Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

84 lines
2.3 KiB

/******************************Module*Header*******************************\
* Module Name: misc.c
*
* Miscellaneous common routines.
*
* Copyright (c) 1992-1995 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
/******************************Public*Routine******************************\
* BOOL bIntersect
*
* If 'prcl1' and 'prcl2' intersect, has a return value of TRUE and returns
* the intersection in 'prclResult'. If they don't intersect, has a return
* value of FALSE, and 'prclResult' is undefined.
*
\**************************************************************************/
BOOL bIntersect(
RECTL* prcl1,
RECTL* prcl2,
RECTL* prclResult)
{
prclResult->left = max(prcl1->left, prcl2->left);
prclResult->right = min(prcl1->right, prcl2->right);
if (prclResult->left < prclResult->right)
{
prclResult->top = max(prcl1->top, prcl2->top);
prclResult->bottom = min(prcl1->bottom, prcl2->bottom);
if (prclResult->top < prclResult->bottom)
{
return(TRUE);
}
}
return(FALSE);
}
/******************************Public*Routine******************************\
* LONG cIntersect
*
* This routine takes a list of rectangles from 'prclIn' and clips them
* in-place to the rectangle 'prclClip'. The input rectangles don't
* have to intersect 'prclClip'; the return value will reflect the
* number of input rectangles that did intersect, and the intersecting
* rectangles will be densely packed.
*
\**************************************************************************/
LONG cIntersect(
RECTL* prclClip,
RECTL* prclIn, // List of rectangles
LONG c) // Can be zero
{
LONG cIntersections;
RECTL* prclOut;
cIntersections = 0;
prclOut = prclIn;
for (; c != 0; prclIn++, c--)
{
prclOut->left = max(prclIn->left, prclClip->left);
prclOut->right = min(prclIn->right, prclClip->right);
if (prclOut->left < prclOut->right)
{
prclOut->top = max(prclIn->top, prclClip->top);
prclOut->bottom = min(prclIn->bottom, prclClip->bottom);
if (prclOut->top < prclOut->bottom)
{
prclOut++;
cIntersections++;
}
}
}
return(cIntersections);
}