Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2130 lines
63 KiB

/*************************************************************************\
* Module Name: Lines.c
*
* Contains most of the required GDI line support. Supports drawing
* lines in short 'strips' when clipping is complex or coordinates
* are too large to be drawn by the line hardware.
*
* Copyright (c) 1990-1995 Microsoft Corporation
\**************************************************************************/
#include "precomp.h"
///////////////////////////////////////////////////////////////////////
// We have to be careful of arithmetic overflow in a number of places.
// Fortunately, the compiler is guaranteed to natively support 64-bit
// signed LONGLONGs and 64-bit unsigned DWORDLONGs.
//
// UUInt32x32To64(a, b) is a macro defined in 'winnt.h' that multiplies
// two 32-bit ULONGs to produce a 64-bit DWORDLONG result.
//
// UInt64By32To32 is our own macro to divide a 64-bit DWORDLONG by
// a 32-bit ULONG to produce a 32-bit ULONG result.
//
// UInt64Mod32To32 is our own macro to modulus a 64-bit DWORDLONG by
// a 32-bit ULONG to produce a 32-bit ULONG result.
//
// 64 bit divides are usually very expensive. Since it's very rare
// that we'll get lines where the upper 32 bits of the 64 bit result
// are used, we can almost always use 32-bit ULONG divides. We still
// must correctly handle the larger cases:
#define UInt64Div32To32(a, b) \
((((DWORDLONG)(a)) > ULONG_MAX) ? \
(ULONG)((DWORDLONG)(a) / (ULONG)(b)) : \
(ULONG)((ULONG)(a) / (ULONG)(b)))
#define UInt64Mod32To32(a, b) \
((((DWORDLONG)(a)) > ULONG_MAX) ? \
(ULONG)((DWORDLONG)(a) % (ULONG)(b)) : \
(ULONG)((ULONG)(a) % (ULONG)(b)))
#define SWAPL(x,y,t) {t = x; x = y; y = t;}
FLONG gaflRound[] = {
FL_H_ROUND_DOWN | FL_V_ROUND_DOWN, // no flips
FL_H_ROUND_DOWN | FL_V_ROUND_DOWN, // FL_FLIP_D
FL_H_ROUND_DOWN, // FL_FLIP_V
FL_V_ROUND_DOWN, // FL_FLIP_V | FL_FLIP_D
FL_V_ROUND_DOWN, // FL_FLIP_SLOPE_ONE
0xbaadf00d, // FL_FLIP_SLOPE_ONE | FL_FLIP_D
FL_H_ROUND_DOWN, // FL_FLIP_SLOPE_ONE | FL_FLIP_V
0xbaadf00d // FL_FLIP_SLOPE_ONE | FL_FLIP_V | FL_FLIP_D
};
/******************************Public*Routine******************************\
* BOOL bLines(ppdev, pptfxFirst, pptfxBuf, cptfx, pls,
* prclClip, apfn[], flStart)
*
* Computes the DDA for the line and gets ready to draw it. Puts the
* pixel data into an array of strips, and calls a strip routine to
* do the actual drawing.
*
\**************************************************************************/
BOOL bLines(
PDEV* ppdev,
POINTFIX* pptfxFirst, // Start of first line
POINTFIX* pptfxBuf, // Pointer to buffer of all remaining lines
RUN* prun, // Pointer to runs if doing complex clipping
ULONG cptfx, // Number of points in pptfxBuf or number of runs
// in prun
LINESTATE* pls, // Colour and style info
RECTL* prclClip, // Pointer to clip rectangle if doing simple clipping
PFNSTRIP* apfn, // Array of strip functions
FLONG flStart, // Flags for each line, which is a combination of:
// FL_SIMPLE_CLIP
// FL_COMPLEX_CLIP
// FL_STYLED
// FL_LAST_PEL_INCLUSIVE
// - Should be set only for all integer lines,
// and can't be used with FL_COMPLEX_CLIP
ULONG ulHwMix)
{
ULONG M0;
ULONG dM;
ULONG N0;
ULONG dN;
ULONG dN_Original;
FLONG fl;
LONG x;
LONG y;
LONGLONG llBeta;
LONGLONG llGamma;
LONGLONG dl;
LONGLONG ll;
ULONG ulDelta;
ULONG x0;
ULONG y0;
ULONG x1;
ULONG cStylePels; // Major length of line in pixels for styling
ULONG xStart;
POINTL ptlStart;
STRIP strip;
PFNSTRIP pfn;
LONG cPels;
LONG* plStrip;
LONG* plStripEnd;
LONG cStripsInNextRun;
POINTFIX* pptfxBufEnd = pptfxBuf + cptfx; // Last point in path record
STYLEPOS spThis; // Style pos for this line
BYTE* pjBase;
pjBase = ppdev->pjBase;
do {
/***********************************************************************\
* Start the DDA calculations. *
\***********************************************************************/
M0 = (LONG) pptfxFirst->x;
dM = (LONG) pptfxBuf->x;
N0 = (LONG) pptfxFirst->y;
dN = (LONG) pptfxBuf->y;
fl = flStart;
// Check for non-clipped, non-styled integer endpoint lines
if ((fl & (FL_CLIP | FL_STYLED)) == 0)
{
// Special-case integer end-point lines:
if (((M0 | dM | N0 | dN) & (F - 1)) == 0)
{
LONG x0;
LONG y0;
LONG x1;
LONG y1;
x0 = M0 >> FLOG2;
x1 = dM >> FLOG2;
y0 = N0 >> FLOG2;
y1 = dN >> FLOG2;
// Unfortunately, we can only use the Weitek's point-
// to-point capability for perfectly horizontal and
// vertical lines, because for other lines the tie-
// breaker rule comes into play, and the Weitek has
// exactly the wrong tie-breaker convention.
if (y0 == y1)
{
// Horizontal integer line. Do last-pel exclusion:
if (x0 < x1)
x1--;
else if (x0 > x1)
x1++;
else
goto Next_Line; // Zero-pel line
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x1, y1);
CP_START_QUAD_WAIT(ppdev, pjBase);
goto Next_Line;
}
else if (x0 == x1)
{
// Vertical integer line. Do last-pel exclusion:
if (y0 < y1)
y1--;
else
y1++;
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x1, y1);
CP_START_QUAD_WAIT(ppdev, pjBase);
goto Next_Line;
}
}
}
if ((LONG) M0 > (LONG) dM)
{
// Ensure that we run left-to-right:
register ULONG ulTmp;
SWAPL(M0, dM, ulTmp);
SWAPL(N0, dN, ulTmp);
fl |= FL_FLIP_H;
}
// Compute the delta dx. The DDI says we can never have a valid delta
// with a magnitued more than 2^31 - 1, but GDI never actually checks
// its transforms. So we have to check for this case to avoid overflow:
dM -= M0;
if ((LONG) dM < 0)
{
goto Next_Line;
}
if ((LONG) dN < (LONG) N0)
{
// Line runs from bottom to top, so flip across y = 0:
N0 = -(LONG) N0;
dN = -(LONG) dN;
fl |= FL_FLIP_V;
}
dN -= N0;
if ((LONG) dN < 0)
{
goto Next_Line;
}
// We now have a line running left-to-right, top-to-bottom from (M0, N0)
// to (M0 + dM, N0 + dN):
if (dN >= dM)
{
if (dN == dM)
{
// Have to special case slopes of one:
fl |= FL_FLIP_SLOPE_ONE;
}
else
{
// Since line has slope greater than 1, flip across x = y:
register ULONG ulTmp;
SWAPL(dM, dN, ulTmp);
SWAPL(M0, N0, ulTmp);
fl |= FL_FLIP_D;
}
}
fl |= gaflRound[(fl & FL_ROUND_MASK) >> FL_ROUND_SHIFT];
x = LFLOOR((LONG) M0);
y = LFLOOR((LONG) N0);
M0 = FXFRAC(M0);
N0 = FXFRAC(N0);
// Calculate the remainder term [ dM * (N0 + F/2) - M0 * dN ]:
llGamma = UInt32x32To64(dM, N0 + F/2) - UInt32x32To64(M0, dN);
if (fl & FL_V_ROUND_DOWN) // Adjust so y = 1/2 rounds down
{
llGamma--;
}
llGamma >>= FLOG2;
llBeta = ~llGamma;
/***********************************************************************\
* Figure out which pixels are at the ends of the line. *
\***********************************************************************/
// The toughest part of GIQ is determining the start and end pels.
//
// Our approach here is to calculate x0 and x1 (the inclusive start
// and end columns of the line respectively, relative to our normalized
// origin). Then x1 - x0 + 1 is the number of pels in the line. The
// start point is easily calculated by plugging x0 into our line equation
// (which takes care of whether y = 1/2 rounds up or down in value)
// getting y0, and then undoing the normalizing flips to get back
// into device space.
//
// We look at the fractional parts of the coordinates of the start and
// end points, and call them (M0, N0) and (M1, N1) respectively, where
// 0 <= M0, N0, M1, N1 < 16. We plot (M0, N0) on the following grid
// to determine x0:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 ........?xxxxxxx
// | 1 ..........xxxxxx
// | 2 ...........xxxxx
// | 3 ............xxxx
// | 4 .............xxx
// | 5 ..............xx
// | 6 ...............x
// | 7 ................
// | 8 ................
// | 9 ......**........
// | a ........****...x
// | b ............****
// | c .............xxx****
// | d ............xxxx ****
// | e ...........xxxxx ****
// | f ..........xxxxxx
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 2. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) + 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one require a special case for both the start
// and end. For example, if the line ends such that (M1, N1) is (9, 1),
// the line has gone exactly through (8, 0) -- which may be considered
// to be part of 'x' because of rounding! So slopes of exactly slope
// one going through (8, 0) must also be considered as belonging in 'x'.
//
// For lines that go left-to-right, we have the following grid:
//
// +-----------------------> +x
// |
// | 0 1
// | 0123456789abcdef
// |
// | 0 xxxxxxxx?.......
// | 1 xxxxxxx.........
// | 2 xxxxxx..........
// | 3 xxxxx...........
// | 4 xxxx............
// | 5 xxx.............
// | 6 xx..............
// | 7 x...............
// | 8 x...............
// | 9 x.....**........
// | a xx......****....
// | b xxx.........****
// | c xxxx............****
// | d xxxxx........... ****
// | e xxxxxx.......... ****
// | f xxxxxxx.........
// |
// | 2 3
// v
//
// +y
//
// This grid accounts for the appropriate rounding of GIQ and last-pel
// exclusion. If (M0, N0) lands on an 'x', x0 = 0. If (M0, N0) lands
// on a '.', x0 = 1. If (M0, N0) lands on a '?', x0 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// For the end point, if (M1, N1) lands on an 'x', x1 =
// floor((M0 + dM) / 16) - 1. If (M1, N1) lands on a '.', x1 =
// floor((M0 + dM)). If (M1, N1) lands on a '?', x1 rounds up or down,
// depending on what flips have been done to normalize the line.
//
// Lines of exactly slope one must be handled similarly to the right-to-
// left case.
{
// Calculate x0, x1
ULONG N1 = FXFRAC(N0 + dN);
ULONG M1 = FXFRAC(M0 + dM);
x1 = LFLOOR(M0 + dM);
if (fl & FL_LAST_PEL_INCLUSIVE)
{
// It sure is easy to compute the first pel when lines have only
// integer coordinates and are last-pel inclusive:
x0 = 0;
y0 = 0;
// Last-pel inclusive lines that are exactly one pixel long
// have a 'delta-x' and 'delta-y' equal to zero. The problem is
// that our clip code assumes that 'delta-x' is always non-zero
// (since it never happens with last-pel exclusive lines). As
// an inelegant solution, we simply modify 'delta-x' in this
// case -- because the line is exactly one pixel long, changing
// the slope will obviously have no effect on rasterization.
if (x1 == 0)
{
dM = 1;
llGamma = 0;
llBeta = ~llGamma;
}
}
else
{
if (fl & FL_FLIP_H)
{
// ---------------------------------------------------------------
// Line runs right-to-left: <----
// Compute x1:
if (N1 == 0)
{
if (LROUND(M1, fl & FL_H_ROUND_DOWN))
{
x1++;
}
}
else if (abs((LONG) (N1 - F/2)) + M1 > F)
{
x1++;
}
if ((fl & (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN))
== (FL_FLIP_SLOPE_ONE))
{
// Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// pixels, if we're supposed to round x=1/2 down:
if ((N1 > 0) && (M1 == N1 + 8))
x1++;
// Don't you love special cases? Is this a rhetorical question?
if ((N0 > 0) && (M0 == N0 + 8))
{
x0 = 2;
ulDelta = dN;
goto right_to_left_compute_y0;
}
}
// Compute x0:
x0 = 1;
ulDelta = 0;
if (N0 == 0)
{
if (LROUND(M0, fl & FL_H_ROUND_DOWN))
{
x0 = 2;
ulDelta = dN;
}
}
else if (abs((LONG) (N0 - F/2)) + M0 > F)
{
x0 = 2;
ulDelta = dN;
}
// Compute y0:
right_to_left_compute_y0:
y0 = 0;
ll = llGamma + (LONGLONG) ulDelta;
if (ll >= (LONGLONG) (2 * dM - dN))
y0 = 2;
else if (ll >= (LONGLONG) (dM - dN))
y0 = 1;
}
else
{
// ---------------------------------------------------------------
// Line runs left-to-right: ---->
// Compute x1:
if (!(fl & FL_LAST_PEL_INCLUSIVE))
x1--;
if (M1 > 0)
{
if (N1 == 0)
{
if (LROUND(M1, fl & FL_H_ROUND_DOWN))
x1++;
}
else if (abs((LONG) (N1 - F/2)) <= (LONG) M1)
{
x1++;
}
}
if ((fl & (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN))
== (FL_FLIP_SLOPE_ONE | FL_H_ROUND_DOWN))
{
// Have to special-case diagonal lines going through our
// the point exactly equidistant between two horizontal
// pixels, if we're supposed to round x=1/2 down:
if ((M1 > 0) && (N1 == M1 + 8))
x1--;
if ((M0 > 0) && (N0 == M0 + 8))
{
x0 = 0;
goto left_to_right_compute_y0;
}
}
// Compute x0:
x0 = 0;
if (M0 > 0)
{
if (N0 == 0)
{
if (LROUND(M0, fl & FL_H_ROUND_DOWN))
x0 = 1;
}
else if (abs((LONG) (N0 - F/2)) <= (LONG) M0)
{
x0 = 1;
}
}
// Compute y0:
left_to_right_compute_y0:
y0 = 0;
if (llGamma >= (LONGLONG) (dM - (dN & (-(LONG) x0))))
{
y0 = 1;
}
}
}
}
cStylePels = x1 - x0 + 1;
if ((LONG) cStylePels <= 0)
goto Next_Line;
xStart = x0;
/***********************************************************************\
* Complex clipping. *
\***********************************************************************/
if (fl & FL_COMPLEX_CLIP)
{
dN_Original = dN;
Continue_Complex_Clipping:
if (fl & FL_FLIP_H)
{
// Line runs right-to-left <-----
x0 = xStart + cStylePels - prun->iStop - 1;
x1 = xStart + cStylePels - prun->iStart - 1;
}
else
{
// Line runs left-to-right ----->
x0 = xStart + prun->iStart;
x1 = xStart + prun->iStop;
}
prun++;
// Reset some variables we'll nuke a little later:
dN = dN_Original;
pls->spNext = pls->spComplex;
// No overflow since large integer math is used. Both values
// will be positive:
dl = UInt32x32To64(x0, dN) + llGamma;
// y0 = dl / dM:
y0 = UInt64Div32To32(dl, dM);
ASSERTDD((LONG) y0 >= 0, "y0 weird: Goofed up end pel calc?");
}
/***********************************************************************\
* Simple rectangular clipping. *
\***********************************************************************/
if (fl & FL_SIMPLE_CLIP)
{
ULONG y1;
LONG xRight;
LONG xLeft;
LONG yBottom;
LONG yTop;
// Note that y0 and y1 are actually the lower and upper bounds,
// respectively, of the y coordinates of the line (the line may
// have actually shrunk due to first/last pel clipping).
//
// Also note that x0, y0 are not necessarily zero.
RECTL* prcl = &prclClip[(fl & FL_RECTLCLIP_MASK) >>
FL_RECTLCLIP_SHIFT];
// Normalize to the same point we've normalized for the DDA
// calculations:
xRight = prcl->right - x;
xLeft = prcl->left - x;
yBottom = prcl->bottom - y;
yTop = prcl->top - y;
if (yBottom <= (LONG) y0 ||
xRight <= (LONG) x0 ||
xLeft > (LONG) x1)
{
Totally_Clipped:
if (fl & FL_STYLED)
{
pls->spNext += cStylePels;
if (pls->spNext >= pls->spTotal2)
pls->spNext %= pls->spTotal2;
}
goto Next_Line;
}
if ((LONG) x1 >= xRight)
x1 = xRight - 1;
// We have to know the correct y1, which we haven't bothered to
// calculate up until now. This multiply and divide is quite
// expensive; we could replace it with code similar to that which
// we used for computing y0.
//
// The reason why we need the actual value, and not an upper
// bounds guess like y1 = LFLOOR(dM) + 2 is that we have to be
// careful when calculating x(y) that y0 <= y <= y1, otherwise
// we can overflow on the divide (which, needless to say, is very
// bad).
dl = UInt32x32To64(x1, dN) + llGamma;
// y1 = dl / dM:
y1 = UInt64Div32To32(dl, dM);
if (yTop > (LONG) y1)
goto Totally_Clipped;
if (yBottom <= (LONG) y1)
{
y1 = yBottom;
dl = UInt32x32To64(y1, dM) + llBeta;
// x1 = dl / dN:
x1 = UInt64Div32To32(dl, dN);
}
// At this point, we've taken care of calculating the intercepts
// with the right and bottom edges. Now we work on the left and
// top edges:
if (xLeft > (LONG) x0)
{
x0 = xLeft;
dl = UInt32x32To64(x0, dN) + llGamma;
// y0 = dl / dM;
y0 = UInt64Div32To32(dl, dM);
if (yBottom <= (LONG) y0)
goto Totally_Clipped;
}
if (yTop > (LONG) y0)
{
y0 = yTop;
dl = UInt32x32To64(y0, dM) + llBeta;
// x0 = dl / dN + 1;
x0 = UInt64Div32To32(dl, dN) + 1;
if (xRight <= (LONG) x0)
goto Totally_Clipped;
}
ASSERTDD(x0 <= x1, "Improper rectangle clip");
}
/***********************************************************************\
* Done clipping. Unflip if necessary. *
\***********************************************************************/
ptlStart.x = x + x0;
ptlStart.y = y + y0;
if (fl & FL_FLIP_D)
{
register LONG lTmp;
SWAPL(ptlStart.x, ptlStart.y, lTmp);
}
if (fl & FL_FLIP_V)
{
ptlStart.y = -ptlStart.y;
}
cPels = x1 - x0 + 1;
/***********************************************************************\
* Style calculations. *
\***********************************************************************/
if (fl & FL_STYLED)
{
STYLEPOS sp;
spThis = pls->spNext;
pls->spNext += cStylePels;
{
if (pls->spNext >= pls->spTotal2)
pls->spNext %= pls->spTotal2;
if (fl & FL_FLIP_H)
sp = pls->spNext - x0 + xStart;
else
sp = spThis + x0 - xStart;
ASSERTDD(fl & FL_STYLED, "Oops");
// Normalize our target style position:
if ((sp < 0) || (sp >= pls->spTotal2))
{
sp %= pls->spTotal2;
// The modulus of a negative number is not well-defined
// in C -- if it's negative we'll adjust it so that it's
// back in the range [0, spTotal2):
if (sp < 0)
sp += pls->spTotal2;
}
// Since we always draw the line left-to-right, but styling is
// always done in the direction of the original line, we have
// to figure out where we are in the style array for the left
// edge of this line.
if (fl & FL_FLIP_H)
{
// Line originally ran right-to-left:
sp = -sp;
if (sp < 0)
sp += pls->spTotal2;
pls->ulStyleMask = ~pls->ulStartMask;
pls->pspStart = &pls->aspRtoL[0];
pls->pspEnd = &pls->aspRtoL[pls->cStyle - 1];
}
else
{
// Line originally ran left-to-right:
pls->ulStyleMask = pls->ulStartMask;
pls->pspStart = &pls->aspLtoR[0];
pls->pspEnd = &pls->aspLtoR[pls->cStyle - 1];
}
if (sp >= pls->spTotal)
{
sp -= pls->spTotal;
if (pls->cStyle & 1)
pls->ulStyleMask = ~pls->ulStyleMask;
}
pls->psp = pls->pspStart;
while (sp >= *pls->psp)
sp -= *pls->psp++;
ASSERTDD(pls->psp <= pls->pspEnd,
"Flew off into NeverNeverLand");
pls->spRemaining = *pls->psp - sp;
if ((pls->psp - pls->pspStart) & 1)
pls->ulStyleMask = ~pls->ulStyleMask;
}
}
plStrip = &strip.alStrips[0];
plStripEnd = &strip.alStrips[STRIP_MAX]; // Is exclusive
cStripsInNextRun = 0x7fffffff;
strip.ptlStart = ptlStart;
if (2 * dN > dM &&
!(fl & FL_STYLED))
{
// Do a half flip! Remember that we may doing this on the
// same line multiple times for complex clipping (meaning the
// affected variables should be reset for every clip run):
fl |= FL_FLIP_HALF;
llBeta = llGamma - (LONGLONG) ((LONG) dM);
dN = dM - dN;
y0 = x0 - y0; // Note this may overflow, but that's okay
}
// Now, run the DDA starting at (ptlStart.x, ptlStart.y)!
strip.flFlips = fl;
pfn = apfn[(fl & FL_STRIP_MASK) >> FL_STRIP_SHIFT];
// Now calculate the DDA variables needed to figure out how many pixels
// go in the very first strip:
{
register LONG i;
register ULONG dI;
register ULONG dR;
ULONG r;
if (dN == 0)
i = 0x7fffffff;
else
{
dl = UInt32x32To64(y0 + 1, dM) + llBeta;
ASSERTDD(dl >= 0, "Oops!");
// i = (dl / dN) - x0 + 1;
// r = (dl % dN);
i = UInt64Div32To32(dl, dN);
r = UInt64Mod32To32(dl, dN);
i = i - x0 + 1;
dI = dM / dN;
dR = dM % dN; // 0 <= dR < dN
ASSERTDD(dI > 0, "Weird dI");
}
ASSERTDD(i > 0 && i <= 0x7fffffff, "Weird initial strip length");
ASSERTDD(cPels > 0, "Zero pel line");
/***********************************************************************\
* Run the DDA! *
\***********************************************************************/
while(TRUE)
{
cPels -= i;
if (cPels <= 0)
break;
*plStrip++ = i;
if (plStrip == plStripEnd)
{
strip.cStrips = (LONG)(plStrip - &strip.alStrips[0]);
(*pfn)(ppdev, &strip, pls);
plStrip = &strip.alStrips[0];
}
i = dI;
r += dR;
if (r >= dN)
{
r -= dN;
i++;
}
}
*plStrip++ = cPels + i;
strip.cStrips = (ULONG)(plStrip - &strip.alStrips[0]);
(*pfn)(ppdev, &strip, pls);
}
Next_Line:
if (fl & FL_COMPLEX_CLIP)
{
cptfx--;
if (cptfx != 0)
goto Continue_Complex_Clipping;
break;
}
else
{
pptfxFirst = pptfxBuf;
pptfxBuf++;
}
} while (pptfxBuf < pptfxBufEnd);
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bIntegerUnclippedLines
*
* Draws lines using the Weitek's point-to-point capabilities.
* Unfortunately, the Weitek has exactly the wrong rounding convention
* for tie-breakers, and GDI is very picky about this.
*
* Consequently, we can only use the line hardware when we know there
* will be no tie-breakers. Fortunately, this is pretty easy to detect,
* and the odds are that 3 out of 4 lines will not have tie breakers. For
* those cases where there are tie-breakers, we can still usually draw the
* lines using the hardware, this time by doing a one-wide trapezoid.
* Unfortunately, this works for only 6 of the 8 octants, so for the final
* case we punt to our strips routine.
*
* Additional complications include the fact that lines have to be last-pel
* exclusive, and that we try to optimize horizontal and vertical lines.
*
\**************************************************************************/
BOOL bIntegerUnclippedLines(
PDEV* ppdev,
POINTFIX* pptfxFirst,
POINTFIX* pptfxBuf,
RUN* prun,
ULONG cptfx,
LINESTATE* pls,
RECTL* prclClip,
PFNSTRIP* apfn,
FLONG flStart,
ULONG ulHwMix)
{
BYTE* pjBase;
BOOL bClippingSet;
ULONG ulLineMix;
ULONG ulTrapezoidMix;
LONG x0;
LONG y0;
LONG x1;
LONG y1;
LONG xLeft;
LONG xRight;
LONG yTop;
LONG yBottom;
LONG dx;
LONG dy;
LONG lOr;
LONG lBit;
LONG iShift;
LONG xDir;
LONG yDir;
pjBase = ppdev->pjBase;
bClippingSet = FALSE;
if (P9000(ppdev))
{
ulTrapezoidMix = ulHwMix;
ulLineMix = ulTrapezoidMix | P9000_OVERSIZED;
}
else
{
ulTrapezoidMix = ulHwMix & 0xff;
ulLineMix = ulTrapezoidMix | P9100_OVERSIZED;
}
while (TRUE)
{
x0 = pptfxFirst->x;
y0 = pptfxFirst->y;
x1 = pptfxBuf->x;
y1 = pptfxBuf->y;
// First, check to see if the line is has all-integer coordinates:
if (((x0 | y0 | x1 | y1) & 0xf) != 0)
{
// Ack, this line has non-integer coordinates. The rest of the
// lines in this batch likely have non-integer coordinates
// as well, so punt the entire batch to our strips routine:
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
}
return(bLines(ppdev, pptfxFirst, pptfxBuf, prun, cptfx, pls,
prclClip, apfn, flStart, ulHwMix));
}
else
{
x0 >>= 4;
x1 >>= 4;
y0 >>= 4;
y1 >>= 4;
if ((y0 == y1) && (!bClippingSet))
{
// We special case horizontal lines:
if (x0 < x1)
x1--;
else if (x0 > x1)
x1++;
else
goto Next_Line; // Zero-length line
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x1, y0);
CP_START_QUAD_WAIT(ppdev, pjBase);
goto Next_Line;
}
else if (y0 < y1)
{
yTop = y0;
yBottom = y1;
}
else
{
yBottom = y0;
yTop = y1;
}
if ((x0 == x1) && (!bClippingSet))
{
// We special case vertical lines:
if (y0 < y1)
y1--;
else
y1++;
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x0, y1);
CP_START_QUAD_WAIT(ppdev, pjBase);
goto Next_Line;
}
else if (x0 < x1)
{
xLeft = x0;
xRight = x1;
}
else
{
xRight = x0;
xLeft = x1;
}
dx = xRight - xLeft;
dy = yBottom - yTop;
if (dx >= dy)
{
if (dx == 0)
goto Next_Line; // Get rid of zero-length line case
// We have an x-major line. Adjust the clip box to
// account for last-pel exclusion:
if (x0 < x1)
xRight--;
else
xLeft++;
lOr = (dx | dy);
lBit = 1;
iShift = 1;
while (!(lOr & lBit))
{
lBit <<= 1;
iShift++;
}
if (dx & lBit)
{
Output_Simple_Line:
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x1, y1);
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_WMIN(ppdev, pjBase, xLeft, yTop);
CP_WMAX(ppdev, pjBase, xRight, yBottom);
CP_START_QUAD_WAIT(ppdev, pjBase);
bClippingSet = TRUE;
goto Next_Line;
}
else
{
if ((dx ^ dy) > 0)
goto Punt_Line;
// Ick, this x-major line has tie-breaker cases.
xDir = 0;
yDir = 1;
dy >>= iShift;
if (y0 > y1)
{
dy = -dy;
yDir = -1;
}
y0 -= dy;
y1 += dy;
dx >>= iShift;
if (x0 > x1)
dx = -dx;
x0 -= dx;
x1 += dx;
Output_Trapezoid_Line:
CP_METAQUAD(ppdev, pjBase, x0, y0);
CP_METAQUAD(ppdev, pjBase, x1 + xDir, y1 - yDir);
CP_METAQUAD(ppdev, pjBase, x1, y1);
CP_METAQUAD(ppdev, pjBase, x0 - xDir, y0 + yDir);
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulTrapezoidMix);
CP_WMIN(ppdev, pjBase, xLeft, yTop);
CP_WMAX(ppdev, pjBase, xRight, yBottom);
CP_START_QUAD_WAIT(ppdev, pjBase);
bClippingSet = TRUE;
goto Next_Line;
}
}
else
{
// We have a y-major line. Adjust the clip box to
// account for last-pel exclusion:
if (y0 < y1)
yBottom--;
else
yTop++;
lOr = (dx | dy);
lBit = 1;
iShift = 1;
while (!(lOr & lBit))
{
lBit <<= 1;
iShift++;
}
if (dy & lBit)
{
goto Output_Simple_Line;
}
else
{
// Ick, this y-major line has tie-breaker cases.
yDir = 0;
xDir = 1;
dx >>= iShift;
if (x0 > x1)
{
dx = -dx;
xDir = -1;
}
x0 -= dx;
x1 += dx;
dy >>= iShift;
if (y0 > y1)
dy = -dy;
y0 -= dy;
y1 += dy;
goto Output_Trapezoid_Line;
}
}
}
Punt_Line:
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
bClippingSet = FALSE;
}
bLines(ppdev, pptfxFirst, pptfxBuf, NULL, 1, pls,
prclClip, apfn, flStart, ulHwMix);
Next_Line:
--cptfx;
if (cptfx == 0)
break;
pptfxFirst = pptfxBuf;
pptfxBuf++;
}
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix); // Might need for next batch
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
}
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bIntegerClippedLines
*
* Draws lines using the hardware when there is a single clipping rectangle.
* See 'bIntegerUnclippedLines' above for more details.
*
\**************************************************************************/
BOOL bIntegerClippedLines(
PDEV* ppdev,
POINTFIX* pptfxFirst,
POINTFIX* pptfxBuf,
RUN* prun,
ULONG cptfx,
LINESTATE* pls,
RECTL* prclClip,
PFNSTRIP* apfn,
FLONG flStart,
ULONG ulHwMix)
{
BYTE* pjBase;
BOOL bClippingSet;
ULONG ulLineMix;
ULONG ulTrapezoidMix;
LONG x0;
LONG y0;
LONG x1;
LONG y1;
LONG xLeft;
LONG xRight;
LONG yTop;
LONG yBottom;
LONG dx;
LONG dy;
LONG lOr;
LONG lBit;
LONG iShift;
LONG xDir;
LONG yDir;
ASSERTDD(flStart & FL_SIMPLE_CLIP, "Expected only simple clipping");
pjBase = ppdev->pjBase;
bClippingSet = FALSE;
if (P9000(ppdev))
{
ulTrapezoidMix = ulHwMix;
ulLineMix = ulTrapezoidMix | P9000_OVERSIZED;
}
else
{
ulTrapezoidMix = ulHwMix & 0xff;
ulLineMix = ulTrapezoidMix | P9100_OVERSIZED;
}
while (TRUE)
{
x0 = pptfxFirst->x;
y0 = pptfxFirst->y;
x1 = pptfxBuf->x;
y1 = pptfxBuf->y;
// First, check to see if the line is has all-integer coordinates:
if (((x0 | y0 | x1 | y1) & 0xf) != 0)
{
// Ack, this line has non-integer coordinates. The rest of the
// lines in this batch likely have non-integer coordinates
// as well, so punt the entire batch to our strips routine:
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
}
return(bLines(ppdev, pptfxFirst, pptfxBuf, prun, cptfx, pls,
prclClip, apfn, flStart, ulHwMix));
}
else
{
x0 >>= 4;
x1 >>= 4;
y0 >>= 4;
y1 >>= 4;
if (y0 < y1)
{
yTop = y0;
yBottom = y1;
}
else
{
yBottom = y0;
yTop = y1;
}
if (x0 < x1)
{
xLeft = x0;
xRight = x1;
}
else
{
xRight = x0;
xLeft = x1;
}
// Do a trivial rejection test, remembering that the bound box
// we just computed is lower-right inclusive:
if ((xLeft >= prclClip->right) ||
(yTop >= prclClip->bottom) ||
(xRight < prclClip->left) ||
(yBottom < prclClip->top))
{
goto Next_Line;
}
else
{
dx = xRight - xLeft;
dy = yBottom - yTop;
if (dx >= dy)
{
if (dx == 0)
goto Next_Line; // Get rid of zero-length line case
// We have an x-major line. Adjust the clip box to
// account for last-pel exclusion:
if (x0 < x1)
xRight--;
else
xLeft++;
lOr = (dx | dy);
lBit = 1;
iShift = 1;
while (!(lOr & lBit))
{
lBit <<= 1;
iShift++;
}
// The Weitek's clip registers are inclusive, and
// are expected to be well-ordered:
xLeft = max(xLeft, prclClip->left);
yTop = max(yTop, prclClip->top);
xRight = min(xRight, prclClip->right - 1);
yBottom = min(yBottom, prclClip->bottom - 1);
if ((xLeft <= xRight) && (yTop <= yBottom))
{
if (dx & lBit)
{
Output_Simple_Line:
CP_METALINE(ppdev, pjBase, x0, y0);
CP_METALINE(ppdev, pjBase, x1, y1);
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_WMIN(ppdev, pjBase, xLeft, yTop);
CP_WMAX(ppdev, pjBase, xRight, yBottom);
CP_START_QUAD_WAIT(ppdev, pjBase);
bClippingSet = TRUE;
goto Next_Line;
}
else
{
if ((dx ^ dy) > 0)
goto Punt_Line;
// Ick, this x-major line has tie-breaker cases.
xDir = 0;
yDir = 1;
dy >>= iShift;
if (y0 > y1)
{
dy = -dy;
yDir = -1;
}
y0 -= dy;
y1 += dy;
dx >>= iShift;
if (x0 > x1)
dx = -dx;
x0 -= dx;
x1 += dx;
Output_Trapezoid_Line:
CP_METAQUAD(ppdev, pjBase, x0, y0);
CP_METAQUAD(ppdev, pjBase, x1 + xDir, y1 - yDir);
CP_METAQUAD(ppdev, pjBase, x1, y1);
CP_METAQUAD(ppdev, pjBase, x0 - xDir, y0 + yDir);
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulTrapezoidMix);
CP_WMIN(ppdev, pjBase, xLeft, yTop);
CP_WMAX(ppdev, pjBase, xRight, yBottom);
CP_START_QUAD_WAIT(ppdev, pjBase);
bClippingSet = TRUE;
goto Next_Line;
}
}
}
else
{
// We have a y-major line. Adjust the clip box to
// account for last-pel exclusion:
if (y0 < y1)
yBottom--;
else
yTop++;
lOr = (dx | dy);
lBit = 1;
iShift = 1;
while (!(lOr & lBit))
{
lBit <<= 1;
iShift++;
}
// The Weitek's clip registers are inclusive, and
// are expected to be well-ordered:
xLeft = max(xLeft, prclClip->left);
yTop = max(yTop, prclClip->top);
xRight = min(xRight, prclClip->right - 1);
yBottom = min(yBottom, prclClip->bottom - 1);
if ((xLeft <= xRight) && (yTop <= yBottom))
{
if (dy & lBit)
{
goto Output_Simple_Line;
}
else
{
// Ick, this y-major line has tie-breaker cases.
yDir = 0;
xDir = 1;
dx >>= iShift;
if (x0 > x1)
{
dx = -dx;
xDir = -1;
}
x0 -= dx;
x1 += dx;
dy >>= iShift;
if (y0 > y1)
dy = -dy;
y0 -= dy;
y1 += dy;
goto Output_Trapezoid_Line;
}
}
}
}
}
Punt_Line:
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix);
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
bClippingSet = FALSE;
}
bLines(ppdev, pptfxFirst, pptfxBuf, NULL, 1, pls,
prclClip, apfn, flStart, ulHwMix);
Next_Line:
--cptfx;
if (cptfx == 0)
break;
pptfxFirst = pptfxBuf;
pptfxBuf++;
}
if (bClippingSet)
{
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, ulLineMix); // Might need for next batch
CP_ABS_WMIN(ppdev, pjBase, 0, 0);
CP_ABS_WMAX(ppdev, pjBase, MAX_COORD, MAX_COORD);
}
return(TRUE);
}
/******************************Public*Routine******************************\
* BOOL bCacheCircle(ppdev, ppo, pco, pbo, bStroke, pla)
*
\**************************************************************************/
BOOL bCacheCircle(
PDEV* ppdev,
PATHOBJ* ppo,
CLIPOBJ* pco,
BRUSHOBJ* pbo,
BOOL bStroke, // TRUE if stroke, FALSE if fill
LINEATTRS* pla) // Used for strokes only
{
RECTFX rcfx;
LONG xCircle;
LONG yCircle;
LONG xCached;
LONG yCached;
LONG cx;
LONG cy;
CIRCLEENTRY* pce;
LONG i;
BYTE* pjBase;
RECTL rclDst;
POINTL ptlSrc;
ULONG ulHwMix;
RECTL rclTmp;
CLIPENUM ce;
LONG c;
LONG bMore;
LONG iCircleCache;
SURFOBJ* pso;
CLIPOBJ co;
BRUSHOBJ bo;
if (!(ppdev->flStat & STAT_CIRCLE_CACHE))
return(FALSE);
PATHOBJ_vGetBounds(ppo, &rcfx);
// Normalize bounds to upper-left corner:
xCircle = rcfx.xLeft & ~0xfL;
yCircle = rcfx.yTop & ~0xfL;
rcfx.xLeft -= xCircle;
rcfx.xRight -= xCircle;
rcfx.yTop -= yCircle;
rcfx.yBottom -= yCircle;
// Convert to pixel units:
xCircle >>= 4;
yCircle >>= 4;
cx = (rcfx.xRight >> 4) + 2;
cy = (rcfx.yBottom >> 4) + 2;
if ((cx > CIRCLE_DIMENSION) || (cy > CIRCLE_DIMENSION))
{
// This circle is too big to cache, so decline it:
return(FALSE);
}
pjBase = ppdev->pjBase;
pce = &ppdev->ace[0];
for (i = TOTAL_CIRCLE_COUNT; i != 0; i--)
{
if ((pce->bStroke == bStroke) &&
(pce->rcfxCircle.xLeft == rcfx.xLeft) &&
(pce->rcfxCircle.yTop == rcfx.yTop) &&
(pce->rcfxCircle.xRight == rcfx.xRight) &&
(pce->rcfxCircle.yBottom == rcfx.yBottom))
{
Draw_It:
// We got a hit! Colour-expand from our off-screen
// cache to the screen:
rclDst.left = xCircle;
rclDst.right = xCircle + cx;
rclDst.top = yCircle;
rclDst.bottom = yCircle + cy;
// 'ptlSrc' has to be in relative coordinates:
ptlSrc.x = pce->xCached - ppdev->xOffset;
ptlSrc.y = pce->yCached - ppdev->yOffset;
CP_WAIT(ppdev, pjBase);
if (P9000(ppdev))
{
CP_FOREGROUND(ppdev, pjBase, pbo->iSolidColor);
ulHwMix = 0xee22;
}
else
{
CP_COLOR0(ppdev, pjBase, pbo->iSolidColor);
ulHwMix = 0xe2e2;
}
if ((pco == NULL) || (pco->iDComplexity == DC_TRIVIAL))
{
ppdev->pfnCopyBlt(ppdev, 1, &rclDst, ulHwMix, &ptlSrc, &rclDst);
}
else if (pco->iDComplexity == DC_RECT)
{
if (bIntersect(&rclDst, &pco->rclBounds, &rclTmp))
ppdev->pfnCopyBlt(ppdev, 1, &rclTmp, ulHwMix, &ptlSrc, &rclDst);
}
else
{
CLIPOBJ_cEnumStart(pco, FALSE, CT_RECTANGLES, CD_ANY, 0);
do {
bMore = CLIPOBJ_bEnum(pco, sizeof(ce), (ULONG*) &ce);
c = cIntersect(&rclDst, ce.arcl, ce.c);
if (c != 0)
ppdev->pfnCopyBlt(ppdev, c, ce.arcl, ulHwMix, &ptlSrc, &rclDst);
} while (bMore);
}
return(TRUE);
}
}
// Make an entry in our cache:
iCircleCache = ppdev->iCircleCache;
if (++iCircleCache >= TOTAL_CIRCLE_COUNT)
iCircleCache = 0;
ppdev->iCircleCache = iCircleCache;
pce = &ppdev->ace[iCircleCache];
// We must place the circle in off-screen memory with the same dword
// alignment as the one we've been asked to draw, because we're
// going to have GDI draw there instead:
xCached = pce->x + (xCircle & 3);
yCached = pce->y;
// Store all the relevant information about the circle:
pce->xCached = xCached;
pce->yCached = yCached;
pce->bStroke = bStroke;
pce->rcfxCircle.xLeft = rcfx.xLeft;
pce->rcfxCircle.yTop = rcfx.yTop;
pce->rcfxCircle.xRight = rcfx.xRight;
pce->rcfxCircle.yBottom = rcfx.yBottom;
// Fudge up some parameters for the GDI call:
pso = ppdev->psoPunt;
pso->pvScan0 = ppdev->pjScreen
+ ((yCached - yCircle) * ppdev->lDelta)
+ ((xCached - xCircle) * ppdev->cjPel);
ASSERTDD((((ULONG_PTR) pso->pvScan0) & 0x3) == 0,
"Surface must have dword alignment");
co.iDComplexity = DC_TRIVIAL;
bo.iSolidColor = ppdev->ulWhite;
// Erase old thing:
CP_ABS_METARECT(ppdev, pjBase, xCached, yCached);
CP_ABS_METARECT(ppdev, pjBase, xCached + CIRCLE_DIMENSION,
yCached + CIRCLE_DIMENSION);
CP_WAIT(ppdev, pjBase);
CP_RASTER(ppdev, pjBase, 0); // Same on both P9000 and P9100
CP_START_QUAD(ppdev, pjBase);
// Get GDI to draw the circle in our off-screen cache:
if (bStroke)
{
EngStrokePath(pso, ppo, &co, NULL, &bo, NULL, pla, 0x0d0d);
}
else
{
EngFillPath(pso, ppo, &co, &bo, NULL, 0x0d0d, FP_ALTERNATEMODE);
}
goto Draw_It;
}
VOID (*gapfnStrip[])(PDEV*, STRIP*, LINESTATE*) = {
vStripSolidHorizontal,
vStripSolidVertical,
vStripSolidDiagonalHorizontal,
vStripSolidDiagonalVertical,
vStripStyledHorizontal,
vStripStyledVertical,
vStripStyledVertical, // Diagonal goes here
vStripStyledVertical, // Diagonal goes here
};
// Style array for alternate style (alternates one pixel on, one pixel off):
STYLEPOS gaspAlternateStyle[] = { 1 };
/******************************Public*Routine******************************\
* BOOL DrvStrokePath(pso, ppo, pco, pxo, pbo, pptlBrush, pla, mix)
*
* Strokes the path.
*
\**************************************************************************/
BOOL DrvStrokePath(
SURFOBJ* pso,
PATHOBJ* ppo,
CLIPOBJ* pco,
XFORMOBJ* pxo,
BRUSHOBJ* pbo,
POINTL* pptlBrush,
LINEATTRS* pla,
MIX mix)
{
STYLEPOS aspLtoR[STYLE_MAX_COUNT];
STYLEPOS aspRtoL[STYLE_MAX_COUNT];
LINESTATE ls;
PFNSTRIP* apfn;
PFNLINES pfnLines;
FLONG fl;
PDEV* ppdev;
DSURF* pdsurf;
OH* poh;
RECTL arclClip[4]; // For rectangular clipping
BYTE* pjBase;
RECTL* prclClip;
ULONG ulHwMix;
ASSERTDD(((mix >> 8) & 0xff) == (mix & 0xff),
"GDI gave us an improper mix");
// Pass the surface off to GDI if it's a device bitmap that we've
// converted to a DIB:
pdsurf = (DSURF*) pso->dhsurf;
if (pdsurf->dt == DT_DIB)
{
return(EngStrokePath(pdsurf->pso, ppo, pco, pxo, pbo, pptlBrush,
pla, mix));
}
// We'll be drawing to the screen or an off-screen DFB; copy the surface's
// offset now so that we won't need to refer to the DSURF again:
poh = pdsurf->poh;
ppdev = (PDEV*) pso->dhpdev;
ppdev->xOffset = poh->x;
ppdev->yOffset = poh->y;
// Because we set GCAPS_BEZIERS, we have to watch out for Beziers:
if (ppo->fl & PO_BEZIERS)
{
// We only try to cache solid-styled COPYPEN ellipses:
if ((ppo->fl & PO_ELLIPSE) &&
(mix == 0x0d0d) &&
!(pla->fl & LA_ALTERNATE) &&
(pla->pstyle == NULL))
{
if (bCacheCircle(ppdev, ppo, pco, pbo, TRUE, pla))
return(TRUE);
}
// Get GDI to break the Beziers into lines before calling us
// again:
return(FALSE);
}
pfnLines = bLines;
if ((pla->pstyle == NULL) && !(pla->fl & LA_ALTERNATE))
{
// We can accelerate solid lines:
if (pco->iDComplexity == DC_TRIVIAL)
{
pfnLines = bIntegerUnclippedLines;
}
else if (pco->iDComplexity == DC_RECT)
{
RECTFX rcfxBounds;
// We have to be sure that we don't overflow the hardware registers
// for current position, line length, or DDA terms. We check
// here to make sure that the current position and line length
// values won't overflow:
PATHOBJ_vGetBounds(ppo, &rcfxBounds);
if (rcfxBounds.xLeft + (ppdev->xOffset * F)
>= (MIN_INTEGER_BOUND * F) &&
rcfxBounds.xRight + (ppdev->xOffset * F)
<= (MAX_INTEGER_BOUND * F) &&
rcfxBounds.yTop + (ppdev->yOffset * F)
>= (MIN_INTEGER_BOUND * F) &&
rcfxBounds.yBottom + (ppdev->yOffset * F)
<= (MAX_INTEGER_BOUND * F))
{
pfnLines = bIntegerClippedLines;
}
}
}
pjBase = ppdev->pjBase;
prclClip = NULL;
fl = 0;
// Look after styling initialization:
if (pla->fl & LA_ALTERNATE)
{
ls.cStyle = 1;
ls.spTotal = 1;
ls.spTotal2 = 2;
ls.spRemaining = 1;
ls.aspRtoL = &gaspAlternateStyle[0];
ls.aspLtoR = &gaspAlternateStyle[0];
ls.spNext = HIWORD(pla->elStyleState.l);
ls.xyDensity = 1;
fl |= FL_STYLED;
ls.ulStartMask = 0L;
}
else if (pla->pstyle != (FLOAT_LONG*) NULL)
{
PFLOAT_LONG pstyle;
STYLEPOS* pspDown;
STYLEPOS* pspUp;
pstyle = &pla->pstyle[pla->cstyle];
ls.xyDensity = STYLE_DENSITY;
ls.spTotal = 0;
while (pstyle-- > pla->pstyle)
{
ls.spTotal += pstyle->l;
}
ls.spTotal *= STYLE_DENSITY;
ls.spTotal2 = 2 * ls.spTotal;
// Compute starting style position (this is guaranteed not to overflow):
ls.spNext = HIWORD(pla->elStyleState.l) * STYLE_DENSITY +
LOWORD(pla->elStyleState.l);
fl |= FL_STYLED;
ls.cStyle = pla->cstyle;
ls.aspRtoL = aspRtoL;
ls.aspLtoR = aspLtoR;
if (pla->fl & LA_STARTGAP)
ls.ulStartMask = 0xffffffffL;
else
ls.ulStartMask = 0L;
pstyle = pla->pstyle;
pspDown = &ls.aspRtoL[ls.cStyle - 1];
pspUp = &ls.aspLtoR[0];
while (pspDown >= &ls.aspRtoL[0])
{
*pspDown = pstyle->l * STYLE_DENSITY;
*pspUp = *pspDown;
pspUp++;
pspDown--;
pstyle++;
}
}
if (pco->iDComplexity == DC_RECT)
{
fl |= FL_SIMPLE_CLIP;
arclClip[0] = pco->rclBounds;
// FL_FLIP_D:
arclClip[1].top = pco->rclBounds.left;
arclClip[1].left = pco->rclBounds.top;
arclClip[1].bottom = pco->rclBounds.right;
arclClip[1].right = pco->rclBounds.bottom;
// FL_FLIP_V:
arclClip[2].top = -pco->rclBounds.bottom + 1;
arclClip[2].left = pco->rclBounds.left;
arclClip[2].bottom = -pco->rclBounds.top + 1;
arclClip[2].right = pco->rclBounds.right;
// FL_FLIP_V | FL_FLIP_D:
arclClip[3].top = pco->rclBounds.left;
arclClip[3].left = -pco->rclBounds.bottom + 1;
arclClip[3].bottom = pco->rclBounds.right;
arclClip[3].right = -pco->rclBounds.top + 1;
prclClip = arclClip;
}
apfn = &gapfnStrip[4 * ((fl & FL_STYLE_MASK) >> FL_STYLE_SHIFT)];
// Get the device ready:
ulHwMix = gaRop3FromMix[mix & 0xF];
ulHwMix = (ulHwMix << 8) | (ulHwMix);
CP_WAIT(ppdev, pjBase);
if (P9000(ppdev))
{
CP_RASTER(ppdev, pjBase, P9000_OVERSIZED | ulHwMix);
CP_BACKGROUND(ppdev, pjBase, pbo->iSolidColor);
}
else
{
CP_RASTER(ppdev, pjBase, P9100_OVERSIZED | (ulHwMix & 0xff));
CP_COLOR0(ppdev, pjBase, pbo->iSolidColor);
}
// Set up to enumerate the path:
if (pco->iDComplexity != DC_COMPLEX)
{
PATHDATA pd;
BOOL bMore;
ULONG cptfx;
POINTFIX ptfxStartFigure;
POINTFIX ptfxLast;
POINTFIX* pptfxFirst;
POINTFIX* pptfxBuf;
pd.flags = 0;
do {
bMore = PATHOBJ_bEnum(ppo, &pd);
cptfx = pd.count;
if (cptfx == 0)
break;
if (pd.flags & PD_BEGINSUBPATH)
{
ptfxStartFigure = *pd.pptfx;
pptfxFirst = pd.pptfx;
pptfxBuf = pd.pptfx + 1;
cptfx--;
}
else
{
pptfxFirst = &ptfxLast;
pptfxBuf = pd.pptfx;
}
if (pd.flags & PD_RESETSTYLE)
ls.spNext = 0;
if (cptfx > 0)
{
if (!pfnLines(ppdev,
pptfxFirst,
pptfxBuf,
(RUN*) NULL,
cptfx,
&ls,
prclClip,
apfn,
fl,
ulHwMix))
{
return(FALSE);
}
}
ptfxLast = pd.pptfx[pd.count - 1];
if (pd.flags & PD_CLOSEFIGURE)
{
if (!pfnLines(ppdev,
&ptfxLast,
&ptfxStartFigure,
(RUN*) NULL,
1,
&ls,
prclClip,
apfn,
fl,
ulHwMix))
{
return(FALSE);
}
}
} while (bMore);
if (fl & FL_STYLED)
{
// Save the style state:
ULONG ulHigh;
ULONG ulLow;
// Masked styles don't normalize the style state. It's a good
// thing to do, so let's do it now:
if ((ULONG) ls.spNext >= (ULONG) ls.spTotal2)
ls.spNext = (ULONG) ls.spNext % (ULONG) ls.spTotal2;
ulHigh = ls.spNext / ls.xyDensity;
ulLow = ls.spNext % ls.xyDensity;
pla->elStyleState.l = MAKELONG(ulLow, ulHigh);
}
}
else
{
// Local state for path enumeration:
BOOL bMore;
union {
BYTE aj[offsetof(CLIPLINE, arun) + RUN_MAX * sizeof(RUN)];
CLIPLINE cl;
} cl;
fl |= FL_COMPLEX_CLIP;
// We use the clip object when non-simple clipping is involved:
PATHOBJ_vEnumStartClipLines(ppo, pco, pso, pla);
do {
bMore = PATHOBJ_bEnumClipLines(ppo, sizeof(cl), &cl.cl);
if (cl.cl.c != 0)
{
if (fl & FL_STYLED)
{
ls.spComplex = HIWORD(cl.cl.lStyleState) * ls.xyDensity
+ LOWORD(cl.cl.lStyleState);
}
if (!pfnLines(ppdev,
&cl.cl.ptfxA,
&cl.cl.ptfxB,
&cl.cl.arun[0],
cl.cl.c,
&ls,
(RECTL*) NULL,
apfn,
fl,
ulHwMix))
{
return(FALSE);
}
}
} while (bMore);
}
return(TRUE);
}