvDeleteDeviceBitmap },
{ INDEX_DrvDestroyFont, (PFN) DrvDestroyFont },
{ INDEX_DrvEscape, (PFN) DrvEscape },
#if TARGET_BUILD > 351
{ INDEX_DrvGetDirectDrawInfo, (PFN) DrvGetDirectDrawInfo },
{ INDEX_DrvEnableDirectDraw, (PFN) DrvEnableDirectDraw },
{ INDEX_DrvDisableDirectDraw, (PFN) DrvDisableDirectDraw },
#endif
};
#endif
ULONG gcdrvfn = sizeof(gadrvfn) / sizeof(DRVFN);
/******************************Public*Routine******************************\
* BOOL DrvEnableDriver
*
* Enables the driver by retrieving the drivers function table and version.
*
\**************************************************************************/
BOOL DrvEnableDriver(
ULONG iEngineVersion,
ULONG cj,
DRVENABLEDATA* pded)
{
// Engine Version is passed down so future drivers can support previous
// engine versions. A next generation driver can support both the old
// and new engine conventions if told what version of engine it is
// working with. For the first version the driver does nothing with it.
// Fill in as much as we can.
if (cj >= sizeof(DRVENABLEDATA))
pded->pdrvfn = gadrvfn;
if (cj >= (sizeof(ULONG) * 2))
pded->c = gcdrvfn;
// DDI version this driver was targeted for is passed back to engine.
// Future graphic's engine may break calls down to old driver format.
if (cj >= sizeof(ULONG))
pded->iDriverVersion = DDI_DRIVER_VERSION_NT4;
return(TRUE);
}
/******************************Public*Routine******************************\
* VOID DrvDisableDriver
*
* Tells the driver it is being disabled. Release any resources allocated in
* DrvEnableDriver.
*
\**************************************************************************/
VOID DrvDisableDriver(VOID)
{
return;
}
/******************************Public*Routine******************************\
* BOOL bInitializeATI
*
* Initializes some private ATI info.
*
\**************************************************************************/
BOOL bInitializeATI(PDEV* ppdev)
{
ENH_VERSION_NT info;
ULONG ReturnedDataLength;
info.FeatureFlags = 0;
info.StructureVersion = 0;
info.InterfaceVersion = 0; // Miniport needs these to be zero
// Get some adapter information via a private IOCTL call:
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_ATI_GET_VERSION,
&info,
sizeof(ENH_VERSION_NT),
&info,
sizeof(ENH_VERSION_NT),
&ReturnedDataLength))
{
DISPDBG((0, "bInitializeATI - Failed ATI_GET_VERSION"));
goto ReturnFalse;
}
ppdev->FeatureFlags = info.FeatureFlags;
ppdev->iAsic = info.ChipIndex;
ppdev->iAperture = info.ApertureType;
#if defined(ALPHA)
if (!(ppdev->FeatureFlags & EVN_DENSE_CAPABLE))
{
// Can't use a sparse linear aperture.
// Banked aperture is always sparse.
// In either case, we execute no-aperture code...
ppdev->iAperture = APERTURE_NONE;
isDense = FALSE;
}
#endif
if (info.ChipIndex == ASIC_88800GX)
{
ppdev->iMachType = MACH_MM_64;
}
else if (info.BusFlag & FL_MM_REGS)
{
ppdev->iMachType = MACH_MM_32;
}
else
{
ppdev->iMachType = MACH_IO_32;
}
return(TRUE);
ReturnFalse:
return(FALSE);
}
/******************************Public*Routine******************************\
* DHPDEV DrvEnablePDEV
*
* Initializes a bunch of fields for GDI, based on the mode we've been asked
* to do. This is the first thing called after DrvEnableDriver, when GDI
* wants to get some information about us.
*
* (This function mostly returns back information; DrvEnableSurface is used
* for initializing the hardware and driver components.)
*
\**************************************************************************/
DHPDEV DrvEnablePDEV(
DEVMODEW* pdm, // Contains data pertaining to requested mode
PWSTR pwszLogAddr, // Logical address
ULONG cPat, // Count of standard patterns
HSURF* phsurfPatterns, // Buffer for standard patterns
ULONG cjCaps, // Size of buffer for device caps 'pdevcaps'
ULONG* pdevcaps, // Buffer for device caps, also known as 'gdiinfo'
ULONG cjDevInfo, // Number of bytes in device info 'pdi'
DEVINFO* pdi, // Device information
#if TARGET_BUILD > 351
HDEV hdev, // Used for callbacks
#else
PWSTR pwszDataFile,
#endif
PWSTR pwszDeviceName, // Device name
HANDLE hDriver) // Kernel driver handle
{
PDEV* ppdev;
// Future versions of NT had better supply 'devcaps' and 'devinfo'
// structures that are the same size or larger than the current
// structures:
if ((cjCaps < sizeof(GDIINFO)) || (cjDevInfo < sizeof(DEVINFO)))
{
DISPDBG((0, "DrvEnablePDEV - Buffer size too small"));
goto ReturnFailure0;
}
// Allocate a physical device structure. Note that we definitely
// rely on the zero initialization:
ppdev = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(PDEV));
if (ppdev == NULL)
{
DISPDBG((0, "DrvEnablePDEV - Failed AtiAllocMem"));
goto ReturnFailure0;
}
ppdev->hDriver = hDriver;
// Do some private ATI-specific initialization:
if (!bInitializeATI(ppdev))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeATI"));
goto ReturnFailure1;
}
// Get the current screen mode information. Set up device caps and
// devinfo:
if (!bInitializeModeFields(ppdev, (GDIINFO*) pdevcaps, pdi, pdm))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializeModeFields"));
goto ReturnFailure1;
}
// Initialize palette information.
if (!bInitializePalette(ppdev, pdi))
{
DISPDBG((0, "DrvEnablePDEV - Failed bInitializePalette"));
goto ReturnFailure1;
}
return((DHPDEV) ppdev);
ReturnFailure1:
DrvDisablePDEV((DHPDEV) ppdev);
ReturnFailure0:
DISPDBG((0, "Failed DrvEnablePDEV"));
return(0);
}
/******************************Public*Routine******************************\
* DrvDisablePDEV
*
* Release the resources allocated in DrvEnablePDEV. If a surface has been
* enabled DrvDisableSurface will have already been called.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error, we may call this before DrvEnablePDEV is done.
*
\**************************************************************************/
VOID DrvDisablePDEV(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
vUninitializePalette(ppdev);
AtiFreeMem(ppdev);
}
/******************************Public*Routine******************************\
* VOID DrvCompletePDEV
*
* Store the HPDEV, the engines handle for this PDEV, in the DHPDEV.
*
\**************************************************************************/
VOID DrvCompletePDEV(
DHPDEV dhpdev,
HDEV hdev)
{
((PDEV*) dhpdev)->hdevEng = hdev;
}
/******************************Public*Routine******************************\
* HSURF DrvEnableSurface
*
* Creates the drawing surface, initializes the hardware, and initializes
* driver components. This function is called after DrvEnablePDEV, and
* performs the final device initialization.
*
\**************************************************************************/
HSURF DrvEnableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
HSURF hsurf;
SIZEL sizl;
DSURF* pdsurf;
VOID* pvTmpBuffer;
ppdev = (PDEV*) dhpdev;
/////////////////////////////////////////////////////////////////////
// First enable all the subcomponents.
//
// Note that the order in which these 'Enable' functions are called
// may be significant in low off-screen memory conditions, because
// the off-screen heap manager may fail some of the later
// allocations...
if (!bEnableHardware(ppdev))
goto ReturnFailure;
if (!bEnableBanking(ppdev))
goto ReturnFailure;
if (!bEnableOffscreenHeap(ppdev))
goto ReturnFailure;
if (!bEnablePointer(ppdev))
goto ReturnFailure;
if (!bEnableText(ppdev))
goto ReturnFailure;
if (!bEnableBrushCache(ppdev))
goto ReturnFailure;
if (!bEnablePalette(ppdev))
goto ReturnFailure;
if (!bEnableDirectDraw(ppdev))
goto ReturnFailure;
/////////////////////////////////////////////////////////////////////
// Now create our private surface structure.
//
// Whenever we get a call to draw directly to the screen, we'll get
// passed a pointer to a SURFOBJ whose 'dhpdev' field will point
// to our PDEV structure, and whose 'dhsurf' field will point to the
// following DSURF structure.
//
// Every device bitmap we create in DrvCreateDeviceBitmap will also
// have its own unique DSURF structure allocated (but will share the
// same PDEV). To make our code more polymorphic for handling drawing
// to either the screen or an off-screen bitmap, we have the same
// structure for both.
pdsurf = AtiAllocMem(LPTR, FL_ZERO_MEMORY, sizeof(DSURF));
if (pdsurf == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed pdsurf AtiAllocMem"));
goto ReturnFailure;
}
ppdev->pdsurfScreen = pdsurf; // Remember it for clean-up
pdsurf->poh = ppdev->pohScreen; // The screen is a surface, too
pdsurf->dt = DT_SCREEN; // Not to be confused with a DIB
pdsurf->sizl.cx = ppdev->cxScreen;
pdsurf->sizl.cy = ppdev->cyScreen;
pdsurf->ppdev = ppdev;
/////////////////////////////////////////////////////////////////////
// Next, have GDI create the actual SURFOBJ.
//
// Our drawing surface is going to be 'device-managed', meaning that
// GDI cannot draw on the framebuffer bits directly, and as such we
// create the surface via EngCreateDeviceSurface. By doing this, we ensure
// that GDI will only ever access the bitmaps bits via the Drv calls
// that we've HOOKed.
//
// If we could map the entire framebuffer linearly into main memory
// (i.e., we didn't have to go through a 64k aperture), it would be
// beneficial to create the surface via EngCreateBitmap, giving GDI a
// pointer to the framebuffer bits. When we pass a call on to GDI
// where it can't directly read/write to the surface bits because the
// surface is device managed, it has to create a temporary bitmap and
// call our DrvCopyBits routine to get/set a copy of the affected bits.
// Fer example, the OpenGL component prefers to be able to write on the
// framebuffer bits directly.
sizl.cx = ppdev->cxScreen;
sizl.cy = ppdev->cyScreen;
// Let GDI manage 24bpp mach32 with linear aperture.
if (ppdev->iBitmapFormat == BMF_24BPP &&
ppdev->iAsic != ASIC_88800GX && ppdev->iAperture == APERTURE_FULL)
{
hsurf= ppdev->hsurfPunt;
//
// Also tell GDI that we don't want to be called back.
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, 0))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
goto ReturnFailure;
}
}
else
{
hsurf = EngCreateDeviceSurface((DHSURF) pdsurf, sizl, ppdev->iBitmapFormat);
if (hsurf == 0)
{
DISPDBG((0, "DrvEnableSurface - Failed EngCreateDeviceSurface"));
goto ReturnFailure;
}
ppdev->hsurfScreen = hsurf; // Remember it for clean-up
ppdev->bEnabled = TRUE; // We'll soon be in graphics mode
/////////////////////////////////////////////////////////////////////
// Now associate the surface and the PDEV.
//
// We have to associate the surface we just created with our physical
// device so that GDI can get information related to the PDEV when
// it's drawing to the surface (such as, for example, the length of
// styles on the device when simulating styled lines).
//
if (!EngAssociateSurface(hsurf, ppdev->hdevEng, ppdev->flHooks))
{
DISPDBG((0, "DrvEnableSurface - Failed EngAssociateSurface"));
goto ReturnFailure;
}
}
// Create our generic temporary buffer, which may be used by any
// component.
pvTmpBuffer = AtiAllocMem(LMEM_FIXED, 0, TMP_BUFFER_SIZE);
if (pvTmpBuffer == NULL)
{
DISPDBG((0, "DrvEnableSurface - Failed VirtualAlloc"));
goto ReturnFailure;
}
ppdev->pvTmpBuffer = pvTmpBuffer;
DISPDBG((5, "Passed DrvEnableSurface"));
return(hsurf);
ReturnFailure:
DrvDisableSurface((DHPDEV) ppdev);
DISPDBG((0, "Failed DrvEnableSurface"));
return(0);
}
/******************************Public*Routine******************************\
* VOID DrvDisableSurface
*
* Free resources allocated by DrvEnableSurface. Release the surface.
*
* Note that this function will be called when previewing modes in the
* Display Applet, but not at system shutdown. If you need to reset the
* hardware at shutdown, you can do it in the miniport by providing a
* 'HwResetHw' entry point in the VIDEO_HW_INITIALIZATION_DATA structure.
*
* Note: In an error case, we may call this before DrvEnableSurface is
* completely done.
*
\**************************************************************************/
VOID DrvDisableSurface(
DHPDEV dhpdev)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
// Note: In an error case, some of the following relies on the
// fact that the PDEV is zero-initialized, so fields like
// 'hsurfScreen' will be zero unless the surface has been
// sucessfully initialized, and makes the assumption that
// EngDeleteSurface can take '0' as a parameter.
vDisableDirectDraw(ppdev);
vDisablePalette(ppdev);
vDisableBrushCache(ppdev);
vDisableText(ppdev);
vDisablePointer(ppdev);
vDisableOffscreenHeap(ppdev);
vDisableBanking(ppdev);
vDisableHardware(ppdev);
AtiFreeMem(ppdev->pvTmpBuffer);
EngDeleteSurface(ppdev->hsurfScreen);
AtiFreeMem(ppdev->pdsurfScreen);
}
/******************************Public*Routine******************************\
* VOID DrvAssertMode
*
* This asks the device to reset itself to the mode of the pdev passed in.
*
\**************************************************************************/
#if TARGET_BUILD > 351
BOOL DrvAssertMode(
#else
VOID DrvAssertMode(
#endif
DHPDEV dhpdev,
BOOL bEnable)
{
PDEV* ppdev;
ppdev = (PDEV*) dhpdev;
if (!bEnable)
{
//////////////////////////////////////////////////////////////
// Disable - Switch to full-screen mode
vAssertModeDirectDraw(ppdev, FALSE);
vAssertModePalette(ppdev, FALSE);
vAssertModeBrushCache(ppdev, FALSE);
vAssertModeText(ppdev, FALSE);
vAssertModePointer(ppdev, FALSE);
if (bAssertModeOffscreenHeap(ppdev, FALSE))
{
vAssertModeBanking(ppdev, FALSE);
if (bAssertModeHardware(ppdev, FALSE))
{
ppdev->bEnabled = FALSE;
#if TARGET_BUILD > 351
return(TRUE);
#else
return;
#endif
}
//////////////////////////////////////////////////////////
// We failed to switch to full-screen. So undo everything:
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // We don't need to check
} // return code with TRUE
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
}
else
{
//////////////////////////////////////////////////////////////
// Enable - Switch back to graphics mode
// We have to enable every subcomponent in the reverse order
// in which it was disabled:
#if TARGET_BUILD > 351
if (!bAssertModeHardware(ppdev, TRUE))
{
return FALSE;
}
#else
bAssertModeHardware(ppdev, TRUE);
#endif
vAssertModeBanking(ppdev, TRUE);
bAssertModeOffscreenHeap(ppdev, TRUE); // don't need the return
vAssertModePointer(ppdev, TRUE);
vAssertModeText(ppdev, TRUE);
vAssertModeBrushCache(ppdev, TRUE);
vAssertModePalette(ppdev, TRUE);
vAssertModeDirectDraw(ppdev, TRUE);
ppdev->bEnabled = TRUE;
#if TARGET_BUILD > 351
return TRUE;
#endif
}
#if TARGET_BUILD > 351
return FALSE; // If we get here, we've failed!
#endif
}
/******************************Public*Routine******************************\
* ULONG DrvGetModes
*
* Returns the list of available modes for the device.
*
\**************************************************************************/
ULONG DrvGetModes(
HANDLE hDriver,
ULONG cjSize,
DEVMODEW* pdm)
{
DWORD cModes;
DWORD cbOutputSize;
PVIDEO_MODE_INFORMATION pVideoModeInformation;
PVIDEO_MODE_INFORMATION pVideoTemp;
DWORD cOutputModes = cjSize / (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
DWORD cbModeSize;
cModes = getAvailableModes(hDriver,
(PVIDEO_MODE_INFORMATION *) &pVideoModeInformation,
&cbModeSize);
if (cModes == 0)
{
DISPDBG((0, "DrvGetModes failed to get mode information"));
return(0);
}
if (pdm == NULL)
{
cbOutputSize = cModes * (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
else
{
//
// Now copy the information for the supported modes back into the
// output buffer
//
cbOutputSize = 0;
pVideoTemp = pVideoModeInformation;
do
{
if (pVideoTemp->Length != 0)
{
if (cOutputModes == 0)
{
break;
}
//
// Zero the entire structure to start off with.
//
memset(pdm, 0, sizeof(DEVMODEW));
//
// Set the name of the device to the name of the DLL.
//
memcpy(pdm->dmDeviceName, DLL_NAME, sizeof(DLL_NAME));
pdm->dmSpecVersion = DM_SPECVERSION;
pdm->dmDriverVersion = DM_SPECVERSION;
//
// We currently do not support Extra information in the driver
//
pdm->dmDriverExtra = DRIVER_EXTRA_SIZE;
pdm->dmSize = sizeof(DEVMODEW);
pdm->dmBitsPerPel = pVideoTemp->NumberOfPlanes *
pVideoTemp->BitsPerPlane;
pdm->dmPelsWidth = pVideoTemp->VisScreenWidth;
pdm->dmPelsHeight = pVideoTemp->VisScreenHeight;
pdm->dmDisplayFrequency = pVideoTemp->Frequency;
#if TARGET_BUILD > 351
pdm->dmDisplayFlags = 0;
pdm->dmFields = DM_BITSPERPEL |
DM_PELSWIDTH |
DM_PELSHEIGHT |
DM_DISPLAYFREQUENCY |
DM_DISPLAYFLAGS ;
#else
if (pVideoTemp->AttributeFlags & VIDEO_MODE_INTERLACED)
{
pdm->dmDisplayFlags |= DM_INTERLACED;
}
#endif
//DISPDBG((0, "pdm: %4li bpp, %4li x %4li, %4li Hz",
//pdm->dmBitsPerPel, pdm->dmPelsWidth, pdm->dmPelsHeight, pdm->dmDisplayFrequency ));
//
// Go to the next DEVMODE entry in the buffer.
//
cOutputModes--;
pdm = (LPDEVMODEW) ( ((ULONG_PTR)pdm) + sizeof(DEVMODEW) +
DRIVER_EXTRA_SIZE);
cbOutputSize += (sizeof(DEVMODEW) + DRIVER_EXTRA_SIZE);
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
} while (--cModes);
}
AtiFreeMem(pVideoModeInformation);
return(cbOutputSize);
}
/******************************Public*Routine******************************\
* BOOL bAssertModeHardware
*
* Sets the appropriate hardware state for graphics mode or full-screen.
*
\**************************************************************************/
BOOL bAssertModeHardware(
PDEV* ppdev,
BOOL bEnable)
{
DWORD ReturnedDataLength;
ULONG ulReturn;
if (bEnable)
{
// Call the miniport via an IOCTL to set the graphics mode.
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ppdev->ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bAssertModeHardware - Failed set IOCTL"));
return(FALSE);
}
vResetClipping(ppdev);
// Set some Mach64 defaults:
if (ppdev->iMachType == MACH_MM_64)
{
BYTE* pjMmBase;
pjMmBase = ppdev->pjMmBase;
M64_CHECK_FIFO_SPACE(ppdev, pjMmBase, 1);
M64_OD(pjMmBase, DP_PIX_WIDTH, ppdev->ulMonoPixelWidth);
vSetDefaultContext(ppdev);
}
}
else
{
// Call the kernel driver to reset the device to a known state.
// NTVDM will take things from there:
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_RESET_DEVICE,
NULL,
0,
NULL,
0,
&ulReturn))
{
DISPDBG((0, "bAssertModeHardware - Failed reset IOCTL"));
return(FALSE);
}
}
DISPDBG((5, "Passed bAssertModeHardware"));
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bEnableHardware
*
* Puts the hardware in the requested mode and initializes it.
*
* Note: Should be called before any access is done to the hardware from
* the display driver.
*
\**************************************************************************/
BOOL bEnableHardware(
PDEV* ppdev)
{
BYTE* pjIoBase;
VIDEO_PUBLIC_ACCESS_RANGES VideoAccessRange[2];
VIDEO_MEMORY VideoMemory;
VIDEO_MEMORY_INFORMATION VideoMemoryInfo;
DWORD ReturnedDataLength;
ppdev->pjIoBase = NULL;
ppdev->pjMmBase = NULL;
// Map io ports into virtual memory:
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_QUERY_PUBLIC_ACCESS_RANGES,
NULL, // input buffer
0,
&VideoAccessRange, // output buffer
sizeof(VideoAccessRange),
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Initialization error mapping IO port base"));
goto ReturnFalse;
}
ppdev->pjIoBase = (UCHAR*) VideoAccessRange[0].VirtualAddress;
ppdev->pjMmBase_Ext = (BYTE*) VideoAccessRange[1].VirtualAddress;
// ------------------------- ATI-specific ----------------------------
// Call the miniport via an IOCTL to set the graphics mode.
// Because of a hardware quirk, 4 BPP causes the mach64 to alter its
// video memory size when you do a SET_CURRENT_MODE, so we do it here
// first so that MAP_VIDEO_MEMORY maps the correct amount of memory.
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_SET_CURRENT_MODE,
&ppdev->ulMode, // input buffer
sizeof(DWORD),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Failed set IOCTL"));
goto ReturnFalse;
}
ppdev->pModeInfo = AtiAllocMem( LPTR, FL_ZERO_MEMORY, sizeof (ATI_MODE_INFO) );
if( ppdev->pModeInfo == NULL )
{
DISPDBG((0, "bEnableHardware - Failed memory allocation" ));
goto ReturnFalse;
}
if( !AtiDeviceIoControl( ppdev->hDriver,
IOCTL_VIDEO_ATI_GET_MODE_INFORMATION,
ppdev->pModeInfo,
sizeof (ATI_MODE_INFO),
ppdev->pModeInfo,
sizeof (ATI_MODE_INFO),
&ReturnedDataLength
) )
{
DISPDBG((0, "bEnableHardware - Failed to get ATI-specific mode information" ));
goto ReturnFalse;
}
// Get the linear memory address range.
VideoMemory.RequestedVirtualAddress = NULL;
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_MAP_VIDEO_MEMORY,
&VideoMemory, // input buffer
sizeof(VIDEO_MEMORY),
&VideoMemoryInfo, // output buffer
sizeof(VideoMemoryInfo),
&ReturnedDataLength))
{
DISPDBG((0, "bEnableHardware - Error mapping buffer address"));
goto ReturnFalse;
}
// Record the Frame Buffer Linear Address.
ppdev->cjBank = VideoMemoryInfo.FrameBufferLength;
// 128K VGA Aperture?
if (ppdev->cjBank == 0x20000)
{
ppdev->cjBank = 0x10000; // true banksize is 64K
}
ppdev->pjScreen = (BYTE*) VideoMemoryInfo.FrameBufferBase;
// So we can free it later in vDisableHardware...
ppdev->VideoRamBase = (BYTE*) VideoMemoryInfo.VideoRamBase;
if (ppdev->iMachType == MACH_MM_64)
{
ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.VideoRamBase
+ VideoMemoryInfo.FrameBufferLength
- 0x400;
}
else
{
ppdev->pjMmBase = (BYTE*) VideoMemoryInfo.FrameBufferBase;
}
pjIoBase = ppdev->pjIoBase;
// We finally have enough information to calculate the dimensions
// of on-screen and off-screen memory:
ppdev->cxMemory = ppdev->lDelta / ppdev->cjPelSize;
ppdev->cyMemory = VideoMemoryInfo.VideoRamLength / ppdev->lDelta;
if (VideoMemoryInfo.VideoRamLength <= VideoMemoryInfo.FrameBufferLength)
{
ppdev->flCaps |= CAPS_LINEAR_FRAMEBUFFER;
}
ppdev->ulTearOffset = (ULONG)(ppdev->pjScreen - ppdev->VideoRamBase);
ppdev->ulVramOffset = ppdev->ulTearOffset/8;
if (ppdev->iBitmapFormat != BMF_24BPP)
ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset,
ppdev->cxMemory * 8);
else
ppdev->ulScreenOffsetAndPitch = PACKPAIR(ppdev->ulVramOffset,
(ppdev->cxMemory * 3) * 8);
// The default pixel width is setup to have monochrome as the
// host data path pixel width:
switch (ppdev->iBitmapFormat)
{
case BMF_4BPP: ppdev->ulMonoPixelWidth = 0x00000101; break;
case BMF_8BPP: ppdev->ulMonoPixelWidth = 0x00000202; break;
case BMF_16BPP: ppdev->ulMonoPixelWidth = 0x00000404; break;
case BMF_24BPP: ppdev->ulMonoPixelWidth = 0x01000202; break;
case BMF_32BPP: ppdev->ulMonoPixelWidth = 0x00000606; break;
}
DISPDBG((1, "RamLength = %lxH, lDelta = %li",
VideoMemoryInfo.VideoRamLength,
ppdev->lDelta));
if ((ppdev->iMachType == MACH_IO_32) || (ppdev->iMachType == MACH_MM_32))
{
// The Mach32 and Mach8 can't handle coordinates larger than 1535:
ppdev->cyMemory = min(ppdev->cyMemory, 1535);
}
if (ppdev->iMachType == MACH_MM_32)
{
// Can do memory-mapped IO:
ppdev->pfnFillSolid = vM32FillSolid;
ppdev->pfnFillPatColor = vM32FillPatColor;
ppdev->pfnFillPatMonochrome = vM32FillPatMonochrome;
ppdev->pfnXfer1bpp = vM32Xfer1bpp;
ppdev->pfnXfer4bpp = vM32Xfer4bpp;
ppdev->pfnXfer8bpp = vM32Xfer8bpp;
ppdev->pfnXferNative = vM32XferNative;
ppdev->pfnCopyBlt = vM32CopyBlt;
ppdev->pfnLineToTrivial = vM32LineToTrivial;
if (ppdev->iAsic == ASIC_68800AX) // Timing problem.
ppdev->pfnTextOut = bI32TextOut;
else
ppdev->pfnTextOut = bM32TextOut;
ppdev->pfnStretchDIB = bM32StretchDIB;
}
else if (ppdev->iMachType == MACH_IO_32)
{
ppdev->pfnFillSolid = vI32FillSolid;
ppdev->pfnFillPatColor = vI32FillPatColor;
ppdev->pfnFillPatMonochrome = vI32FillPatMonochrome;
ppdev->pfnXfer1bpp = vI32Xfer1bpp;
ppdev->pfnXfer4bpp = vI32Xfer4bpp;
ppdev->pfnXfer8bpp = vI32Xfer8bpp;
ppdev->pfnXferNative = vI32XferNative;
ppdev->pfnCopyBlt = vI32CopyBlt;
ppdev->pfnLineToTrivial = vI32LineToTrivial;
ppdev->pfnTextOut = bI32TextOut;
ppdev->pfnStretchDIB = bI32StretchDIB;
}
else
{
// ppdev->iMachType == MACH_MM_64
ppdev->pfnFillSolid = vM64FillSolid;
ppdev->pfnFillPatColor = vM64FillPatColor;
ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome;
ppdev->pfnXfer1bpp = vM64Xfer1bpp;
ppdev->pfnXfer4bpp = vM64Xfer4bpp;
ppdev->pfnXfer8bpp = vM64Xfer8bpp;
ppdev->pfnXferNative = vM64XferNative;
if (!(ppdev->FeatureFlags & EVN_SDRAM_1M))
{
ppdev->pfnCopyBlt = vM64CopyBlt;
}
else
{
// Special version to fix screen source FIFO bug in VT-A4
// with 1 MB of SDRAM.
ppdev->pfnCopyBlt = vM64CopyBlt_VTA4;
}
ppdev->pfnLineToTrivial = vM64LineToTrivial;
ppdev->pfnTextOut = bM64TextOut;
ppdev->pfnStretchDIB = bM64StretchDIB;
if (ppdev->iBitmapFormat == BMF_24BPP)
{
ppdev->pfnFillSolid = vM64FillSolid24;
ppdev->pfnFillPatColor = vM64FillPatColor24;
ppdev->pfnFillPatMonochrome = vM64FillPatMonochrome24;
ppdev->pfnXferNative = vM64XferNative24;
if (!(ppdev->FeatureFlags & EVN_SDRAM_1M))
{
ppdev->pfnCopyBlt = vM64CopyBlt24;
}
else
{
// Special version to fix screen source FIFO bug in VT-A4
// with 1 MB of SDRAM.
ppdev->pfnCopyBlt = vM64CopyBlt24_VTA4;
}
ppdev->pfnLineToTrivial = vM64LineToTrivial24;
ppdev->pfnTextOut = bM64TextOut24;
}
vEnableContexts(ppdev);
}
if ((ppdev->iAsic != ASIC_38800_1) &&
((ppdev->iAperture != APERTURE_NONE)||(ppdev->iMachType == MACH_MM_64)))
{
ppdev->pfnGetBits = vGetBits;
ppdev->pfnPutBits = vPutBits;
}
else
{
ppdev->pfnGetBits = vI32GetBits;
ppdev->pfnPutBits = vI32PutBits;
}
// Now we can set the mode, unlock the accelerator, and reset the
// clipping:
if (!bAssertModeHardware(ppdev, TRUE))
goto ReturnFalse;
DISPDBG((0, "%li bpp, %li x %li, pjScreen = %lx, cjBank = %lxH, pjMmBase = %lx",
ppdev->cBitsPerPel, ppdev->cxMemory, ppdev->cyMemory, ppdev->pjScreen, ppdev->cjBank, ppdev->pjMmBase));
DISPDBG((5, "Passed bEnableHardware"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bEnableHardware"));
return(FALSE);
}
/******************************Public*Routine******************************\
* VOID vDisableHardware
*
* Undoes anything done in bEnableHardware.
*
* Note: In an error case, we may call this before bEnableHardware is
* completely done.
*
\**************************************************************************/
VOID vDisableHardware(
PDEV* ppdev)
{
DWORD ReturnedDataLength;
VIDEO_MEMORY VideoMemory[2];
VideoMemory[0].RequestedVirtualAddress = ppdev->VideoRamBase;
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_UNMAP_VIDEO_MEMORY,
VideoMemory,
sizeof(VIDEO_MEMORY),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_UNMAP_VIDEO"));
}
VideoMemory[0].RequestedVirtualAddress = ppdev->pjIoBase;
VideoMemory[1].RequestedVirtualAddress = ppdev->VideoRamBase;
if (!AtiDeviceIoControl(ppdev->hDriver,
IOCTL_VIDEO_FREE_PUBLIC_ACCESS_RANGES,
VideoMemory,
sizeof(VideoMemory),
NULL,
0,
&ReturnedDataLength))
{
DISPDBG((0, "vDisableHardware failed IOCTL_VIDEO_FREE_PUBLIC_ACCESS"));
}
}
/******************************Public*Routine******************************\
* BOOL bInitializeModeFields
*
* Initializes a bunch of fields in the pdev, devcaps (aka gdiinfo), and
* devinfo based on the requested mode.
*
\**************************************************************************/
BOOL bInitializeModeFields(
PDEV* ppdev,
GDIINFO* pgdi,
DEVINFO* pdi,
DEVMODEW* pdm)
{
ULONG cModes;
PVIDEO_MODE_INFORMATION pVideoBuffer;
PVIDEO_MODE_INFORMATION pVideoModeSelected;
PVIDEO_MODE_INFORMATION pVideoTemp;
BOOL bSelectDefault;
VIDEO_MODE_INFORMATION VideoModeInformation;
ULONG cbModeSize;
// Call the miniport to get mode information
cModes = getAvailableModes(ppdev->hDriver, &pVideoBuffer, &cbModeSize);
if (cModes == 0)
goto ReturnFalse;
// Now see if the requested mode has a match in that table.
pVideoModeSelected = NULL;
pVideoTemp = pVideoBuffer;
if ((pdm->dmPelsWidth == 0) &&
(pdm->dmPelsHeight == 0) &&
(pdm->dmBitsPerPel == 0) &&
(pdm->dmDisplayFrequency == 0))
{
DISPDBG((1, "Default mode requested"));
bSelectDefault = TRUE;
}
else
{
DISPDBG((1, "Requested mode..."));
DISPDBG((1, " Screen width -- %li", pdm->dmPelsWidth));
DISPDBG((1, " Screen height -- %li", pdm->dmPelsHeight));
DISPDBG((1, " Bits per pel -- %li", pdm->dmBitsPerPel));
DISPDBG((1, " Frequency -- %li", pdm->dmDisplayFrequency));
bSelectDefault = FALSE;
}
while (cModes--)
{
if (pVideoTemp->Length != 0)
{
DISPDBG((8, " Checking against miniport mode:"));
DISPDBG((8, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((8, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((8, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((8, " Frequency -- %li", pVideoTemp->Frequency));
if (bSelectDefault ||
((pVideoTemp->VisScreenWidth == pdm->dmPelsWidth) &&
(pVideoTemp->VisScreenHeight == pdm->dmPelsHeight) &&
(pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes == pdm->dmBitsPerPel) &&
(pVideoTemp->Frequency == pdm->dmDisplayFrequency)))
{
pVideoModeSelected = pVideoTemp;
DISPDBG((1, "...Found a mode match!"));
break;
}
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + cbModeSize);
}
// If no mode has been found, return an error
if (pVideoModeSelected == NULL)
{
DISPDBG((1, "...Couldn't find a mode match!"));
AtiFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// Punt all rev 3 VLB cards in 8bpp to the 8514/A driver.
// Timing problems on "MIO" cards are impossible to deal with.
// They only show up on 5% of all mach32 cards.
if ((ppdev->FeatureFlags & EVN_MIO_BUG) && pVideoModeSelected->BitsPerPlane == 8)
{
AtiFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// We won't support 24bpp without a linear frame buffer.
if (pVideoModeSelected->BitsPerPlane == 24 && ppdev->iAperture != APERTURE_FULL)
{
AtiFreeMem(pVideoBuffer);
goto ReturnFalse;
}
// We have chosen the one we want. Save it in a stack buffer and
// get rid of allocated memory before we forget to free it.
VideoModeInformation = *pVideoModeSelected;
AtiFreeMem(pVideoBuffer);
#if DEBUG_HEAP
VideoModeInformation.VisScreenWidth = 640;
VideoModeInformation.VisScreenHeight = 480;
#endif
// Set up screen information from the mini-port:
ppdev->ulMode = VideoModeInformation.ModeIndex;
ppdev->cxScreen = VideoModeInformation.VisScreenWidth;
ppdev->cyScreen = VideoModeInformation.VisScreenHeight;
ppdev->lDelta = VideoModeInformation.ScreenStride;
ppdev->cBitsPerPel = VideoModeInformation.BitsPerPlane;
DISPDBG((1, "ScreenStride: %lx", VideoModeInformation.ScreenStride));
ppdev->flHooks = (HOOK_BITBLT |
HOOK_TEXTOUT |
HOOK_FILLPATH |
HOOK_COPYBITS |
HOOK_STROKEPATH |
HOOK_STRETCHBLT |
#if TARGET_BUILD > 351
HOOK_LINETO |
#endif
HOOK_PAINT);
// Fill in the GDIINFO data structure with the default 8bpp values:
*pgdi = ggdiDefault;
// Now overwrite the defaults with the relevant information returned
// from the kernel driver:
pgdi->ulHorzSize = VideoModeInformation.XMillimeter;
pgdi->ulVertSize = VideoModeInformation.YMillimeter;
pgdi->ulHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulVertRes = VideoModeInformation.VisScreenHeight;
#if TARGET_BUILD > 351
pgdi->ulPanningHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulPanningVertRes = VideoModeInformation.VisScreenHeight;
#else
pgdi->ulDesktopHorzRes = VideoModeInformation.VisScreenWidth;
pgdi->ulDesktopVertRes = VideoModeInformation.VisScreenHeight;
#endif
pgdi->cBitsPixel = VideoModeInformation.BitsPerPlane;
pgdi->cPlanes = VideoModeInformation.NumberOfPlanes;
pgdi->ulVRefresh = VideoModeInformation.Frequency;
pgdi->ulDACRed = VideoModeInformation.NumberRedBits;
pgdi->ulDACGreen = VideoModeInformation.NumberGreenBits;
pgdi->ulDACBlue = VideoModeInformation.NumberBlueBits;
pgdi->ulLogPixelsX = pdm->dmLogPixels;
pgdi->ulLogPixelsY = pdm->dmLogPixels;
// Fill in the devinfo structure with the default 8bpp values:
*pdi = gdevinfoDefault;
if (VideoModeInformation.BitsPerPlane == 8)
{
ppdev->cPelSize = 0;
ppdev->cjPelSize = 1;
ppdev->iBitmapFormat = BMF_8BPP;
ppdev->ulWhite = 0xff;
// Assuming palette is orthogonal - all colors are same size.
ppdev->cPaletteShift = 8 - pgdi->ulDACRed;
DISPDBG((3, "palette shift = %d\n", ppdev->cPaletteShift));
}
else if ((VideoModeInformation.BitsPerPlane == 16) ||
(VideoModeInformation.BitsPerPlane == 15))
{
ppdev->cPelSize = 1;
ppdev->cjPelSize = 2;
ppdev->iBitmapFormat = BMF_16BPP;
ppdev->ulWhite = 0xffff;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_16BPP;
pdi->iDitherFormat = BMF_16BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
else if (VideoModeInformation.BitsPerPlane == 24)
{
ppdev->cPelSize = 0; // not used?!
ppdev->cjPelSize = 3;
ppdev->iBitmapFormat = BMF_24BPP;
ppdev->ulWhite = 0xffffff;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_24BPP;
pdi->iDitherFormat = BMF_24BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
else
{
ASSERTDD(VideoModeInformation.BitsPerPlane == 32,
"This driver supports only 8, 16, 24 and 32bpp");
ppdev->cPelSize = 2;
ppdev->cjPelSize = 4;
ppdev->iBitmapFormat = BMF_32BPP;
ppdev->ulWhite = 0xffffffff;
ppdev->flRed = VideoModeInformation.RedMask;
ppdev->flGreen = VideoModeInformation.GreenMask;
ppdev->flBlue = VideoModeInformation.BlueMask;
pgdi->ulNumColors = (ULONG) -1;
pgdi->ulNumPalReg = 0;
pgdi->ulHTOutputFormat = HT_FORMAT_32BPP;
pdi->iDitherFormat = BMF_32BPP;
pdi->flGraphicsCaps &= ~(GCAPS_PALMANAGED | GCAPS_COLOR_DITHER);
}
DISPDBG((5, "Passed bInitializeModeFields"));
return(TRUE);
ReturnFalse:
DISPDBG((0, "Failed bInitializeModeFields"));
return(FALSE);
}
/******************************Public*Routine******************************\
* DWORD getAvailableModes
*
* Calls the miniport to get the list of modes supported by the kernel driver,
* and returns the list of modes supported by the diplay driver among those
*
* returns the number of entries in the videomode buffer.
* 0 means no modes are supported by the miniport or that an error occured.
*
* NOTE: the buffer must be freed up by the caller.
*
\**************************************************************************/
DWORD getAvailableModes(
HANDLE hDriver,
PVIDEO_MODE_INFORMATION* modeInformation, // Must be freed by caller
DWORD* cbModeSize)
{
ULONG ulTemp;
VIDEO_NUM_MODES modes;
PVIDEO_MODE_INFORMATION pVideoTemp;
//
// Get the number of modes supported by the mini-port
//
if (!AtiDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_NUM_AVAIL_MODES,
NULL,
0,
&modes,
sizeof(VIDEO_NUM_MODES),
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_NUM_AVAIL_MODES"));
return(0);
}
*cbModeSize = modes.ModeInformationLength;
//
// Allocate the buffer for the mini-port to write the modes in.
//
*modeInformation = AtiAllocMem(LPTR, FL_ZERO_MEMORY,
modes.NumModes * modes.ModeInformationLength,
);
if (*modeInformation == (PVIDEO_MODE_INFORMATION) NULL)
{
DISPDBG((0, "getAvailableModes - Failed AtiAllocMem"));
return 0;
}
//
// Ask the mini-port to fill in the available modes.
//
if (!AtiDeviceIoControl(hDriver,
IOCTL_VIDEO_QUERY_AVAIL_MODES,
NULL,
0,
*modeInformation,
modes.NumModes * modes.ModeInformationLength,
&ulTemp))
{
DISPDBG((0, "getAvailableModes - Failed VIDEO_QUERY_AVAIL_MODES"));
AtiFreeMem(*modeInformation);
*modeInformation = (PVIDEO_MODE_INFORMATION) NULL;
return(0);
}
//
// Now see which of these modes are supported by the display driver.
// As an internal mechanism, set the length to 0 for the modes we
// DO NOT support.
//
ulTemp = modes.NumModes;
pVideoTemp = *modeInformation;
//
// Mode is rejected if it is not one plane, or not graphics, or is not
// one of 8, 15, 16, 24 or 32 bits per pel.
//
while (ulTemp--)
{
//DISPDBG((0, "pVideoTemp: %4li bpp, %4li x %4li, %4li Hz",
//pVideoTemp->BitsPerPlane * pVideoTemp->NumberOfPlanes,
//pVideoTemp->VisScreenWidth, pVideoTemp->VisScreenHeight,
//pVideoTemp->Frequency ));
if ((pVideoTemp->NumberOfPlanes != 1 ) ||
!(pVideoTemp->AttributeFlags & VIDEO_MODE_GRAPHICS) ||
((pVideoTemp->BitsPerPlane != 8) &&
(pVideoTemp->BitsPerPlane != 15) &&
(pVideoTemp->BitsPerPlane != 16) &&
(pVideoTemp->BitsPerPlane != 24) &&
(pVideoTemp->BitsPerPlane != 32)))
{
DISPDBG((2, "Rejecting miniport mode:"));
DISPDBG((2, " Screen width -- %li", pVideoTemp->VisScreenWidth));
DISPDBG((2, " Screen height -- %li", pVideoTemp->VisScreenHeight));
DISPDBG((2, " Bits per pel -- %li", pVideoTemp->BitsPerPlane *
pVideoTemp->NumberOfPlanes));
DISPDBG((2, " Frequency -- %li", pVideoTemp->Frequency));
pVideoTemp->Length = 0;
}
pVideoTemp = (PVIDEO_MODE_INFORMATION)
(((PUCHAR)pVideoTemp) + modes.ModeInformationLength);
}
return(modes.NumModes);
}