Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2022 lines
64 KiB

/******************************Module*Header*******************************\
* Module Name: w32blt.c
*
* Contains the low-level memory-mapped IO blt functions.
*
* Hopefully, if you're basing your display driver on this code, to
* support all of DrvBitBlt and DrvCopyBits, you'll only have to implement
* the following routines. You shouldn't have to modify much in
* 'bitblt.c'. I've tried to make these routines as few, modular, simple,
* and efficient as I could, while still accelerating as many calls as
* possible that would be cost-effective in terms of performance wins
* versus size and effort.
*
* Note: In the following, 'relative' coordinates refers to coordinates
* that haven't yet had the offscreen bitmap (DFB) offset applied.
* 'Absolute' coordinates have had the offset applied. For example,
* we may be told to blt to (1, 1) of the bitmap, but the bitmap may
* be sitting in offscreen memory starting at coordinate (0, 768) --
* (1, 1) would be the 'relative' start coordinate, and (1, 769)
* would be the 'absolute' start coordinate'.
*
* Copyright (c) 1992-1996 Microsoft Corporation
*
\**************************************************************************/
#include "precomp.h"
/**************************************************************************
* All functions using the accelerator must...
* Wait for the ACL queue to be empty before loading any of the registers.
**************************************************************************/
/**************************************************************************
* The following tables are heinous, but required. The monochrome data
* (also known as Mix-Map or Mask) expander intereprets the data such that
* the least significant bit of a byte is pixel 0 and the most significant
* bit is pixel 7. This is backwards from the way monochrome data is
* interpreted by Windows and Windows NT. Also, the expander will ONLY
* do 1 to 8 expansion, so we need to replicate each bit by the number of
* bytes per pel in the current color depth.
**************************************************************************/
BYTE jReverse[] =
{
// Each element is the bitwise reverse of it's index.
//
// ie. 10000000 -> 00000001 and
// 10010100 -> 00101001.
0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
};
WORD wReverse2x[] =
{
// Each element is the bit doubled bitwise reverse of it's index.
//
// ie. 10000000 -> 0000000000000011 and
// 10010100 -> 0000110011000011.
0x0000, 0xc000, 0x3000, 0xf000, 0x0c00, 0xcc00, 0x3c00, 0xfc00,
0x0300, 0xc300, 0x3300, 0xf300, 0x0f00, 0xcf00, 0x3f00, 0xff00,
0x00c0, 0xc0c0, 0x30c0, 0xf0c0, 0x0cc0, 0xccc0, 0x3cc0, 0xfcc0,
0x03c0, 0xc3c0, 0x33c0, 0xf3c0, 0x0fc0, 0xcfc0, 0x3fc0, 0xffc0,
0x0030, 0xc030, 0x3030, 0xf030, 0x0c30, 0xcc30, 0x3c30, 0xfc30,
0x0330, 0xc330, 0x3330, 0xf330, 0x0f30, 0xcf30, 0x3f30, 0xff30,
0x00f0, 0xc0f0, 0x30f0, 0xf0f0, 0x0cf0, 0xccf0, 0x3cf0, 0xfcf0,
0x03f0, 0xc3f0, 0x33f0, 0xf3f0, 0x0ff0, 0xcff0, 0x3ff0, 0xfff0,
0x000c, 0xc00c, 0x300c, 0xf00c, 0x0c0c, 0xcc0c, 0x3c0c, 0xfc0c,
0x030c, 0xc30c, 0x330c, 0xf30c, 0x0f0c, 0xcf0c, 0x3f0c, 0xff0c,
0x00cc, 0xc0cc, 0x30cc, 0xf0cc, 0x0ccc, 0xcccc, 0x3ccc, 0xfccc,
0x03cc, 0xc3cc, 0x33cc, 0xf3cc, 0x0fcc, 0xcfcc, 0x3fcc, 0xffcc,
0x003c, 0xc03c, 0x303c, 0xf03c, 0x0c3c, 0xcc3c, 0x3c3c, 0xfc3c,
0x033c, 0xc33c, 0x333c, 0xf33c, 0x0f3c, 0xcf3c, 0x3f3c, 0xff3c,
0x00fc, 0xc0fc, 0x30fc, 0xf0fc, 0x0cfc, 0xccfc, 0x3cfc, 0xfcfc,
0x03fc, 0xc3fc, 0x33fc, 0xf3fc, 0x0ffc, 0xcffc, 0x3ffc, 0xfffc,
0x0003, 0xc003, 0x3003, 0xf003, 0x0c03, 0xcc03, 0x3c03, 0xfc03,
0x0303, 0xc303, 0x3303, 0xf303, 0x0f03, 0xcf03, 0x3f03, 0xff03,
0x00c3, 0xc0c3, 0x30c3, 0xf0c3, 0x0cc3, 0xccc3, 0x3cc3, 0xfcc3,
0x03c3, 0xc3c3, 0x33c3, 0xf3c3, 0x0fc3, 0xcfc3, 0x3fc3, 0xffc3,
0x0033, 0xc033, 0x3033, 0xf033, 0x0c33, 0xcc33, 0x3c33, 0xfc33,
0x0333, 0xc333, 0x3333, 0xf333, 0x0f33, 0xcf33, 0x3f33, 0xff33,
0x00f3, 0xc0f3, 0x30f3, 0xf0f3, 0x0cf3, 0xccf3, 0x3cf3, 0xfcf3,
0x03f3, 0xc3f3, 0x33f3, 0xf3f3, 0x0ff3, 0xcff3, 0x3ff3, 0xfff3,
0x000f, 0xc00f, 0x300f, 0xf00f, 0x0c0f, 0xcc0f, 0x3c0f, 0xfc0f,
0x030f, 0xc30f, 0x330f, 0xf30f, 0x0f0f, 0xcf0f, 0x3f0f, 0xff0f,
0x00cf, 0xc0cf, 0x30cf, 0xf0cf, 0x0ccf, 0xcccf, 0x3ccf, 0xfccf,
0x03cf, 0xc3cf, 0x33cf, 0xf3cf, 0x0fcf, 0xcfcf, 0x3fcf, 0xffcf,
0x003f, 0xc03f, 0x303f, 0xf03f, 0x0c3f, 0xcc3f, 0x3c3f, 0xfc3f,
0x033f, 0xc33f, 0x333f, 0xf33f, 0x0f3f, 0xcf3f, 0x3f3f, 0xff3f,
0x00ff, 0xc0ff, 0x30ff, 0xf0ff, 0x0cff, 0xccff, 0x3cff, 0xfcff,
0x03ff, 0xc3ff, 0x33ff, 0xf3ff, 0x0fff, 0xcfff, 0x3fff, 0xffff,
};
ULONG aulLeadCnt[] = {0x0, 0x3, 0x2, 0x1};
FNLOWXFER* afnXferI_Narrow[16] =
{
NULL,
vXferI_1_Byte,
vXferI_2_Bytes,
vXferI_3_Bytes
};
FNLOWXFER* afnXferP_Narrow[16] =
{
NULL,
vXferP_1_Byte,
vXferP_2_Bytes,
vXferP_3_Bytes
};
/**************************************************************************
*
* Realizes a pattern into offscreen memory.
*
**************************************************************************/
VOID vFastPatRealize( // Type FNFASTPATREALIZE
PDEV* ppdev,
RBRUSH* prb, // Points to brush realization structure
POINTL* pptlBrush, // Ignored
BOOL bTransparent) // FALSE for normal patterns; TRUE for
// patterns with a mask when the background
// mix is LEAVE_ALONE.
{
BRUSHENTRY* pbe;
LONG iBrushCache;
ULONG ulOffset;
BYTE* pjPattern;
LONG culPattern;
LONG cjPattern;
BYTE* pjDst;
ULONG ulDstOffset;
BYTE* pjBase = ppdev->pjBase;
DISPDBG((10,"vFastPatRealize called"));
//
// Make sure we can write to the video registers.
//
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
pbe = prb->pbe;
if ((pbe == NULL) || (pbe->prbVerify != prb))
{
// We have to allocate a new offscreen cache brush entry for
// the brush:
iBrushCache = ppdev->iBrushCache;
pbe = &ppdev->abe[iBrushCache];
iBrushCache++;
if (iBrushCache >= ppdev->cBrushCache)
iBrushCache = 0;
ppdev->iBrushCache = iBrushCache;
// Update our links:
pbe->prbVerify = prb;
prb->pbe = pbe;
}
prb->bTransparent = bTransparent;
ulDstOffset = ((pbe->y * ppdev->lDelta) + (pbe->x * ppdev->cBpp));
pjPattern = (PBYTE) &prb->aulPattern[0]; // Copy from brush buffer
cjPattern = PATTERN_SIZE * ppdev->cBpp;
if ((ppdev->ulChipID != W32P) && (ppdev->ulChipID != ET6000))
{
cjPattern *= 4;
}
START_DIRECT_ACCESS(ppdev, pjBase);
if (!ppdev->bAutoBanking)
{
// Set the address where we're going to put the pattern data.
// All data transfers to video memory take place through aperature 0.
CP_MMU_BP0(ppdev, pjBase, ulDstOffset);
pjDst = (PBYTE) ppdev->pjMmu0;
}
else
{
pjDst = ppdev->pjScreen + ulDstOffset;
}
RtlCopyMemory(pjDst, pjPattern, cjPattern);
END_DIRECT_ACCESS(ppdev, pjBase);
}
/**************************************************************************
*
* Does a pattern fill to a list of rectangles.
*
**************************************************************************/
VOID vPatternFillScr(
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinate destination rects
ROP4 rop4, // Obvious?
RBRUSH_COLOR rbc, // Drawing color is rbc.iSolidColor
POINTL* pptlBrush) //
{
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
LONG cBpp = ppdev->cBpp;
BOOL bTransparent;
ULONG ulPatternAddrBase;
ULONG cTile = 0;
BRUSHENTRY* pbe; // Pointer to brush entry data, which is used
// for keeping track of the location and status
// of the pattern bits cached in off-screen
// memory
DISPDBG((10,"vPatternFillScr called"));
bTransparent = ((rop4 & 0xff) != (rop4 >> 8));
ASSERTDD(!bTransparent, "We don't handle transparent brushes yet.");
if ((ppdev->ulChipID != W32P) && (ppdev->ulChipID != ET6000))
{
//
// Patterns are duplicated horizontally and vertically (4 tiles)
//
cTile = 1; // Look, it means one extra to the right
}
ASSERTDD(c > 0, "Can't handle zero rectangles");
if ((rbc.prb->pbe->prbVerify != rbc.prb))
{
vFastPatRealize(ppdev, rbc.prb, NULL, FALSE);
}
ASSERTDD(rbc.prb->bTransparent == bTransparent,
"Not realized with correct transparency");
pbe = rbc.prb->pbe;
//
// Make sure we can write to the video registers.
//
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_BK_ROP(ppdev, pjBase, (rop4 & 0xff));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
//
// ### precalc & store the PAT_Y_OFFSET const in the pdev
//
CP_PAT_WRAP(ppdev, pjBase, ppdev->w32PatternWrap);
CP_PAT_Y_OFFSET(ppdev, pjBase, (((PATTERN_OFFSET * cBpp) << cTile) - 1));
//
// Fill the list of rectangles
//
ulPatternAddrBase = (pbe->y * lDelta) + (pbe->x * cBpp);
do {
ULONG offset;
offset = cBpp * (
(((prcl->top-pptlBrush->y)&7) << (3+cTile)) +
((prcl->left-pptlBrush->x)&7)
);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_PAT_ADDR(ppdev, pjBase, (ulPatternAddrBase + offset));
CP_XCNT(ppdev, pjBase, (((prcl->right - prcl->left) * cBpp) - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
// Set the blit destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, ((prcl->top * lDelta) + (cBpp * prcl->left)));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
/**************************************************************************
*
* Does a solid fill to a list of rectangles.
*
**************************************************************************/
VOID vSolidFillScr(
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinate destination rects
ROP4 rop4, // Obvious?
RBRUSH_COLOR rbc, // Drawing color is rbc.iSolidColor
POINTL* pptlBrush) // Not used
{
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
LONG cBpp = ppdev->cBpp;
ULONG ulSolidColor;
DISPDBG((10,"vSolidFillScr called"));
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD((ppdev->cBpp < 3),
"vSolidFillScr only works for 8bpp and 16bpp");
// Make sure we can write to the video registers.
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_BK_ROP(ppdev, pjBase, (rop4 & 0xff));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
CP_PAT_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP);
CP_PAT_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET - 1));
CP_PAT_ADDR(ppdev, pjBase, ppdev->ulSolidColorOffset);
ulSolidColor = rbc.iSolidColor;
if (cBpp == 1)
{
ulSolidColor &= 0x000000FF; // We may get some extraneous data in the
ulSolidColor |= ulSolidColor << 8;
}
if (cBpp <= 2)
{
ulSolidColor &= 0x0000FFFF;
ulSolidColor |= ulSolidColor << 16;
}
// Set the color in offscreen memory
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
if (ppdev->bAutoBanking)
{
*(PULONG)(ppdev->pjScreen + ppdev->ulSolidColorOffset) = ulSolidColor;
}
else
{
CP_MMU_BP0(ppdev, pjBase, ppdev->ulSolidColorOffset);
CP_WRITE_MMU_DWORD(ppdev, 0, 0, ulSolidColor);
}
//
// Fill the list of rectangles
//
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, ((prcl->right - prcl->left) * cBpp - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, ((prcl->top * lDelta) + (cBpp * prcl->left)));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
VOID vSolidFillScr24(
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinate destination rects
ROP4 rop4, // Obvious?
RBRUSH_COLOR rbc, // Drawing color is rbc.iSolidColor
POINTL* pptlBrush) // Not used
{
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
ULONG ulSolidColor = rbc.iSolidColor;
DISPDBG((10,"vSolidFillScr24 called"));
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD((ppdev->cBpp == 3),
"vSolidFillScr24 called when not in 24bpp mode");
ASSERTDD(((ppdev->ulChipID == W32P) || (ppdev->ulChipID == ET6000)),
"24bpp solid fills only accelerated for w32p/ET6000");
#define CBPP 3
//
// Make sure we can write to the video registers.
//
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_BK_ROP(ppdev, pjBase, (rop4 & 0xff));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
//
// This must be special cased for the ET6000. I'm not sure why it worked
// for the others, because we have a 3 byte wide pattern, but were setting the
// pattern wrap for a 4 byte wide pattern. We were also setting the Y_offset
// to be 3 when it should be 2, which really means 3 bytes per line. Strange.
//
// Anyway, I've left the code for the others in place and it will get executed
// for them.
//
CP_PAT_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP_24BPP); // 1 line, 3 bytes per line
CP_PAT_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET_24BPP - 1)); // indicates 3 bytes per line
CP_PAT_ADDR(ppdev, pjBase, ppdev->ulSolidColorOffset);
// Set the color in offscreen memory
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
if (ppdev->bAutoBanking)
{
*(PULONG)(ppdev->pjScreen + ppdev->ulSolidColorOffset) = ulSolidColor;
}
else
{
CP_MMU_BP0(ppdev, pjBase, ppdev->ulSolidColorOffset);
CP_WRITE_MMU_DWORD(ppdev, 0, 0, ulSolidColor);
}
//
// We know that the ACL is idle now, so no wait
//
CP_PEL_DEPTH(ppdev, pjBase, HW_PEL_DEPTH_24BPP);
//
// Fill the list of rectangles
//
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
if (ppdev->ulChipID == ET6000)
{
CP_XCNT(ppdev, pjBase, (((prcl->right - prcl->left) * CBPP) - 1));
}
else
{
CP_XCNT(ppdev, pjBase, ((prcl->right - prcl->left - 1) * CBPP));
}
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, ((prcl->top * lDelta) + (CBPP * prcl->left)));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
// set pixel depth back to 1
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_PEL_DEPTH(ppdev, pjBase, HW_PEL_DEPTH_8BPP);
#undef CBPP
}
/**************************************************************************
*
* Does a screen-to-screen blt of a list of rectangles.
*
**************************************************************************/
VOID vScrToScr(
PDEV* ppdev,
LONG c, // Can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ROP4 rop4, // Obvious?
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst) // Original unclipped destination rectangle
{
LONG dx;
LONG dy; // Add delta to destination to get source
LONG xyOffset = ppdev->xyOffset;
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
LONG cBpp = ppdev->cBpp;
DISPDBG((10,"vScrToScr called"));
ASSERTDD(c > 0, "Can't handle zero rectangles");
//
// The src-dst delta will be the same for all rectangles
//
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top;
//
// Make sure we can write to the video registers.
//
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_BK_ROP(ppdev, pjBase, (rop4 & 0xff));
CP_SRC_WRAP(ppdev, pjBase, NO_PATTERN_WRAP);
CP_SRC_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
// ### I don't think this is necessary - WAIT_FOR_IDLE_ACL(ppdev, pjBase);
//
// The accelerator may not be as fast at doing right-to-left copies, so
// only do them when the rectangles truly overlap:
//
if (!OVERLAP(prclDst, pptlSrc))
goto Top_Down_Left_To_Right;
if (prclDst->top <= pptlSrc->y)
{
if (prclDst->left <= pptlSrc->x)
{
Top_Down_Left_To_Right:
//
// Top to Bottom - Left to Right
//
DISPDBG((12,"Top to Bottom - Left to Right"));
CP_XY_DIR(ppdev, pjBase, 0); // Top to Bottom - Left to Right
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cBpp * (prcl->right - prcl->left) - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
CP_SRC_ADDR(ppdev, pjBase, (xyOffset + ((prcl->top + dy) * lDelta) + cBpp * (prcl->left + dx)));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, ((prcl->top * lDelta) + (cBpp * prcl->left)));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
else
{
//
// Top to Bottom - Right to left
//
DISPDBG((12,"Top to Bottom - Right to left"));
CP_XY_DIR(ppdev, pjBase, RIGHT_TO_LEFT);
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cBpp * (prcl->right - prcl->left) - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
CP_SRC_ADDR(ppdev, pjBase, (xyOffset + ((prcl->top + dy) * lDelta) + cBpp * (prcl->right + dx) - 1));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, ((prcl->top * lDelta) + (cBpp * prcl->right) - 1));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
}
else
{
if (prclDst->left <= pptlSrc->x)
{
//
// Bottom to Top - Left to Right
//
DISPDBG((12,"Bottom to Top - Left to Right"));
CP_XY_DIR(ppdev, pjBase, BOTTOM_TO_TOP);
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cBpp * (prcl->right - prcl->left) - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
CP_SRC_ADDR(ppdev, pjBase, (xyOffset + ((prcl->bottom - 1 + dy) * lDelta) + cBpp * (prcl->left + dx)));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, (((prcl->bottom - 1) * lDelta) + (cBpp * prcl->left)));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
else
{
//
// Bottom to Top - Right to Left
//
DISPDBG((12,"Bottom to Top - Right to Left"));
CP_XY_DIR(ppdev, pjBase, (BOTTOM_TO_TOP | RIGHT_TO_LEFT));
do {
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cBpp * (prcl->right - prcl->left) - 1));
CP_YCNT(ppdev, pjBase, (prcl->bottom - prcl->top - 1));
CP_SRC_ADDR(ppdev, pjBase, (xyOffset + ((prcl->bottom - 1 + dy) * lDelta) + cBpp * (prcl->right + dx) - 1));
// Set the blt destination address as the base address of MMU aperture 2
// Then start the accelerated operation by writing something to this
// aperture.
SET_DEST_ADDR(ppdev, (((prcl->bottom - 1) * lDelta) + cBpp * (prcl->right) - 1));
START_ACL(ppdev);
prcl++;
} while (--c != 0);
}
}
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XY_DIR(ppdev, pjBase, 0); // Top to Bottom - Left to Right
}
/**************************************************************************
*
* Does a monochrome expansion to video memory.
*
* Make this Xfer1to8bpp and create another for Xfer1to16bpp?
*
**************************************************************************/
VOID vSlowXfer1bpp( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ROP4 rop4, // Actually had better be a rop3
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Translate that provides color-expansion information
{
LONG dx;
LONG dy;
LONG lSrcDelta;
BYTE* pjSrcScan0;
BYTE* pjSrc;
LONG cjSrc;
LONG cjTrail;
LONG culSrc;
BYTE jFgRop3;
BYTE jBgRop3;
BOOL bW32p;
ULONG ulSolidColorOffset = ppdev->ulSolidColorOffset;
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
LONG cBpp = ppdev->cBpp;
ULONG ulFgColor = pxlo->pulXlate[1];
ULONG ulBgColor = pxlo->pulXlate[0];
LONG xyOffset = (ppdev->cBpp * ppdev->xOffset) +
(ppdev->yOffset * ppdev->lDelta);
DISPDBG((10,"vSlowXfer1bpp called"));
DISPDBG((11,"rop4(%04x)", rop4));
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(pptlSrc != NULL && psoSrc != NULL, "Can't have NULL sources");
ASSERTDD(ppdev->cBpp <= 2, "vSlowXfer1bpp doesn't work at 24 bpp");
bW32p = (ppdev->ulChipID == W32P);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
jFgRop3 = (BYTE)(rop4 >> 8); // point to src color where src is indicated
// point to pat color where src is indicated
if ((BYTE) rop4 != R3_NOP)
{
jBgRop3 = (BYTE)((rop4 & 0xc3) | ((rop4 & 0xf0) >> 2));
}
else
{
jBgRop3 = (BYTE) rop4;
}
DISPDBG((11,"jFgRop3(%04x), jBgRop3(%04x)", jFgRop3, jBgRop3));
CP_FG_ROP(ppdev, pjBase, jFgRop3);
CP_BK_ROP(ppdev, pjBase, jBgRop3);
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
CP_PAT_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP);
CP_PAT_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET - 1));
CP_SRC_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP);
CP_SRC_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET - 1));
CP_PAT_ADDR(ppdev, pjBase, ulSolidColorOffset + 4);
CP_SRC_ADDR(ppdev, pjBase, ulSolidColorOffset);
{
//
// Set the address where we're going to put the solid color data.
// All data transfers to video memory take place through aperature 0.
//
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
CP_MMU_BP0(ppdev, pjBase, ppdev->ulSolidColorOffset);
//
// Set the color in offscreen memory
//
if (cBpp == 1)
{
ulFgColor |= ulFgColor << 8;
ulBgColor |= ulBgColor << 8;
}
if (cBpp <= 2)
{
ulFgColor |= ulFgColor << 16;
ulBgColor |= ulBgColor << 16;
}
CP_WRITE_MMU_DWORD(ppdev, 0, 0, ulFgColor);
CP_WRITE_MMU_DWORD(ppdev, 0, 4, ulBgColor);
}
CP_ROUTING_CTRL(ppdev, pjBase, CPU_MIX_DATA);
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top; // Add to destination to get source
pjSrcScan0 = psoSrc->pvScan0;
DISPDBG((2,"lSrcDelta(%x)", psoSrc->lDelta));
do {
ULONG ulDst;
RECTL rclSrc;
RECTL rclDst;
LONG xBitsPad;
LONG xBitsUsed;
LONG xBytesPad;
//
// load lSrcDelta inside the loop because we adjust it later.
//
lSrcDelta = psoSrc->lDelta;
rclDst = *prcl;
rclSrc.left = rclDst.left + dx;
rclSrc.right = rclDst.right + dx;
rclSrc.top = rclDst.top + dy;
rclSrc.bottom = rclDst.bottom + dy;
// x = prcl->left;
// y = prcl->top;
//
// Calculate number of bits used in first partial.
//
xBitsPad = rclSrc.left & 7;
xBitsUsed = min((8-xBitsPad),(rclSrc.right-rclSrc.left));
xBytesPad = rclDst.left & 3;
if (xBitsPad != 0) // (0 < xBitsUsed < 8)
{
DISPDBG((2,"xBitsUsed(%d) xBitsPad(%d)", xBitsUsed, xBitsPad));
DISPDBG((2,"rclSrc(%d,%d,%d,%d) rclDst(%d,%d,%d,%d)",
rclSrc.left,
rclSrc.top,
rclSrc.right,
rclSrc.bottom,
rclDst.left,
rclDst.top,
rclDst.right,
rclDst.bottom));
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
// Do the column of the first xBitsUsed pixels
if (!bW32p)
{
CP_BUS_SIZE(ppdev, pjBase, VIRTUAL_BUS_8_BIT);
}
CP_XCNT(ppdev, pjBase, ((xBitsUsed * cBpp) - 1));
CP_YCNT(ppdev, pjBase, (rclDst.bottom - rclDst.top - 1));
pjSrc = pjSrcScan0 + rclSrc.top * lSrcDelta
+ (rclSrc.left >> 3);
ulDst = (rclDst.top * lDelta) + (cBpp * rclDst.left);
ulDst += xyOffset;
if (bW32p)
{
// We will align the data ourselves.
CP_MIX_ADDR(ppdev, pjBase, 0);
CP_MIX_Y_OFFSET(ppdev, pjBase, -1);
}
CP_MMU_BP2(ppdev, pjBase, ulDst);
CP_DST_ADDR(ppdev, pjBase, ulDst);
if (bW32p) WAIT_FOR_BUSY_ACL(ppdev, pjBase);
if (cBpp == 1)
{
LONG i;
for (i = rclDst.bottom - rclDst.top; i; i--)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 0, jReverse[(*pjSrc << xBitsPad) & 0xff]);
pjSrc += lSrcDelta;
}
}
else // if (cBpp == 2)
{
LONG i;
WORD wTmp;
BYTE * pjCvt = (BYTE *) &wTmp;
for (i = rclDst.bottom - rclDst.top; i; i--)
{
wTmp = wReverse2x[(*pjSrc << xBitsPad) & 0xff];
CP_WRITE_MMU_BYTE(ppdev, 2, 0, pjCvt[0]);
if (xBitsUsed > 4)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 1, pjCvt[1]);
}
pjSrc += lSrcDelta;
}
}
rclSrc.left += xBitsUsed;
rclDst.left += xBitsUsed;
}
// If the entire blt wasn't contained in the first partial byte,
// the we have to do the rest.
if (rclSrc.left < rclSrc.right)
{
DISPDBG((2,"rclSrc(%d,%d,%d,%d) rclDst(%d,%d,%d,%d)",
rclSrc.left,
rclSrc.top,
rclSrc.right,
rclSrc.bottom,
rclDst.left,
rclDst.top,
rclDst.right,
rclDst.bottom));
//
// Legend has it that we need a WAIT_FOR_IDLE_ACL, instead of just
// a WAIT_FOR_EMPTY_ACL_QUEUE, to prevent hanging W32
//
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
if (!bW32p)
{
CP_BUS_SIZE(ppdev, pjBase, VIRTUAL_BUS_32_BIT);
}
CP_XCNT(ppdev, pjBase, (cBpp * (rclDst.right - rclDst.left) - 1));
CP_YCNT(ppdev, pjBase, (rclDst.bottom - rclDst.top - 1));
cjSrc = (((rclSrc.right * cBpp) + 7) >> 3) -
((rclSrc.left * cBpp) >> 3); // # bytes to transfer
culSrc = (cjSrc >> 2);
cjTrail = (cjSrc & 3);
DISPDBG((2,"cjSrc(%d)", cjSrc));
DISPDBG((2,"culSrc(%d)", culSrc));
DISPDBG((2,"cjTrail(%d)", cjTrail));
pjSrc = pjSrcScan0 + rclSrc.top * lSrcDelta
+ (rclSrc.left >> 3);
DISPDBG((2,"pjSrc(%x)", pjSrc));
ulDst = (rclDst.top * lDelta) + (cBpp * rclDst.left);
ulDst += xyOffset;
if (bW32p)
{
// We will align the data ourselves.
CP_MIX_ADDR(ppdev, pjBase, 0);
CP_MIX_Y_OFFSET(ppdev, pjBase, -1);
}
CP_MMU_BP2(ppdev, pjBase, ulDst);
CP_DST_ADDR(ppdev, pjBase, ulDst);
if (bW32p) WAIT_FOR_BUSY_ACL(ppdev, pjBase);
{
LONG i;
LONG j;
if (cBpp == 1)
{
lSrcDelta -= cjSrc;
for (i = rclDst.bottom - rclDst.top; i; i--)
{
ULONG cjTmp = cjTrail;
volatile BYTE * pjTmp;
volatile ULONG * pulTmp;
DISPDBG((2,"pjSrc(%x)", pjSrc));
for (j = culSrc; j; j--)
{
ULONG ulTmp = 0;
ulTmp |= (ULONG)jReverse[*pjSrc++];
ulTmp |= (ULONG)jReverse[*pjSrc++] << 8;
ulTmp |= (ULONG)jReverse[*pjSrc++] << 16;
ulTmp |= (ULONG)jReverse[*pjSrc++] << 24;
CP_WRITE_MMU_DWORD(ppdev, 2, 0, ulTmp);
DISPDBG((2,"Src(%08x) Tmp(%08x)",
*((ULONG *)(pjSrc-4)),
ulTmp
));
}
if (bW32p)
{
int ndx = 0;
while (cjTmp--)
{
CP_WRITE_MMU_BYTE(ppdev, 2, ndx, jReverse[*pjSrc]);
pjSrc++;
ndx++;
}
}
else
{
if (cjTmp)
{
ULONG ulTmp = 0;
if (cjTmp == 1) goto do_1_byte;
if (cjTmp == 2) goto do_2_bytes;
//
// do all three bytes of the partial
//
ulTmp |= (ULONG)jReverse[pjSrc[2]] << 16;
do_2_bytes:
ulTmp |= (ULONG)jReverse[pjSrc[1]] << 8;
do_1_byte:
ulTmp |= (ULONG)jReverse[pjSrc[0]];
//*pulTmp = ulTmp;
CP_WRITE_MMU_DWORD(ppdev, 2, 0, ulTmp);
pjSrc += cjTmp;
}
}
pjSrc += lSrcDelta;
}
}
else // if (cBpp == 2)
{
lSrcDelta -= (cjSrc + 1) >> 1;
for (i = rclDst.bottom - rclDst.top; i; i--)
{
ULONG cjTmp = cjTrail;
int ndx = 0;
DISPDBG((2,"pjSrc(%x)", pjSrc));
for (j = culSrc; j; j--)
{
ULONG ulTmp;
ulTmp = (ULONG)wReverse2x[*pjSrc++];
ulTmp |= (ULONG)wReverse2x[*pjSrc++] << 16;
CP_WRITE_MMU_DWORD(ppdev, 2, 0, ulTmp);
}
if (bW32p)
{
while (cjTmp--)
{
WORD wCvt;
BYTE * pjCvt = (BYTE *) &wCvt;
wCvt = wReverse2x[*pjSrc++];
CP_WRITE_MMU_BYTE(ppdev, 2, ndx, pjCvt[0]);
ndx++;
if (cjTmp)
{
CP_WRITE_MMU_BYTE(ppdev, 2, ndx, pjCvt[1]);
ndx++;
cjTmp--;
}
}
}
else
{
if (cjTmp)
{
ULONG ulTmp;
ulTmp = (ULONG)wReverse2x[pjSrc[0]];
ulTmp |= (ULONG)wReverse2x[pjSrc[1]] << 16;
CP_WRITE_MMU_DWORD(ppdev, 2, 0, ulTmp);
pjSrc += (cjTmp+1) >> 1;
}
}
pjSrc += lSrcDelta;
}
}
}
}
prcl++;
} while (--c != 0);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, 0);
if (!bW32p)
{
CP_BUS_SIZE(ppdev, pjBase, VIRTUAL_BUS_8_BIT);
}
}
VOID vXferBlt8i(
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ROP4 rop4, // Obvious?
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Not used
{
BYTE* pjBase = ppdev->pjBase;
BYTE* pjSrcScan0 = (BYTE*) psoSrc->pvScan0;
LONG lDeltaDst = ppdev->lDelta;
LONG lDeltaSrc = psoSrc->lDelta;
POINTL ptlSrc = *pptlSrc;
RECTL rclDst = *prclDst;
LONG cBpp = ppdev->cBpp;
SIZEL sizlBlt;
ULONG ulDstAddr;
BYTE* pjSrc;
INT ix, iy;
LONG dx;
LONG dy; // Add delta to destination to get source
LONG cjLead;
LONG cjTrail;
LONG culMiddle;
LONG xyOffset = (cBpp * ppdev->xOffset) +
(lDeltaDst * ppdev->yOffset);
//
// The src-dst delta will be the same for all rectangles
//
dx = ptlSrc.x - rclDst.left;
dy = ptlSrc.y - rclDst.top;
// Note: Legend has it that if we don't wait for the ACL to become idle,
// then the code will hang on the W32, but not on the W32i.
//
// Since we do a WAIT_FOR_IDLE_ACL we don't need to
// WAIT_FOR_EMPTY_ACL_QUEUE
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, CPU_SOURCE_DATA);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaDst - 1));
do {
// Calculate blt dimensions in bytes
sizlBlt.cx = cBpp * (prcl->right - prcl->left);
sizlBlt.cy = prcl->bottom - prcl->top;
pjSrc = pjSrcScan0 +
((prcl->top + dy) * lDeltaSrc) +
((prcl->left + dx) * cBpp);
cjTrail = cjLead = (LONG)((ULONG_PTR)pjSrc);
cjLead = aulLeadCnt[cjLead & 3];
if (cjLead < sizlBlt.cx)
{
cjTrail += sizlBlt.cx;
cjTrail &= 3;
culMiddle = (sizlBlt.cx - (cjLead + cjTrail)) >> 2;
}
else
{
cjLead = sizlBlt.cx;
cjTrail = 0;
culMiddle = 0;
}
ASSERTDD(culMiddle >= 0, "vXferBlt8i: culMiddle < 0");
ulDstAddr = (prcl->top * lDeltaDst) +
(prcl->left * cBpp) +
(xyOffset);
if ((sizlBlt.cx - (cjLead + cjTrail)) & 3)
DISPDBG((0, "WARNING: cx - (cjLead+cjTail) not multiple of 4"));
DISPDBG((8, "rclSrc(%d,%d,%d,%d)",
prcl->left+dx,
prcl->top+dy,
prcl->right+dx,
prcl->bottom+dy
));
DISPDBG((8, "rclDst(%d,%d,%d,%d)",
prcl->left,
prcl->top,
prcl->right,
prcl->bottom
));
DISPDBG((8, "pjSrc(%x) cx(%d) ulDstAddr(%xh) (%d,%d,%d)",
pjSrc,
sizlBlt.cx,
ulDstAddr,
cjLead,
culMiddle,
cjTrail
));
if (cjLead)
{
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cjLead - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
CP_MMU_BP2(ppdev, pjBase, (ulDstAddr));
afnXferI_Narrow[cjLead](ppdev,
pjSrc,
0,
sizlBlt.cy,
lDeltaSrc);
}
if (cjTrail)
{
LONG cjOffset = cjLead + (culMiddle<<2);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cjTrail - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
CP_MMU_BP2(ppdev, pjBase, (ulDstAddr+cjOffset));
afnXferI_Narrow[cjTrail](ppdev,
(pjSrc+cjOffset),
0,
sizlBlt.cy,
lDeltaSrc);
}
if (culMiddle)
{
LONG cjOffset = cjLead;
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, ((culMiddle<<2) - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
CP_BUS_SIZE(ppdev, pjBase, VIRTUAL_BUS_32_BIT);
CP_MMU_BP2(ppdev, pjBase, (ulDstAddr+cjOffset));
vXfer_DWORDS(ppdev,
(pjSrc+cjOffset),
culMiddle,
sizlBlt.cy,
lDeltaSrc);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_BUS_SIZE(ppdev, pjBase, VIRTUAL_BUS_8_BIT);
}
prcl++;
} while (--c != 0);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, 0);
}
VOID vXferBlt8p(
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ROP4 rop4, // Obvious?
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Not used
{
BYTE* pjBase = ppdev->pjBase;
BYTE* pjSrcScan0 = (BYTE*) psoSrc->pvScan0;
LONG lDeltaDst = ppdev->lDelta;
LONG lDeltaSrc = psoSrc->lDelta;
POINTL ptlSrc = *pptlSrc;
RECTL rclDst = *prclDst;
LONG cBpp = ppdev->cBpp;
SIZEL sizlBlt;
ULONG ulDstAddr;
BYTE* pjSrc;
INT ix, iy;
LONG dx;
LONG dy; // Add delta to destination to get source
LONG iLeadNdx;
LONG cjLead;
LONG cjTrail;
LONG culMiddle;
LONG xyOffset = (cBpp * ppdev->xOffset) +
(lDeltaDst * ppdev->yOffset);
//
// The src-dst delta will be the same for all rectangles
//
dx = ptlSrc.x - rclDst.left;
dy = ptlSrc.y - rclDst.top;
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, CPU_SOURCE_DATA);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaDst - 1));
CP_SRC_ADDR(ppdev, pjBase, 0);
CP_SRC_Y_OFFSET(ppdev, pjBase, -1);
do {
// Calculate blt dimensions in bytes
sizlBlt.cx = cBpp * (prcl->right - prcl->left);
sizlBlt.cy = prcl->bottom - prcl->top;
pjSrc = pjSrcScan0 +
((prcl->top + dy) * lDeltaSrc) +
((prcl->left + dx) * cBpp);
cjTrail = iLeadNdx = (LONG)((ULONG_PTR)pjSrc);
iLeadNdx &= 3;
cjLead = aulLeadCnt[iLeadNdx];
if (cjLead < sizlBlt.cx)
{
cjTrail += sizlBlt.cx;
cjTrail &= 3;
culMiddle = (sizlBlt.cx - (cjLead + cjTrail)) >> 2;
}
else
{
cjLead = sizlBlt.cx;
cjTrail = 0;
culMiddle = 0;
}
ASSERTDD(culMiddle >= 0, "vXferBlt8i: culMiddle < 0");
ulDstAddr = (prcl->top * lDeltaDst) +
(prcl->left * cBpp) +
(xyOffset);
if ((sizlBlt.cx - (cjLead + cjTrail)) & 3)
DISPDBG((0, "WARNING: cx - (cjLead+cjTail) not multiple of 4"));
DISPDBG((8, "rclSrc(%d,%d,%d,%d)",
prcl->left+dx,
prcl->top+dy,
prcl->right+dx,
prcl->bottom+dy
));
DISPDBG((8, "rclDst(%d,%d,%d,%d)",
prcl->left,
prcl->top,
prcl->right,
prcl->bottom
));
DISPDBG((8, "pjSrc(%x) cx(%d) ulDstAddr(%xh) (%d,%d,%d)",
pjSrc,
sizlBlt.cx,
ulDstAddr,
cjLead,
culMiddle,
cjTrail
));
if (cjLead)
{
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cjLead - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
// The next two turn off src to dst alignment
CP_DST_ADDR(ppdev, pjBase, (ulDstAddr));
WAIT_FOR_BUSY_ACL(ppdev, pjBase);
afnXferP_Narrow[cjLead](ppdev,
pjSrc,
0,
sizlBlt.cy,
lDeltaSrc);
}
if (cjTrail)
{
LONG cjOffset = cjLead + (culMiddle<<2);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (cjTrail - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
// The next two turn off src to dst alignment
CP_DST_ADDR(ppdev, pjBase, (ulDstAddr+cjOffset));
WAIT_FOR_BUSY_ACL(ppdev, pjBase);
afnXferP_Narrow[cjTrail](ppdev,
(pjSrc+cjOffset),
0,
sizlBlt.cy,
lDeltaSrc);
}
if (culMiddle)
{
LONG cjOffset = cjLead;
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, ((culMiddle<<2) - 1));
CP_YCNT(ppdev, pjBase, (sizlBlt.cy - 1));
// The next two turn off src to dst alignment
CP_DST_ADDR(ppdev, pjBase, (ulDstAddr+cjOffset));
WAIT_FOR_BUSY_ACL(ppdev, pjBase);
vXfer_DWORDS(ppdev,
(pjSrc+cjOffset),
culMiddle,
sizlBlt.cy,
lDeltaSrc);
}
prcl++;
} while (--c != 0);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, 0);
}
//////////////////////////////////////////////////////////////////////
// N DWORD low level blt routines for vXferNativeI and vXferNativeP
// A DWORD at a time
VOID vXfer_DWORDS(PPDEV ppdev, BYTE* pjSrc, LONG culX, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
// We had better be in 32 bit virtual bus mode
for (iy = 0; iy < cy; iy++)
{
for (ix = 0; ix < culX; ix++)
{
CP_WRITE_MMU_DWORD(ppdev, 2, 0, *((ULONG*)pjTmp));
pjTmp += 4;
}
pjTmp = (pjSrc += lDeltaSrc);
}
}
// A BYTE at a time
VOID vXfer_BYTES(PPDEV ppdev, BYTE* pjSrc, LONG culX, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
LONG cjX = (culX << 2);
// We had better be in 8 bit virtual bus mode
for (iy = 0; iy < cy; iy++)
{
for (ix = 0; ix < cjX; ix++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp);
pjTmp++;
}
pjTmp = (pjSrc += lDeltaSrc);
}
}
//////////////////////////////////////////////////////////////////////
// Narrow low level blt routines for vXferNativeI
VOID vXferI_1_Byte(PPDEV ppdev, BYTE* pjSrc, LONG culX, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjSrc);
pjSrc += lDeltaSrc;
}
}
VOID vXferI_2_Bytes(PPDEV ppdev, BYTE* pjSrc, LONG culX, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp); pjTmp++;
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp);
pjTmp = (pjSrc += lDeltaSrc);
}
}
VOID vXferI_3_Bytes(PPDEV ppdev, BYTE* pjSrc, LONG culX, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp); pjTmp++;
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp); pjTmp++;
CP_WRITE_MMU_BYTE(ppdev, 2, 0, *pjTmp);
pjTmp = (pjSrc += lDeltaSrc);
}
}
//////////////////////////////////////////////////////////////////////
// Narrow low level blt routines for vXferNativeP
VOID vXferP_1_Byte(PPDEV ppdev, BYTE* pjSrc, LONG index, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, index, *pjSrc);
pjSrc += lDeltaSrc;
}
}
VOID vXferP_2_Bytes(PPDEV ppdev, BYTE* pjSrc, LONG index, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_WORD(ppdev, 2, index, *((WORD*)pjTmp));
pjTmp = (pjSrc += lDeltaSrc);
}
}
VOID vXferP_3_Bytes(PPDEV ppdev, BYTE* pjSrc, LONG index, LONG cy, LONG lDeltaSrc)
{
LONG iy;
LONG ix;
BYTE* pjTmp = pjSrc;
BYTE* pjBase = ppdev->pjBase;
if (index & 1)
{
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_BYTE(ppdev, 2, index, *pjTmp);
pjTmp++;
CP_WRITE_MMU_WORD(ppdev, 2, index+1, *((WORD*)pjTmp));
pjTmp = (pjSrc += lDeltaSrc);
}
}
else
{
for (iy = 0; iy < cy; iy++)
{
CP_WRITE_MMU_WORD(ppdev, 2, index, *((WORD*)pjTmp));
pjTmp+=2;
CP_WRITE_MMU_BYTE(ppdev, 2, index+2, *pjTmp);
pjTmp = (pjSrc += lDeltaSrc);
}
}
}
// This routine was added to perform accelerated host to screen blts for the
// ET6000. The W32 had a path from host memory to display memory which allowed
// ROPs to be performed as the data was transferred. The ET6000 does not have
// that feature, so to provide accelerated host to screen support we must
// buffer each scanline of the source in offscreen memory and then perform
// a blt to move it into the appropriate area of display memory. This is
// much more efficient than hand coding each rop or punting to GDI.
VOID vXferET6000(
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // Array of relative coordinates destination rectangles
ROP4 rop4, // Obvious?
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Not used
{
BYTE* pjBase = ppdev->pjBase;
BYTE* pjSrcScan0 = (BYTE*) psoSrc->pvScan0;
LONG lDeltaDst = ppdev->lDelta;
LONG lDeltaSrc = psoSrc->lDelta;
POINTL ptlSrc = *pptlSrc;
RECTL rclDst = *prclDst;
LONG cBpp = ppdev->cBpp;
SIZEL sizlBlt;
ULONG ulDstAddr;
BYTE* pjSrc;
BYTE* pjDst;
INT ix, iy;
LONG dx;
LONG dy; // Add delta to destination to get source
LONG iLeadNdx;
LONG cjLead;
LONG cjTrail;
LONG culMiddle;
LONG xyOffset = (cBpp * ppdev->xOffset) +
(lDeltaDst * ppdev->yOffset);
ULONG ulBltBufferOffset = (cBpp * ppdev->pohBltBuffer->x) +
(lDeltaDst * ppdev->pohBltBuffer->y);
ULONG BltScanOffset = 0;
//
// The src-dst delta will be the same for all rectangles
//
dx = ptlSrc.x - rclDst.left;
dy = ptlSrc.y - rclDst.top;
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_FG_ROP(ppdev, pjBase, (rop4 >> 8));
CP_BK_ROP(ppdev, pjBase, (rop4 & 0xff));
CP_SRC_WRAP(ppdev, pjBase, NO_PATTERN_WRAP);
CP_SRC_Y_OFFSET(ppdev, pjBase, (lDeltaDst - 1));
CP_DST_Y_OFFSET(ppdev, pjBase, (lDeltaDst - 1));
do
{
BYTE* pjTmp;
// Calculate blt dimensions in bytes
sizlBlt.cx = cBpp * (prcl->right - prcl->left);
sizlBlt.cy = prcl->bottom - prcl->top;
pjSrc = pjSrcScan0 +
((prcl->top + dy) * lDeltaSrc) +
((prcl->left + dx) * cBpp);
pjTmp = pjSrc;
cjTrail = iLeadNdx = (LONG)((ULONG_PTR)pjSrc);
iLeadNdx &= 3;
cjLead = aulLeadCnt[iLeadNdx];
if (cjLead < sizlBlt.cx)
{
cjTrail += sizlBlt.cx;
cjTrail &= 3;
culMiddle = (sizlBlt.cx - (cjLead + cjTrail)) >> 2;
}
else
{
cjLead = sizlBlt.cx;
cjTrail = 0;
culMiddle = 0;
}
ASSERTDD(culMiddle >= 0, "vXferET6000: culMiddle < 0");
ulDstAddr = (prcl->top * lDeltaDst) +
(prcl->left * cBpp) +
(xyOffset);
if ((sizlBlt.cx - (cjLead + cjTrail)) & 3)
DISPDBG((0, "WARNING: cx - (cjLead+cjTail) not multiple of 4"));
DISPDBG((8, "rclSrc(%d,%d,%d,%d)",
prcl->left+dx,
prcl->top+dy,
prcl->right+dx,
prcl->bottom+dy
));
DISPDBG((8, "rclDst(%d,%d,%d,%d)",
prcl->left,
prcl->top,
prcl->right,
prcl->bottom
));
DISPDBG((8, "pjSrc(%x) cx(%d) ulDstAddr(%xh) (%d,%d,%d)",
pjSrc,
sizlBlt.cx,
ulDstAddr,
cjLead,
culMiddle,
cjTrail
));
for (iy = 0; iy < sizlBlt.cy; iy++)
{
LONG ix, lScanLineOffset;
// We'll first load the first scan line of
// the BltBuffer and then load the second. The second scan line
// will be loaded into the BltBuffer while the first is still being
// processed. We'll alternate between the two segments of our
// BltBuffer until all scans have been processed.
pjDst = ppdev->pjScreen + ulBltBufferOffset + BltScanOffset;
if (cjLead)
{
for (ix = 0; ix < cjLead; ix++)
{
*pjDst++ = *pjTmp++;
}
}
if (culMiddle)
{
for (ix = 0; ix < culMiddle; ix++)
{
*((ULONG*)pjDst)++ = *((ULONG*)pjTmp)++;
}
}
if (cjTrail)
{
for (ix = 0; ix < cjTrail; ix++)
{
*pjDst++ = *pjTmp++;
}
}
// Now that we've loaded our scanline into a segment of our BltBuffer,
// we need to trigger an accelerator operation to transfer it into
// visible screen memory. Our static stuff will have already been setup
// prior to entering any of our loops.
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, (sizlBlt.cx - 1));
CP_YCNT(ppdev, pjBase, 0); // Only 1 scan at a time
CP_SRC_ADDR(ppdev, pjBase, (ulBltBufferOffset + BltScanOffset));
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_DST_ADDR(ppdev, pjBase, ulDstAddr);
BltScanOffset ^= ppdev->lBltBufferPitch;
pjTmp = (pjSrc += lDeltaSrc);
ulDstAddr += lDeltaDst;
} // next cy
prcl++;
} while (--c != 0);
}
/**************************************************************************
*
* Does a monochrome expansion to video memory.
*
**************************************************************************/
VOID vET6000SlowXfer1bpp( // Type FNXFER
PDEV* ppdev,
LONG c, // Count of rectangles, can't be zero
RECTL* prcl, // List of destination rectangles, in relative
// coordinates
ROP4 rop4, // Actually had better be a rop3
SURFOBJ* psoSrc, // Source surface
POINTL* pptlSrc, // Original unclipped source point
RECTL* prclDst, // Original unclipped destination rectangle
XLATEOBJ* pxlo) // Translate that provides color-expansion information
{
LONG dx;
LONG dy;
LONG lSrcDelta;
BYTE* pjSrcScan0;
BYTE* pjSrc;
LONG cjSrc;
LONG cjTrail;
LONG culSrc;
BYTE jFgRop3;
BYTE jBgRop3;
ULONG ulSolidColorOffset = ppdev->ulSolidColorOffset;
BYTE* pjBase = ppdev->pjBase;
LONG lDelta = ppdev->lDelta;
LONG cBpp = ppdev->cBpp;
ULONG ulFgColor = pxlo->pulXlate[1];
ULONG ulBgColor = pxlo->pulXlate[0];
LONG xyOffset = (ppdev->cBpp * ppdev->xOffset) +
(ppdev->yOffset * ppdev->lDelta);
LONG lBltBuffer = (ppdev->pohBltBuffer->x * ppdev->cBpp) +
(ppdev->pohBltBuffer->y * ppdev->lDelta);
DISPDBG((10,"vET6000SlowXfer1bpp called"));
DISPDBG((11,"rop4(%04x)", rop4));
ASSERTDD(c > 0, "Can't handle zero rectangles");
ASSERTDD(pptlSrc != NULL && psoSrc != NULL, "Can't have NULL sources");
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
jFgRop3 = (BYTE)(rop4 >> 8); // point to src color where src is indicated
// point to pat color where src is indicated
if ((BYTE) rop4 != R3_NOP)
{
jBgRop3 = (BYTE)((rop4 & 0xc3) | ((rop4 & 0xf0) >> 2));
}
else
{
jBgRop3 = (BYTE) rop4;
}
DISPDBG((11,"jFgRop3(%04x), jBgRop3(%04x)", jFgRop3, jBgRop3));
CP_FG_ROP(ppdev, pjBase, jFgRop3);
CP_BK_ROP(ppdev, pjBase, jBgRop3);
CP_DST_Y_OFFSET(ppdev, pjBase, (lDelta - 1));
CP_PAT_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP);
CP_PAT_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET - 1));
CP_SRC_WRAP(ppdev, pjBase, SOLID_COLOR_PATTERN_WRAP);
CP_SRC_Y_OFFSET(ppdev, pjBase, (SOLID_COLOR_PATTERN_OFFSET - 1));
CP_PAT_ADDR(ppdev, pjBase, ulSolidColorOffset + 4);
CP_SRC_ADDR(ppdev, pjBase, ulSolidColorOffset);
CP_PEL_DEPTH(ppdev, pjBase, (cBpp - 1) << 4);
// Here we are going to load the foreground and background colors into
// display memory. We'll use the area for solid colors that we allocated
// earlier.
{
// Set the color in offscreen memory
if (cBpp == 1)
{
ulFgColor &= 0x000000FF; // We may get some extraneous data in the
ulBgColor &= 0x000000FF; // unused portion of our color. Clear it.
ulFgColor |= ulFgColor << 8;
ulBgColor |= ulBgColor << 8;
}
if (cBpp <= 2)
{
ulFgColor &= 0x0000FFFF;
ulBgColor &= 0x0000FFFF;
ulFgColor |= ulFgColor << 16;
ulBgColor |= ulBgColor << 16;
}
// We don't want to change the colors if the accelerator is active, because
// a previous oepration might be using them.
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
*(PULONG)(ppdev->pjScreen + ppdev->ulSolidColorOffset) = ulFgColor;
*(PULONG)(ppdev->pjScreen + ppdev->ulSolidColorOffset + 4) = ulBgColor;
}
// This is the mix control register for the ET6000. We are setting it to
// use a mix ROP of 2, which specifies that a 0 in the mixmap selects the
// background color and 1 selects the foreground color. Bit 7 says that
// we want bit 7 of each byte in our mix data to be pixel 0. This should
// be the way that NT wants it. We also have to set our mask ROP so we
// can get the data onto the screen.
CP_ROUTING_CTRL(ppdev, pjBase, 0xB2);
dx = pptlSrc->x - prclDst->left;
dy = pptlSrc->y - prclDst->top; // Add to destination to get source
pjSrcScan0 = psoSrc->pvScan0;
DISPDBG((2,"lSrcDelta(%x)", psoSrc->lDelta));
do
{
ULONG ulDst;
RECTL rclSrc;
RECTL rclDst;
BYTE* pjTmp;
BYTE* pjDst;
LONG i;
BYTE *pjMmu1 = ppdev->pjMmu1;
long lDwords, lBytes, lStart;
int cBitsToSkip;
// load lSrcDelta inside the loop because we adjust it later.
lSrcDelta = psoSrc->lDelta;
rclDst = *prcl;
rclSrc.left = rclDst.left + dx;
rclSrc.right = rclDst.right + dx;
rclSrc.top = rclDst.top + dy;
rclSrc.bottom = rclDst.bottom + dy;
// x = prcl->left;
// y = prcl->top;
DISPDBG((2,"rclSrc(%d,%d,%d,%d) rclDst(%d,%d,%d,%d)",
rclSrc.left,
rclSrc.top,
rclSrc.right,
rclSrc.bottom,
rclDst.left,
rclDst.top,
rclDst.right,
rclDst.bottom));
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_XCNT(ppdev, pjBase, ((rclSrc.right - rclSrc.left) * cBpp) - 1);
CP_YCNT(ppdev, pjBase, 0); // 1 scan at a time
pjSrc = pjSrcScan0 + rclSrc.top * lSrcDelta
+ (rclSrc.left >> 3);
cBitsToSkip = rclSrc.left % 8;
pjTmp = pjSrc;
ulDst = (rclDst.top * lDelta) + (cBpp * rclDst.left);
ulDst += xyOffset;
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
// We are going to transfer the mix map into our BltBuffer so
// we can get it to the screen.
CP_MIX_Y_OFFSET(ppdev, pjBase, 0); // 1 scan at a time
// We are using the rectangle dimensions to determine how many pixels per line to move. This
// fixes a bug exposed by the HCT when we had to clip a large temporary buffer and would draw
// using data close to the end of the buffer. We would get a protection exception depending on
// whether we ran too close to the end of the buffer. lSrcDelta will still be used when
// stepping through the source bitmap, but not to determine how many pixels will be drawn.
//
// We're adding cBitsToSkip back into here because it's necessary to compute the correct number
// of bytes to move. We always round to the next byte.
// i = abs(lSrcDelta); // this doesn't work
i = ((rclSrc.right - rclSrc.left) + cBitsToSkip + 7) >> 3; // Round up before shift.
lDwords = i / 4;
lBytes = i % 4;
lStart = 0;
// Here we are going to transfer the monochrome bitmap to the screen.
// We'll double buffer it to get some more throughput.
for (i=0; i < (rclSrc.bottom - rclSrc.top); i++)
{
long ix;
pjDst = ppdev->pjScreen + lBltBuffer + lStart;
ix = lDwords;
while (ix--)
{
*((ULONG*)pjDst)++ = *((ULONG*)pjTmp)++;
}
ix = lBytes;
while (ix--)
{
*pjDst++ = *pjTmp++;
}
WAIT_FOR_IDLE_ACL(ppdev, pjBase);
// We have to add in rclSrc.left mod 8 to compensate for the possibility
// of starting to draw to soon in our bitmap. This generally occurs when
// clipping text or moving windows where we are only asked to draw
// part of a monochrome bitmap.
CP_MIX_ADDR(ppdev, pjBase, ((lBltBuffer + lStart) * 8) + cBitsToSkip);
CP_DST_ADDR(ppdev, pjBase, ulDst);
pjTmp = (pjSrc += lSrcDelta);
ulDst += lDelta;
lStart ^= ppdev->lBltBufferPitch;
}
prcl++;
} while (--c != 0);
WAIT_FOR_EMPTY_ACL_QUEUE(ppdev, pjBase);
CP_ROUTING_CTRL(ppdev, pjBase, 0x33);
CP_PEL_DEPTH(ppdev, pjBase, 0);
}