Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

2385 lines
71 KiB

//
// Voice.cpp
// Copyright (c) 1996-2001 Microsoft Corporation
//
#ifdef DMSYNTH_MINIPORT
#include "common.h"
#include <math.h>
#include "muldiv32.h"
#else
#include "debug.h"
#include "simple.h"
#include <mmsystem.h>
#include <dmusicc.h>
#include <dmusics.h>
#include "synth.h"
#include <math.h>
#include <stdio.h>
#include "csynth.h"
#endif
#include "fparms.h" // Generated filter parameter arrays
#ifdef _X86_
#define MMX_ENABLED 1
#endif
#ifdef DBG
extern DWORD sdwDebugLevel;
#endif
CVoiceLFO::CVoiceLFO()
{
m_pModWheelIn = NULL;
m_pPressureIn = NULL;
m_bEnable = TRUE;
}
short CVoiceLFO::m_snSineTable[256];
void CVoiceLFO::Init()
{
double flTemp;
long lIndex;
for (lIndex = 0;lIndex < 256;lIndex++)
{
flTemp = lIndex;
flTemp *= 6.283185307;
flTemp /= 256.0;
flTemp = sin(flTemp);
flTemp *= 100.0;
m_snSineTable[lIndex] = (short) flTemp;
}
}
STIME CVoiceLFO::StartVoice(CSourceLFO *pSource,
STIME stStartTime, CModWheelIn * pModWheelIn, CPressureIn * pPressureIn)
{
m_bEnable = TRUE;
m_pModWheelIn = pModWheelIn;
m_pPressureIn = pPressureIn;
m_Source = *pSource;
m_stStartTime = stStartTime;
if ((m_Source.m_prMWPitchScale == 0) && (m_Source.m_vrMWVolumeScale == 0) &&
(m_Source.m_prPitchScale == 0) && (m_Source.m_vrVolumeScale == 0))
{
m_stRepeatTime = 44100;
}
else
{
m_stRepeatTime = 2097152 / m_Source.m_pfFrequency; // (1/8 * 256 * 4096 * 16)
}
return (m_stRepeatTime);
}
long CVoiceLFO::GetLevel(STIME stTime, STIME *pstNextTime)
{
if ( !m_bEnable )
return 0;
stTime -= (m_stStartTime + m_Source.m_stDelay);
if (stTime < 0)
{
*pstNextTime = -stTime;
return (0);
}
*pstNextTime = m_stRepeatTime;
stTime *= m_Source.m_pfFrequency;
stTime = stTime >> (12 + 4); // We've added 4 extra bits of resolution...
return (m_snSineTable[stTime & 0xFF]);
}
VREL CVoiceLFO::GetVolume(STIME stTime, STIME *pstNextTime)
{
VREL vrVolume;
VREL vrCPVolume;
VREL vrMWVolume;
if ( !m_bEnable )
return 0;
vrCPVolume = m_pPressureIn->GetPressure(stTime);
vrCPVolume *= m_Source.m_vrCPVolumeScale;
vrCPVolume /= 127;
vrMWVolume = m_pModWheelIn->GetModulation(stTime);
vrMWVolume *= m_Source.m_vrMWVolumeScale;
vrMWVolume /= 127;
vrVolume = vrMWVolume;
vrVolume += vrCPVolume;
vrVolume += m_Source.m_vrVolumeScale;
vrVolume *= GetLevel(stTime, pstNextTime);
vrVolume /= 100;
return (vrVolume);
}
PREL CVoiceLFO::GetPitch(STIME stTime, STIME *pstNextTime)
{
PREL prPitch;
PREL prCPPitch;
PREL prMWPitch;
if ( !m_bEnable )
return 0;
prCPPitch = m_pPressureIn->GetPressure(stTime);
prCPPitch *= m_Source.m_prCPPitchScale;
prCPPitch /= 127;
prMWPitch = m_pModWheelIn->GetModulation(stTime);
prMWPitch *= m_Source.m_prMWPitchScale;
prMWPitch /= 127;
prPitch = prMWPitch;
prPitch += prCPPitch;
prPitch += m_Source.m_prPitchScale;
prPitch *= GetLevel(stTime, pstNextTime);
prPitch /= 100;
return (prPitch);
}
PREL CVoiceLFO::GetCutoff(STIME stTime)
{
PREL prPitch;
PREL prCPPitch;
PREL prMWPitch;
STIME stNextTime;
if ( !m_bEnable )
return 0;
prCPPitch = m_pPressureIn->GetPressure(stTime);
prCPPitch *= m_Source.m_prCPCutoffScale;
prCPPitch /= 127;
prMWPitch = m_pModWheelIn->GetModulation(stTime);
prMWPitch *= m_Source.m_prMWCutoffScale;
prMWPitch /= 127;
prPitch = prMWPitch;
prPitch += prCPPitch;
prPitch += m_Source.m_prCutoffScale;
prPitch *= GetLevel(stTime, &stNextTime);
prPitch /= 100;
return (prPitch);
}
CVoiceEG::CVoiceEG()
{
m_stStopTime = 0;
m_bEnable = TRUE;
}
short CVoiceEG::m_snAttackTable[201];
void CVoiceEG::Init()
{
double flTemp;
long lV;
m_snAttackTable[0] = 0;
for (lV = 1;lV <= 200; lV++)
{
flTemp = lV;
flTemp /= 200.0;
flTemp *= flTemp;
flTemp = log10(flTemp);
flTemp *= 10000.0;
flTemp /= 96.0;
flTemp += 1000.0;
m_snAttackTable[lV] = (short) flTemp;
}
}
void CVoiceEG::StopVoice(STIME stTime)
{
if ( m_bEnable )
{
m_Source.m_stRelease *= GetLevel(stTime, &m_stStopTime, TRUE); // Adjust for current sustain level.
m_Source.m_stRelease /= 1000;
}
m_stStopTime = stTime;
}
void CVoiceEG::QuickStopVoice(STIME stTime, DWORD dwSampleRate)
{
if ( m_bEnable )
{
m_Source.m_stRelease *= GetLevel(stTime, &m_stStopTime, TRUE); // Adjust for current sustain level.
m_Source.m_stRelease /= 1000;
dwSampleRate /= 70;
if (m_Source.m_stRelease > (long) dwSampleRate)
{
m_Source.m_stRelease = dwSampleRate;
}
}
m_stStopTime = stTime;
}
STIME CVoiceEG::StartVoice(CSourceEG *pSource, STIME stStartTime,
WORD nKey, WORD nVelocity, STIME stMinAttack)
{
m_bEnable = TRUE;
m_stStartTime = stStartTime;
m_stStopTime = 0x7fffffffffffffff; // set to indefinite future
m_Source = *pSource;
if (m_Source.m_stAttack < stMinAttack)
{
m_Source.m_stAttack = stMinAttack;
}
if (m_Source.m_stRelease < stMinAttack)
{
m_Source.m_stRelease = stMinAttack;
}
// apply velocity to attack length scaling here
m_Source.m_stAttack *= CDigitalAudio::PRELToPFRACT(nVelocity * m_Source.m_trVelAttackScale / 127);
m_Source.m_stAttack /= 4096;
m_Source.m_stHold *= CDigitalAudio::PRELToPFRACT(nKey * m_Source.m_trKeyDecayScale / 127);
m_Source.m_stHold /= 4096;
m_Source.m_stDecay *= CDigitalAudio::PRELToPFRACT(nKey * m_Source.m_trKeyDecayScale / 127);
m_Source.m_stDecay /= 4096;
m_Source.m_stDecay *= (1000 - m_Source.m_pcSustain);
m_Source.m_stDecay /= 1000;
if ( m_Source.m_stDelay )
return ((STIME)m_Source.m_stDelay);
else
return ((STIME)m_Source.m_stAttack);
}
//note: appears to not be in use
BOOL CVoiceEG::InAttack(STIME st)
{
if ( !m_bEnable )
return FALSE;
// has note been released?
if (st >= m_stStopTime)
return FALSE;
// past length of attack?
if (st >= m_stStartTime + m_Source.m_stDelay + m_Source.m_stAttack)
return FALSE;
return TRUE;
}
BOOL CVoiceEG::InRelease(STIME st)
{
if ( !m_bEnable )
return FALSE;
// has note been released?
if (st > m_stStopTime)
return TRUE;
return FALSE;
}
long CVoiceEG::GetLevel(STIME stEnd, STIME *pstNext, BOOL fVolume)
{
long lLevel = 0;
if (stEnd <= m_stStopTime)
{
stEnd -= m_stStartTime;
if (stEnd < m_Source.m_stDelay )
{
lLevel = 0;
*pstNext = m_Source.m_stDelay - stEnd;
}
else
{
stEnd -= m_Source.m_stDelay;
if (stEnd < m_Source.m_stAttack )
{
// still in attack
lLevel = 1000 * (long) stEnd;
if (m_Source.m_stAttack)
{
lLevel /= (long) m_Source.m_stAttack;
}
else // This should never happen, but it does...
{
lLevel = 0;
}
*pstNext = m_Source.m_stAttack - stEnd;
if (lLevel < 0) lLevel = 0;
if (lLevel > 1000) lLevel = 1000;
if (fVolume)
{
lLevel = m_snAttackTable[lLevel / 5];
}
}
else
{
stEnd -= m_Source.m_stAttack;
if ( stEnd < m_Source.m_stHold )
{
lLevel = 1000;
*pstNext = m_Source.m_stHold - stEnd;
if (fVolume)
{
lLevel = m_snAttackTable[lLevel / 5];
}
}
else
{
stEnd -= m_Source.m_stHold;
if (stEnd < m_Source.m_stDecay)
{
// still in decay
lLevel = (1000 - m_Source.m_pcSustain) * (long) stEnd;
lLevel /= (long) m_Source.m_stDecay;
lLevel = 1000 - lLevel;
// To improve the decay curve, set the next point to be 1/4, 1/2, or end of slope.
// To avoid close duplicates, fudge an extra 100 samples.
if (stEnd < ((m_Source.m_stDecay >> 2) - 100))
{
*pstNext = (m_Source.m_stDecay >> 2) - stEnd;
}
else if (stEnd < ((m_Source.m_stDecay >> 1) - 100))
{
*pstNext = (m_Source.m_stDecay >> 1) - stEnd;
}
else
{
*pstNext = m_Source.m_stDecay - stEnd; // Next is end of decay.
}
}
else
{
// in sustain
lLevel = m_Source.m_pcSustain;
*pstNext = 44100;
}
}
}
}
}
else
{
STIME stBogus;
// in release
stEnd -= m_stStopTime;
if (stEnd < m_Source.m_stRelease)
{
lLevel = GetLevel(m_stStopTime, &stBogus, fVolume) * (long) (m_Source.m_stRelease - stEnd);
lLevel /= (long) m_Source.m_stRelease;
if (stEnd < ((m_Source.m_stRelease >> 2) - 100))
{
*pstNext = (m_Source.m_stRelease >> 2) - stEnd;
}
else if (stEnd < ((m_Source.m_stRelease >> 1) - 100))
{
*pstNext = (m_Source.m_stRelease >> 1) - stEnd;
}
else
{
*pstNext = m_Source.m_stRelease - stEnd; // Next is end of decay.
}
}
else
{
lLevel = 0; // !!! off
*pstNext = 0x7FFFFFFFFFFFFFFF;
}
}
return lLevel;
}
VREL CVoiceEG::GetVolume(STIME stTime, STIME *pstNextTime)
{
if ( !m_bEnable )
return 0;
VREL vrLevel = GetLevel(stTime, pstNextTime, TRUE) * 96;
vrLevel /= 10;
vrLevel = vrLevel - 9600;
return vrLevel;
}
PREL CVoiceEG::GetPitch(STIME stTime, STIME *pstNextTime)
{
if ( !m_bEnable )
return 0;
PREL prLevel;
if (m_Source.m_sScale != 0)
{
prLevel = GetLevel(stTime, pstNextTime, FALSE);
prLevel *= m_Source.m_sScale;
prLevel /= 1000;
}
else
{
*pstNextTime = 44100;
prLevel = 0;
}
return prLevel;
}
PREL CVoiceEG::GetCutoff(STIME stTime)
{
if ( !m_bEnable )
return 0;
PREL prLevel;
STIME pstNextTime; // not used
if (m_Source.m_prCutoffScale != 0)
{
prLevel = GetLevel(stTime, &pstNextTime, FALSE);
prLevel *= m_Source.m_prCutoffScale;
prLevel /= 1000;
}
else
{
prLevel = 0;
}
return prLevel;
}
void CVoiceFilter::StartVoice(CSourceFilter *pSource, CVoiceLFO *pLFO, CVoiceEG *pEG, WORD nKey, WORD nVelocity)
{
m_Source = *pSource;
m_pLFO = pLFO;
m_pEG = pEG;
m_prVelScale = (nVelocity * m_Source.m_prVelScale) / 127;
m_prKeyScale = (nKey * m_Source.m_prKeyScale) / 127;
}
/////////////////////////////////////////////////////////////////////////////////
// DLS2 Lowpass Filter Filter
/*
>>>>> finish low pass filter comment
b1 = -2.0 * r * cos(theta);
b2 = r * r;
K = (1.0 + b1 + b2) * pow(10.0, -qIndex * 0.0375);
The Filter :
z = (K * sample[i]) - (b1 * z1) - (b2 * z2)
z2 = z1
z1 = z
>>> B1 negation turned to positive then used as an add instead of subtraction.
Resonance : Q
GainUnits
-qIndex * 0.0375
0.0375 = 1.5/40 in db's
Values
Q min/max Values are 0db to 22.5db
Q min/max Values are 0 to 225 in 1/10th db's
Cutoff Fequency : Fc
Pitch absolute values
Absolute Pitch = ((1200 * log2(F/440)) + 6900)
Values
Initial Fc min/max Values are 200Hz to 7998Hz
Initial Fc min/max Values are 5535 to 11921 in abosolute pitch cents
Table Indexs
65 - entries in the table
Hertz Pitch
--------------------------------------
Max Sample Rate -> 48000Hz (15023) ---|
44100Hz (14877) |
22050Hz (13676) |
....... 9488
Max Cutoff Freq -> 7999Hz (11921) |
....... |
Min Cutoff Freq -> 200Hz (5535) ---|
More Acurately .....
48KHz 15023.26448623030034519401770744100
200Hz - 5534.99577150007811000514765931632
=====================================
Feq Range 9488.26871473022223518887004812496
Feq Range/1200 = 7.906890596 is the Feq Range in octaves
Feq Range/100 = 94.882687147 is the Feq Range in setimtones
Behavoir of Fc to indexes according to ouput Sample Rate
SampleRate of 48k (15023)
Fc < 5535 (200Hz) -> fIndex = 0
Fc = 11921 (7999Hz) -> fIndex = 63.86
Fc > 11935 (8064Hz) -> fIndex = 64
SampleRate of 41k (14877)
Fc = 5535 (200Hz) -> fIndex = 0
Fc < 5389 (200Hz) -> fIndex = 0
Fc > 11789 (7411Hz) -> fIndex = 64
Fc = 11921 (7999Hz) -> fIndex = 65.32
SampleRate of 22k (13676)
Fc < 4188 (92Hz) -> fIndex = 0
Fc = 5535 (200Hz) -> fIndex = 13.44
10574 (3675Hz) -> spec min of 1/6th the sample rate
Fc > 10588 (3704Hz) -> fIndex = 64
11276 (5510Hz) -> filter fails one octave bellow Nyquist
Fc = 11921 (7999Hz) -> fIndex = 77.33
12476 (11025Hz) -> nyquist
Precision
0.01 - minimal acuracy for interpolation
9488.2687
0.00025 +/- error
m_aB1[0][63] = 0x33ea24fb = 0.811166044148771133412393865559
m_aB1[0][64] = - 0x2fa8ebf5 = 0.744685163483661751713288716704
============
0x04413906 = 0.066480880665109381699105148854
fIndex's fractional constant = 0.002687147302222351888700481249
interpolation of
m_aB1[0][63] + constant = 0.810987400229642518622447868604
difference = 0.000178643919128614789945996955
One 2.30 fixpoint bit = 0.000000000931322575482840254421
9488.2687147
7.906890596 * 1200 = 9488.2687152 <-- precision error
1-bit lossed when going to intger math
*/
//
void CVoiceFilter::GetCoeff(STIME stTime, PREL prFreqIn, COEFF& cfK, COEFF& cfB1, COEFF& cfB2)
{
PREL prCutoff;
DWORD dwFract;
int iQIndex;
int iIndex;
//
// Check if filter is disabled
//
if (m_Source.m_prCutoff == 0x7FFF)
{
cfK = 0x40000000; // is unity in 2.30 fixpoint
cfB1 = 0;
cfB2 = 0;
return;
}
//
// Accumulate the current Cutoff Frequency
//
prCutoff = m_Source.m_prCutoffSRAdjust;
prCutoff += m_pLFO->GetCutoff(stTime);
prCutoff += m_pEG->GetCutoff(stTime);
prCutoff += m_prVelScale;
prCutoff += prFreqIn;
//
// Set the Resonance Q index
//
iQIndex = m_Source.m_iQIndex;
//
// Set the cutoff frequency index, and retrive
// the fractional part for interpolation
//
iIndex = prCutoff;
if ( iIndex >= 0 )
{
dwFract = iIndex % 100;
iIndex /= 100;
}
else
{
dwFract = 0;
iIndex = -1;
}
if (iIndex < 0) // Cutoff fequency is less than 100Hz (at 48k Fs)
{
cfK = m_aK[iQIndex][0];
cfB1 = m_aB1[iQIndex][0];
cfB2 = m_aB2[iQIndex][0];
}
else if (iIndex >= FILTER_PARMS_DIM_FC - 1)
{
cfK = m_aK[iQIndex][FILTER_PARMS_DIM_FC - 1];
cfB1 = m_aB1[iQIndex][FILTER_PARMS_DIM_FC - 1];
cfB2 = m_aB2[iQIndex][FILTER_PARMS_DIM_FC - 1];
}
else if (iIndex >= FILTER_PARMS_DIM_FC - 5)
{
//
// Not enough headroom to handle the calculation,
// shift the range douwn by half
//
cfK = m_aK[iQIndex][iIndex] + (((( m_aK[iQIndex][iIndex+1] - m_aK[iQIndex][iIndex]) >> 1) * dwFract)/50);
cfB1 = m_aB1[iQIndex][iIndex] - ((((m_aB1[iQIndex][iIndex] - m_aB1[iQIndex][iIndex+1]) >> 1) * dwFract)/50);
cfB2 = m_aB2[iQIndex][iIndex] - ((((m_aB2[iQIndex][iIndex] - m_aB2[iQIndex][iIndex+1]) >> 1) * dwFract)/50);
}
else
{
cfK = m_aK[iQIndex][iIndex] + (((( m_aK[iQIndex][iIndex+1] - m_aK[iQIndex][iIndex])) * dwFract)/100);
cfB1 = m_aB1[iQIndex][iIndex] - ((((m_aB1[iQIndex][iIndex] - m_aB1[iQIndex][iIndex+1])) * dwFract)/100);
cfB2 = m_aB2[iQIndex][iIndex] - ((((m_aB2[iQIndex][iIndex] - m_aB2[iQIndex][iIndex+1])) * dwFract)/100);
}
}
//------------------------------------------------------------------------------------
// Reference Filter
// Note: This code is used only for testing or to understance the derivation
// of the above filter code. It was the original source for the current implementation
// aboce was optimized
//------------------------------------------------------------------------------------
/*void CVoiceFilter::GetCoeffRef(STIME stTime, COEFF &cfK, COEFF &cfB1, COEFF &cfB2)
{
PREL prCutoff;
int iQIndex;
int iIndex;
double fIndex;
double fIntrp;
//
// Check if filter is disabled
//
if (m_Source.m_prCutoff == 0x7FFF)
{
cfK = 0x40000000; // unity in 2.30 fixpoint
cfB1 = 0;
cfB2 = 0;
return;
}
//
// Accumulate the current Cutoff Frequency
//
prCutoff = m_Source.m_prCutoff;
prCutoff += m_pLFO->GetCutoff(stTime);
prCutoff += m_pEG->GetCutoff(stTime);
prCutoff += m_prVelScale;
//
// There are 16 resonance values spaced 1.5db arpart
// DLS2's has a minimum 1.5db error tolerance
// Range of values it 0db to 22.5db
// m_Source.m_vrQ are in 1/10 db's
// The 15.0 represents the 1.5db'in 1/10 db's
// with the 0.5 for rounding to the nearest index
//
iQIndex = (int)((m_Source.m_vrQ / 15.0f) + 0.5f);
if (iQIndex < 0)
iQIndex = 0;
if (iQIndex > FILTER_PARMS_DIM_Q-1) // FILTER_PARMS_DIM_Q = 16
iQIndex = FILTER_PARMS_DIM_Q-1;
// >>>>> docdoc
//
//
fIndex = 12.0 * (((prCutoff - m_Source.m_prSampleRate) / 1200.0 ) + 7.906890596);
iIndex = (int)fIndex;
fIntrp = fIndex - iIndex;
if (iIndex < 0)
{
cfK = m_aK [iQIndex][0];
cfB1 = m_aB1[iQIndex][0];
cfB2 = m_aB2[iQIndex][0];
}
else if (iIndex >= FILTER_PARMS_DIM_FC - 1)
{
cfK = m_aK [iQIndex][FILTER_PARMS_DIM_FC - 1];
cfB1 = m_aB1[iQIndex][FILTER_PARMS_DIM_FC - 1];
cfB2 = m_aB2[iQIndex][FILTER_PARMS_DIM_FC - 1];
}
else
{
//
// Linearly interpolate the fractional part of the index
// accross two values of the coeficient table
//
cfK = (COEFF)(m_aK[iQIndex][iIndex] * (1.0 - fIntrp) +
m_aK[iQIndex][iIndex+1] * fIntrp);
cfB1 = (COEFF)(m_aB1[iQIndex][iIndex] * (1.0 - fIntrp) +
m_aB1[iQIndex][iIndex+1] * fIntrp);
cfB2 = (COEFF)(m_aB2[iQIndex][iIndex] * (1.0 - fIntrp) +
m_aB2[iQIndex][iIndex+1] * fIntrp);
}
}*/
BOOL CVoiceFilter::IsFiltered()
{
return (m_Source.m_prCutoff != 0x7FFF);
}
CDigitalAudio::CDigitalAudio()
{
m_pfBasePitch = 0;
m_pfLastPitch = 0;
m_pfLastSample = 0;
m_pfLoopEnd = 0;
m_pfLoopStart = 0;
m_pfSampleLength = 0;
m_prLastPitch = 0;
m_ullLastSample = 0;
m_ullLoopStart = 0;
m_ullLoopEnd = 0;
m_ullSampleLength = 0;
m_fElGrande = FALSE;
m_pCurrentBuffer = NULL;
m_pWaveArt = NULL;
m_ullSamplesSoFar = 0;
m_lPrevSample = 0;
m_lPrevPrevSample = 0;
};
CDigitalAudio::~CDigitalAudio()
{
if (m_pWaveArt)
{
m_pWaveArt->Release();
}
}
PFRACT CDigitalAudio::m_spfCents[201];
PFRACT CDigitalAudio::m_spfSemiTones[97];
VFRACT CDigitalAudio::m_svfDbToVolume[(MAXDB - MINDB) * 10 + 1];
BOOL CDigitalAudio::m_sfMMXEnabled = FALSE;
#ifdef MMX_ENABLED
BOOL MultiMediaInstructionsSupported();
#endif
#pragma optimize("", off) // Optimize causes crash! Argh!
void CDigitalAudio::Init()
{
double flTemp;
VREL vrdB;
#ifdef MMX_ENABLED
m_sfMMXEnabled = MultiMediaInstructionsSupported();
#endif // MMX_ENABLED
for (vrdB = MINDB * 10;vrdB <= MAXDB * 10;vrdB++)
{
flTemp = vrdB;
flTemp /= 100.0;
flTemp = pow(10.0, flTemp);
flTemp = pow(flTemp, 0.5); // square root.
flTemp *= 4095.0; // 2^12th, but avoid overflow...
m_svfDbToVolume[vrdB - (MINDB * 10)] = (long) flTemp;
}
PREL prRatio;
for (prRatio = -100;prRatio <= 100;prRatio++)
{
flTemp = prRatio;
flTemp /= 1200.0;
flTemp = pow(2.0, flTemp);
flTemp *= 4096.0;
m_spfCents[prRatio + 100] = (long) flTemp;
}
for (prRatio = -48;prRatio <= 48;prRatio++)
{
flTemp = prRatio;
flTemp /= 12.0;
flTemp = pow(2.0, flTemp);
flTemp *= 4096.0;
m_spfSemiTones[prRatio + 48] = (long) flTemp;
}
}
#pragma optimize("", on)
VFRACT CDigitalAudio::VRELToVFRACT(VREL vrVolume)
{
vrVolume /= 10;
if (vrVolume < MINDB * 10)
vrVolume = MINDB * 10;
else if (vrVolume >= MAXDB * 10)
vrVolume = MAXDB * 10;
return (m_svfDbToVolume[vrVolume - MINDB * 10]);
}
PFRACT CDigitalAudio::PRELToPFRACT(PREL prPitch)
{
PFRACT pfPitch = 0;
PREL prOctave;
if (prPitch > 100)
{
if (prPitch > 4800)
{
prPitch = 4800;
}
prOctave = prPitch / 100;
prPitch = prPitch % 100;
pfPitch = m_spfCents[prPitch + 100];
pfPitch <<= prOctave / 12;
prOctave = prOctave % 12;
pfPitch *= m_spfSemiTones[prOctave + 48];
pfPitch >>= 12;
}
else if (prPitch < -100)
{
if (prPitch < -4800)
{
prPitch = -4800;
}
prOctave = prPitch / 100;
prPitch = (-prPitch) % 100;
pfPitch = m_spfCents[100 - prPitch];
pfPitch >>= ((-prOctave) / 12);
prOctave = (-prOctave) % 12;
pfPitch *= m_spfSemiTones[48 - prOctave];
pfPitch >>= 12;
}
else
{
pfPitch = m_spfCents[prPitch + 100];
}
return (pfPitch);
}
void CDigitalAudio::ClearVoice()
{
if (m_Source.m_pWave != NULL)
{
m_Source.m_pWave->PlayOff();
m_Source.m_pWave->Release(); // Releases wave structure.
m_Source.m_pWave = NULL;
}
if (m_pWaveArt)
{
m_pWaveArt->Release();
m_pWaveArt = NULL;
}
}
STIME CDigitalAudio::StartVoice(CSynth *pSynth,
CSourceSample *pSample,
PREL prBasePitch,
long lKey)
{
m_prLastPitch = 0;
m_lPrevSample = 0;
m_lPrevPrevSample = 0;
m_cfLastK = 0;
m_cfLastB1 = 0;
m_cfLastB2 = 0;
m_Source = *pSample;
m_pnWave = pSample->m_pWave->m_pnWave;
m_pSynth = pSynth;
m_bOneShot = m_Source.m_bOneShot;
pSample->m_pWave->AddRef(); // Keeps track of Wave usage.
pSample->m_pWave->PlayOn();
// Set initial pitch
prBasePitch += pSample->m_prFineTune;
prBasePitch += ((lKey - pSample->m_bMIDIRootKey) * 100);
m_pfBasePitch = PRELToPFRACT(prBasePitch);
m_pfBasePitch *= pSample->m_dwSampleRate;
m_pfBasePitch /= pSynth->m_dwSampleRate;
m_pfLastPitch = m_pfBasePitch;
m_fElGrande = pSample->m_dwSampleLength >= 0x80000; // Greater than 512k.
if ((pSample->m_dwLoopEnd - pSample->m_dwLoopStart) >= 0x80000)
{ // We can't handle loops greater than 1 meg!
m_bOneShot = TRUE;
}
m_ullLastSample = 0;
m_ullLoopStart = pSample->m_dwLoopStart;
m_ullLoopStart = m_ullLoopStart << 12;
m_ullLoopEnd = pSample->m_dwLoopEnd;
m_ullLoopEnd = m_ullLoopEnd << 12;
m_ullSampleLength = pSample->m_dwSampleLength;
m_ullSampleLength = m_ullSampleLength << 12;
m_pfLastSample = 0;
m_pfLoopStart = (long) m_ullLoopStart;
m_pfLoopEnd = (long) m_ullLoopEnd;
if (m_ullLoopEnd <= m_ullLoopStart) // Should never happen, but death if it does!
{
m_bOneShot = TRUE;
}
if (m_fElGrande)
{
m_pfSampleLength = 0x7FFFFFFF;
}
else
{
m_pfSampleLength = (long) m_ullSampleLength;
}
m_pCurrentBuffer = NULL; // Used by wave playing must be null for standard sample
m_pWaveArt = NULL;
m_ullSamplesSoFar = 0;
return (0); // !!! what is this return value?
}
STIME CDigitalAudio::StartWave(CSynth *pSynth,
CWaveArt *pWaveArt,
PREL prBasePitch,
SAMPLE_TIME stVoiceStart,
SAMPLE_TIME stLoopStart,
SAMPLE_TIME stLoopEnd)
{
m_pSynth = pSynth; // Save Synth
if (pWaveArt)
{
pWaveArt->AddRef();
}
if (m_pWaveArt)
{
m_pWaveArt->Release();
}
m_pWaveArt = pWaveArt; // Save Wave articulation
// Reset all wave buffer flags
CWaveBuffer* pWavBuf = pWaveArt->m_pWaves.GetHead();
while ( pWavBuf )
{
pWavBuf->m_pWave->m_bActive = FALSE;
pWavBuf = pWavBuf->GetNext();
}
// Initialize the current play buffer
m_pCurrentBuffer = pWaveArt->m_pWaves.GetHead();;
//if m_pCurrentBuffer is NULL the articulation contains
//no samples... this shouldn't be possible.
assert(m_pCurrentBuffer);
m_pCurrentBuffer->m_pWave->m_bActive = TRUE;
m_pCurrentBuffer->m_pWave->AddRef(); // Keeps track of Wave usage.
m_pCurrentBuffer->m_pWave->PlayOn();
// Fill CSourceSample class with CWave Defaults
m_Source.m_pWave = m_pCurrentBuffer->m_pWave;
m_Source.m_dwSampleLength = m_pCurrentBuffer->m_pWave->m_dwSampleLength;
m_Source.m_dwSampleRate = m_pCurrentBuffer->m_pWave->m_dwSampleRate;
m_Source.m_bSampleType = m_pCurrentBuffer->m_pWave->m_bSampleType;
m_Source.m_dwID = m_pCurrentBuffer->m_pWave->m_dwID;
m_Source.m_dwLoopStart = 0;
m_Source.m_dwLoopEnd = m_pCurrentBuffer->m_pWave->m_dwSampleLength;
m_Source.m_bMIDIRootKey = 0;
m_Source.m_prFineTune = 0;
m_bOneShot = TRUE;
// The the current sample pointer
m_pnWave = m_pCurrentBuffer->m_pWave->m_pnWave;
// Set initial pitch
m_pfBasePitch = PRELToPFRACT(prBasePitch);
m_pfBasePitch *= m_Source.m_dwSampleRate;
m_pfBasePitch /= pSynth->m_dwSampleRate;
m_pfLastPitch = m_pfBasePitch;
m_prLastPitch = 0;
m_fElGrande = m_Source.m_dwSampleLength >= 0x80000; // Greater than 512k.
m_ullLastSample = stVoiceStart;
m_ullLastSample = m_ullLastSample << 12;
m_ullSamplesSoFar = 0;
m_ullLoopStart = m_Source.m_dwLoopStart;
m_ullLoopStart = m_ullLoopStart << 12;
m_ullLoopEnd = m_Source.m_dwLoopEnd;
m_ullLoopEnd = m_ullLoopEnd << 12;
m_ullSampleLength = m_Source.m_dwSampleLength;
m_ullSampleLength = m_ullSampleLength << 12;
m_pfLastSample = (long) m_ullLastSample;
m_pfLoopStart = (long) m_ullLoopStart;
m_pfLoopEnd = (long) m_ullLoopEnd;
if (stLoopStart || stLoopEnd)
{
m_bOneShot = FALSE;
m_ullLoopStart = stLoopStart;
m_ullLoopStart = m_ullLoopStart << 12;
m_ullLoopEnd = stLoopEnd;
m_ullLoopEnd = m_ullLoopEnd << 12;
m_pfLoopStart = (long) m_ullLoopStart;
m_pfLoopEnd = (long) m_ullLoopEnd;
}
if ((stLoopEnd - stLoopStart) >= 0x80000)
{
m_bOneShot = TRUE;
}
// This could be WAY beyond the actual wave data range
// So find out the sample we want to start at
if(stVoiceStart > stLoopStart)
{
SAMPLE_TIME stLoopLen = stLoopEnd - stLoopStart;
if(m_bOneShot == FALSE && stLoopLen != 0)
{
m_ullLastSample = stVoiceStart - stLoopStart;
m_ullLastSample = m_ullLastSample - (stLoopLen * (m_ullLastSample / stLoopLen));
m_ullLastSample = stLoopStart + m_ullLastSample;
m_ullLastSample = m_ullLastSample << 12;
m_pfLastSample = (long) (m_ullLastSample);
}
// Must be a wave with an start offset?
// In any case we need to correct this or else we crash
if(m_bOneShot && stVoiceStart > m_Source.m_dwSampleLength)
{
m_ullLastSample = 0;
m_pfLastSample = 0;
}
}
if(m_fElGrande)
{
m_pfSampleLength = 0x7FFFFFFF;
}
else
{
m_pfSampleLength = (long) m_ullSampleLength;
}
return (0);
}
/* If the wave is bigger than one meg, the index can overflow.
Solve this by assuming no mix session will ever be as great
as one meg AND loops are never that long. We keep all our
fractional indexes in two variables. In one case, m_pfLastSample,
is the normal mode where the lower 12 bits are the fraction and
the upper 20 bits are the index. And, m_ullLastSample
is a LONGLONG with an extra 32 bits of index. The mix engine
does not want the LONGLONGs, so we need to track the variables
in the LONGLONGs and prepare them for the mixer as follows:
Prior to mixing,
if the sample is large (m_fElGrande is set), BeforeSampleMix()
is called. This finds the starting point for the mix, which
is either the current position or the start of the loop,
whichever is earlier. It subtracts this starting point from
the LONGLONG variables and stores an offset in m_dwAddressUpper.
It also adjusts the pointer to the wave data appropriately.
AfterSampleMix() does the inverse, reconstructing the the LONGLONG
indeces and returning everthing back to normal.
*/
void CDigitalAudio::BeforeBigSampleMix()
{
if (m_fElGrande)
{
ULONGLONG ullBase = 0;
DWORD dwBase;
if (m_bOneShot)
{
ullBase = m_ullLastSample;
}
else
{
if (m_ullLastSample < m_ullLoopStart)
{
ullBase = m_ullLastSample;
}
else
{
ullBase = m_ullLoopStart;
}
}
// Keep the value as we want to offset into the wave buffer
ULONGLONG ullWaveOffset = ullBase;
ullBase >>= 12;
dwBase = (DWORD) ullBase & 0xFFFFFFFE; // Clear bottom bit so 8 bit pointer aligns with short.
ullBase = dwBase;
ullBase <<= 12;
m_dwAddressUpper = dwBase;
m_pfLastSample = (long) (m_ullLastSample - ullBase);
if ((m_ullLoopEnd - ullBase) < 0x7FFFFFFF)
{
m_pfLoopStart = (long) (m_ullLoopStart - ullBase);
m_pfLoopEnd = (long) (m_ullLoopEnd - ullBase);
}
else
{
m_pfLoopStart = 0;
m_pfLoopEnd = 0x7FFFFFFF;
}
ullBase = m_ullSampleLength - ullBase;
dwBase = (DWORD)(ullWaveOffset >> 12);
if (ullBase > 0x7FFFFFFF)
{
m_pfSampleLength = 0x7FFFFFFF;
}
else
{
m_pfSampleLength = (long) ullBase;
}
if (m_Source.m_bSampleType & SFORMAT_8)
{
dwBase >>= 1;
}
m_pnWave = &m_Source.m_pWave->m_pnWave[dwBase];
}
}
void CDigitalAudio::AfterBigSampleMix()
{
m_pnWave = m_Source.m_pWave->m_pnWave;
if (m_fElGrande)
{
ULONGLONG ullBase = m_dwAddressUpper;
m_ullLastSample = m_pfLastSample;
m_ullLastSample += (ullBase << 12);
m_dwAddressUpper = 0;
}
}
BOOL CDigitalAudio::Mix(short **ppBuffers, // Array of mix buffers
DWORD dwBufferCount, // Number of mix buffers
DWORD dwInterleaved, // Are the buffers interleaved data?
DWORD dwLength, // Length to mix, in samples
VREL vrMaxVolumeDelta, // Maximum volume accross all buses
VFRACT vfNewVolume[],
VFRACT vfLastVolume[],
PREL prPitch, // Pitch to play the sample too
DWORD dwIsFiltered, // Is the mix filtered
COEFF cfK, // filter coeficients
COEFF cfB1,
COEFF cfB2)
{
DWORD i;
PFRACT pfDeltaPitch;
PFRACT pfEnd;
PFRACT pfLoopLen;
PFRACT pfNewPitch;
VFRACT vfDeltaVolume[MAX_DAUD_CHAN];
DWORD dwPeriod = 64;
DWORD dwSoFar;
DWORD dwStart; // position in WORDs
DWORD dwMixChoice = 0;
DWORD dwBuffers;
PFRACT pfPreMix;
COEFFDELTA cfdK = 0;
COEFFDELTA cfdB1 = 0;
COEFFDELTA cfdB2 = 0;
if (dwLength == 0) // Attack was instant.
{
m_pfLastPitch = (m_pfBasePitch * PRELToPFRACT(prPitch)) >> 12;
m_prLastPitch = prPitch;
m_cfLastK = cfK;
m_cfLastB1 = cfB1;
m_cfLastB2 = cfB2;
return TRUE;
}
if ( m_pWaveArt ) // Playing a wave or Streaming
{
if ( m_pWaveArt->m_bStream )
{
// Check if the buffer is valid yet
if ( !m_pCurrentBuffer->m_pWave->m_bValid )
{
Trace(3, "Warning: Synth starting mix with invalid streaming wave buffer\n\r");
return TRUE; // not valid yet, get out of here
}
m_pCurrentBuffer->m_pWave->m_bActive = TRUE;
if ( m_pCurrentBuffer->m_pWave->m_bLastSampleInit == FALSE )
{
CWaveBuffer* pnextbuffer = m_pCurrentBuffer->GetNextLoop();
if ( pnextbuffer->m_pWave->m_bValid )
{
DWORD dwSampleLength = m_pCurrentBuffer->m_pWave->m_dwSampleLength; // Length of sample.
if ( m_Source.m_bSampleType == SFORMAT_8 )
{
((BYTE*)m_pCurrentBuffer->m_pWave->m_pnWave)[dwSampleLength-1] = ((BYTE*)pnextbuffer->m_pWave->m_pnWave)[0];
}
else
{
m_pCurrentBuffer->m_pWave->m_pnWave[dwSampleLength-1] = pnextbuffer->m_pWave->m_pnWave[0];
}
m_pCurrentBuffer->m_pWave->m_bLastSampleInit = TRUE;
}
}
}
}
if ((m_Source.m_pWave == NULL) || (m_Source.m_pWave->m_pnWave == NULL))
{
return FALSE;
}
DWORD dwMax = max(vrMaxVolumeDelta, abs(prPitch - m_prLastPitch) << 1);
dwMax >>= 1;
m_prLastPitch = prPitch;
if (dwMax > 0)
{
dwPeriod = (dwLength << 3) / dwMax;
if (dwPeriod > 512)
{
dwPeriod = 512;
}
else if (dwPeriod < 1)
{
dwPeriod = 1;
}
}
else
{
dwPeriod = 512; // Make it happen anyway.
}
// This makes MMX sound a little better (MMX bug will be fixed)
dwPeriod += 3;
dwPeriod &= 0xFFFFFFFC;
pfNewPitch = m_pfBasePitch * PRELToPFRACT(prPitch);
pfNewPitch >>= 12;
pfDeltaPitch = MulDiv(pfNewPitch - m_pfLastPitch, dwPeriod << 8, dwLength);
if ( dwInterleaved )
{
vfDeltaVolume[0] = MulDiv(vfNewVolume[0] - vfLastVolume[0], dwPeriod << 8, dwLength);
vfDeltaVolume[1] = MulDiv(vfNewVolume[1] - vfLastVolume[1], dwPeriod << 8, dwLength);
}
else
{
for (dwBuffers = 0; dwBuffers < dwBufferCount; dwBuffers++)
{
vfDeltaVolume[dwBuffers] = MulDiv(vfNewVolume[dwBuffers] - vfLastVolume[dwBuffers], dwPeriod << 8, dwLength);
}
}
if ( dwInterleaved )
{
dwMixChoice |= SPLAY_INTERLEAVED;
}
if (m_sfMMXEnabled && (dwLength > 8))
{
dwMixChoice |= SPLAY_MMX;
}
dwMixChoice |= m_Source.m_bSampleType;
dwStart = 0;
if (dwIsFiltered)
{
dwMixChoice |= SPLAY_FILTERED;
//
// The coeficients have been stored as DWORD's to gain an additional
// bit of presision when calculating the interpolation between
// coefiecients in the table. Since these calcutlations always
// result in positive coefiecients no greater the 1.9999,
// we can safely cast to a signed int, from which negative deltas
// can be correctly determined.
//
cfdK = MulDiv((LONG)cfK - (LONG)m_cfLastK, dwPeriod, dwLength);
cfdB1 = MulDiv((LONG)cfB1 - (LONG)m_cfLastB1, dwPeriod, dwLength);
cfdB2 = MulDiv((LONG)cfB2 - (LONG)m_cfLastB2, dwPeriod, dwLength);
}
for (;;)
{
if (dwLength <= 8)
{
dwMixChoice &= ~SPLAY_MMX;
}
if (m_fElGrande)
{
BeforeBigSampleMix();
}
if (m_bOneShot)
{
pfEnd = m_pfSampleLength;
if(m_pCurrentBuffer && m_pCurrentBuffer->m_pWave)
{
// We grow the buffers by one sample for interpolation so we can transition smoothly
// between the multiple streaming buffers. This will cause a click at the end of the
// buffer if the wave is ending as there's no valid nex tbuffer. So we check for that
// and adjust the length of the buffer so that the mix engine doesn't try to interpolate
// the additional (last) sample. If it's NOT the last buffer then we proceed as planned.
if((pfEnd >> 12) >= (long)(m_pCurrentBuffer->m_pWave->m_dwSampleLength - 1))
{
CWaveBuffer* pnextbuffer = m_pCurrentBuffer->GetNextLoop();
if(pnextbuffer == NULL || pnextbuffer->m_pWave->m_bValid == FALSE)
{
pfEnd = (m_pCurrentBuffer->m_pWave->m_dwSampleLength - 2) << 12;
}
else
{
pfEnd = (m_pCurrentBuffer->m_pWave->m_dwSampleLength - 1) << 12;
}
}
}
pfLoopLen = 0;
pfPreMix = m_pfLastSample; // save off last sample pos
}
else
{
pfEnd = m_pfLoopEnd;
pfLoopLen = m_pfLoopEnd - m_pfLoopStart;
pfPreMix = 0;
if (pfLoopLen <= pfNewPitch)
{
return FALSE;
}
if(pfLoopLen > m_pfSampleLength)
{
return FALSE;
}
}
switch (dwMixChoice)
{
case SFORMAT_8 | SPLAY_INTERLEAVED :
dwSoFar = Mix8(ppBuffers[0], dwLength, dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
case SFORMAT_16 | SPLAY_INTERLEAVED :
dwSoFar = Mix16(ppBuffers[0], dwLength, dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
case SFORMAT_8 | SPLAY_INTERLEAVED | SPLAY_FILTERED | SPLAY_MMX :
case SFORMAT_8 | SPLAY_INTERLEAVED | SPLAY_FILTERED :
dwSoFar = Mix8Filter(ppBuffers[0],dwLength,dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen,
cfdK, cfdB1, cfdB2);
break;
case SFORMAT_16 | SPLAY_INTERLEAVED | SPLAY_FILTERED | SPLAY_MMX :
case SFORMAT_16 | SPLAY_INTERLEAVED | SPLAY_FILTERED :
dwSoFar = Mix16Filter(ppBuffers[0],dwLength,dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen,
cfdK, cfdB1, cfdB2);
break;
#ifdef MMX_ENABLED
case SFORMAT_8 | SPLAY_MMX | SPLAY_INTERLEAVED :
dwSoFar = Mix8X(ppBuffers[0], dwLength, dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
case SFORMAT_16 | SPLAY_MMX | SPLAY_INTERLEAVED :
dwSoFar = Mix16X(ppBuffers[0], dwLength, dwPeriod,
vfDeltaVolume[0], vfDeltaVolume[1],
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
#endif
case SFORMAT_8 :
case SFORMAT_8 | SPLAY_MMX :
dwSoFar = MixMulti8(ppBuffers, dwBufferCount,
dwLength, dwPeriod,
vfDeltaVolume,
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
case SFORMAT_8 | SPLAY_FILTERED :
case SFORMAT_8 | SPLAY_FILTERED | SPLAY_MMX :
dwSoFar = MixMulti8Filter(ppBuffers, dwBufferCount,
dwLength, dwPeriod,
vfDeltaVolume,
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen,
cfdK, cfdB1, cfdB2);
break;
case SFORMAT_16 :
case SFORMAT_16 | SPLAY_MMX :
dwSoFar = MixMulti16(ppBuffers, dwBufferCount,
dwLength, dwPeriod,
vfDeltaVolume,
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen);
break;
case SFORMAT_16 | SPLAY_FILTERED :
case SFORMAT_16 | SPLAY_FILTERED | SPLAY_MMX :
dwSoFar = MixMulti16Filter(ppBuffers, dwBufferCount,
dwLength, dwPeriod,
vfDeltaVolume,
vfLastVolume,
pfDeltaPitch,
pfEnd, pfLoopLen,
cfdK, cfdB1, cfdB2);
break;
default :
return (FALSE);
}
if (m_fElGrande)
{
AfterBigSampleMix();
}
if (m_bOneShot)
{
// have mixed all we needed at this time to break
if (dwSoFar >= dwLength)
{
m_ullSamplesSoFar += (m_pfLastSample - pfPreMix)>>12;
break;
}
// the mix engine reached the end of the source data
m_ullSamplesSoFar += ((m_pfLastSample - pfPreMix)>>12)-1;
if ( m_pWaveArt ) // Playing or Streaming a Wave
{
if ( !m_pWaveArt->m_bStream ) // we must be at the end of the buffer
return FALSE;
// Set completion flags
m_pCurrentBuffer->m_pWave->m_bActive = FALSE;
m_pCurrentBuffer->m_pWave->m_bValid = FALSE;
m_pCurrentBuffer->m_pWave->m_bLastSampleInit = FALSE;
// Get next buffer
m_pCurrentBuffer = m_pCurrentBuffer->GetNextLoop();
// Set new wave pointer to play out of
m_pnWave = m_pCurrentBuffer->m_pWave->m_pnWave;
// Check if the buffer is valid yet
if ( !m_pCurrentBuffer->m_pWave->m_bValid )
{
Trace(2, "Warning: Synth attempting to start invalid streaming wave buffer\n\r");
break; // nothing to play yet, get out of here
}
m_pCurrentBuffer->m_pWave->m_bActive = TRUE;
CWaveBuffer* pnextbuffer = m_pCurrentBuffer->GetNextLoop();
if ( pnextbuffer->m_pWave->m_bValid )
{
DWORD dwSampleLength = m_pCurrentBuffer->m_pWave->m_dwSampleLength; // Length of sample.
if ( m_Source.m_bSampleType == SFORMAT_8 )
{
((BYTE*)m_pCurrentBuffer->m_pWave->m_pnWave)[dwSampleLength-1] = ((BYTE*)pnextbuffer->m_pWave->m_pnWave)[0];
}
else
{
m_pCurrentBuffer->m_pWave->m_pnWave[dwSampleLength-1] = pnextbuffer->m_pWave->m_pnWave[0];
}
m_pCurrentBuffer->m_pWave->m_bLastSampleInit = TRUE;
}
//>>>>>>>>>> CHECK FOR LOOP POINT, IF SO NOT TRY AGAIN HERE
dwStart += dwSoFar << dwInterleaved;
dwLength -= dwSoFar;
m_pfLastSample = 0;
//>>>>>>>>>> CHECK INTERLEAVED FLAG FOR CORRECT DISTANCE ????????
// Move buffer pointers since we are mixing more samples
for ( i = 0; i < dwBufferCount; i++ )
ppBuffers[i] += dwStart;
continue; // keep playing
}
else
return FALSE; // Playing a standard one shot, we hit the end of the buffer
}
else
{
if (dwSoFar >= dwLength)
break;
// Loops are handled in the mix engine, however
// when you reach the end of source data you will
// reach this code.
dwStart += dwSoFar << dwInterleaved;
dwLength -= dwSoFar;
m_pfLastSample -= (m_pfLoopEnd - m_pfLoopStart);
// Move buffer pointers since we are mixing more samples
for ( i = 0; i < dwBufferCount; i++ )
ppBuffers[i] += dwStart;
}
}
m_pfLastPitch = pfNewPitch;
m_cfLastK = cfK;
m_cfLastB1 = cfB1;
m_cfLastB2 = cfB2;
return (TRUE);
}
CVoice::CVoice()
{
m_pControl = NULL;
m_pPitchBendIn = NULL;
m_pExpressionIn = NULL;
m_dwPriority = 0;
m_nPart = 0;
m_nKey = 0;
m_fInUse = FALSE;
m_fSustainOn = FALSE;
m_fNoteOn = FALSE;
m_fTag = FALSE;
m_stStartTime = 0;
m_stStopTime = 0x7fffffffffffffff;
m_stWaveStopTime = 0;
m_vrVolume = 0;
m_fAllowOverlap = FALSE;
m_pRegion = NULL;
m_pReverbSend = NULL;
m_pChorusSend = NULL;
m_dwLoopType = 0;
for ( int i = 0; i < MAX_DAUD_CHAN; i++ )
{
m_vfLastVolume[i] = 0;
m_vrLastVolume[i] = 0;
}
}
VREL CVoice::m_svrPanToVREL[128];
void CVoice::Init()
{
static BOOL fBeenHereBefore = FALSE;
if (fBeenHereBefore) return;
fBeenHereBefore = TRUE;
CVoiceLFO::Init();
CVoiceEG::Init();
CDigitalAudio::Init();
WORD nI;
for (nI = 1; nI < 128; nI++)
{
double flTemp;
flTemp = nI;
flTemp /= 127.0;
flTemp = log10(flTemp);
flTemp *= 1000.0;
m_svrPanToVREL[nI] = (long) flTemp;
}
m_svrPanToVREL[0] = -2500;
}
void CVoice::StopVoice(STIME stTime)
{
if (m_fNoteOn)
{
if (stTime <= m_stStartTime) stTime = m_stStartTime + 1;
m_PitchEG.StopVoice(stTime);
m_VolumeEG.StopVoice(stTime);
m_fNoteOn = FALSE;
m_fSustainOn = FALSE;
m_stStopTime = stTime;
m_stWaveStopTime = 0;
if (m_dwLoopType == WLOOP_TYPE_RELEASE)
{
m_DigitalAudio.BreakLoop();
}
}
}
void CVoice::QuickStopVoice(STIME stTime)
{
m_fTag = TRUE;
if (m_fNoteOn || m_fSustainOn)
{
if (stTime <= m_stStartTime) stTime = m_stStartTime + 1;
m_PitchEG.StopVoice(stTime);
m_VolumeEG.QuickStopVoice(stTime, m_pSynth->m_dwSampleRate);
m_fNoteOn = FALSE;
m_fSustainOn = FALSE;
m_stStopTime = stTime;
}
else
{
m_VolumeEG.QuickStopVoice(m_stStopTime, m_pSynth->m_dwSampleRate);
}
}
BOOL CVoice::StartVoice(CSynth *pSynth,
CSourceRegion *pRegion,
STIME stStartTime,
CModWheelIn * pModWheelIn,
CPitchBendIn * pPitchBendIn,
CExpressionIn * pExpressionIn,
CVolumeIn * pVolumeIn,
CPanIn * pPanIn,
CPressureIn * pPressureIn,
CReverbIn * pReverbSend,
CChorusIn * pChorusSend,
CCutOffFreqIn * pCCutOffFreqIn,
CBusIds * pBusIds,
WORD nKey,
WORD nVelocity,
VREL vrVolume,
PREL prPitch)
{
m_pSynth = pSynth;
CSourceArticulation * pArticulation = pRegion->m_pArticulation;
if (pArticulation == NULL)
{
return FALSE;
}
m_dwLoopType = pRegion->m_Sample.m_dwLoopType;
// if we're going to handle volume later, don't read it now.
if (!pSynth->m_fAllowVolumeChangeWhilePlayingNote)
vrVolume += pVolumeIn->GetVolume(stStartTime);
prPitch += pRegion->m_prTuning;
m_dwGroup = pRegion->m_bGroup;
m_fAllowOverlap = pRegion->m_bAllowOverlap;
vrVolume += CMIDIRecorder::VelocityToVolume(nVelocity);
vrVolume += pRegion->m_vrAttenuation;
m_lDefaultPan = pRegion->m_pArticulation->m_sDefaultPan;
// ignore pan here if allowing pan to vary after note starts
// or if the source is multichannel or the dest is mono
//
m_fIgnorePan = pRegion->IsMultiChannel();
if (pBusIds->m_dwBusCount == 1)
{
DWORD dwFunctionID;
if (m_pSynth->BusIDToFunctionID(pBusIds->m_dwBusIds[0], &dwFunctionID, NULL, NULL))
{
if (dwFunctionID == DSBUSID_LEFT)
{
m_fIgnorePan = TRUE;
}
}
}
VREL vrVolumeL;
VREL vrVolumeR;
if ( pSynth->m_dwStereo &&
!pSynth->m_fAllowPanWhilePlayingNote &&
!m_fIgnorePan)
{
long lPan = pPanIn->GetPan(stStartTime) + m_lDefaultPan;
if (lPan < 0)
lPan = 0;
if (lPan > 127)
lPan = 127;
vrVolumeL = m_svrPanToVREL[127 - lPan] + vrVolume;
vrVolumeR = m_svrPanToVREL[lPan] + vrVolume;
}
else
{
vrVolumeL = vrVolume;
vrVolumeR = vrVolume;
}
VREL vrVolumeReverb = vrVolume;
VREL vrVolumeChorus = vrVolume;
PREL prBusPitchBend = 0; // This gets a pitch offset that is set by DSound in response to SetFrequency and Doppler commands.
// When this is applied to multiple buses, only one of the values can be used, so we always give
// preference to the buffer that has DSBUSID_DYNAMIC_0 for the functional id, since that
// would most likely be a 3D sound effect.
BOOL fDynamic = false;
for( DWORD i = 0; i < pBusIds->m_dwBusCount; i++ )
{
DWORD dwFunctionID;
PREL prGetPitch = 0;
if (m_pSynth->BusIDToFunctionID(pBusIds->m_dwBusIds[i], &dwFunctionID, &prGetPitch, NULL))
{
if (!fDynamic)
{
// If no previous bus was dynamic, get this value.
prBusPitchBend = prGetPitch;
}
m_vrBaseVolume[i] = MIN_VOLUME;
if (DSBUSID_IS_SPKR_LOC(dwFunctionID))
{
if (pRegion->IsMultiChannel())
{
// Explicit channel assignment with no pan. For every bus
// that matches a bit in the channel mask, turn it on.
//
if (pRegion->m_dwChannel & (1 << dwFunctionID))
{
m_vrBaseVolume[i] = vrVolume;
}
}
else
{
switch(dwFunctionID)
{
case DSBUSID_LEFT:
m_vrBaseVolume[i] = vrVolumeL;
break;
case DSBUSID_RIGHT:
m_vrBaseVolume[i] = vrVolumeR;
break;
}
}
}
else
{
// Not a speaker location, a send or a 3D buffer.
//
switch(dwFunctionID)
{
case DSBUSID_REVERB_SEND:
m_vrBaseVolume[i] = vrVolumeReverb;
break;
case DSBUSID_CHORUS_SEND:
m_vrBaseVolume[i] = vrVolumeChorus;
break;
case DSBUSID_NULL:
m_vrBaseVolume[i] = MIN_VOLUME;
break;
case DSBUSID_DYNAMIC_0:
fDynamic = true;
default:
m_vrBaseVolume[i] = vrVolume;
}
}
m_vrLastVolume[i] = MIN_VOLUME;
m_vfLastVolume[i] = m_DigitalAudio.VRELToVFRACT(MIN_VOLUME);
}
}
m_stMixTime = m_LFO.StartVoice(&pArticulation->m_LFO,
stStartTime, pModWheelIn, pPressureIn);
STIME stMixTime = m_LFO2.StartVoice(&pArticulation->m_LFO2,
stStartTime, pModWheelIn, pPressureIn);
if (stMixTime < m_stMixTime)
{
m_stMixTime = stMixTime;
}
stMixTime = m_PitchEG.StartVoice(&pArticulation->m_PitchEG,
stStartTime, nKey, nVelocity, 0);
if (stMixTime < m_stMixTime)
{
m_stMixTime = stMixTime;
}
// Force attack to never be shorter than a millisecond.
stMixTime = m_VolumeEG.StartVoice(&pArticulation->m_VolumeEG,
stStartTime, nKey, nVelocity, pSynth->m_dwSampleRate/1000);
if (stMixTime < m_stMixTime)
{
m_stMixTime = stMixTime;
}
if (m_stMixTime > pSynth->m_stMaxSpan)
{
m_stMixTime = pSynth->m_stMaxSpan;
}
m_Filter.StartVoice(&pArticulation->m_Filter,
&m_LFO, &m_PitchEG, nKey, nVelocity);
// Make sure we have a pointer to the wave ready:
if ((pRegion->m_Sample.m_pWave == NULL) || (pRegion->m_Sample.m_pWave->m_pnWave == NULL))
{
return (FALSE); // Do nothing if no sample.
}
m_DigitalAudio.StartVoice(pSynth,
&pRegion->m_Sample,
prPitch,
(long)nKey);
m_pPitchBendIn = pPitchBendIn;
m_pExpressionIn = pExpressionIn;
m_pPanIn = pPanIn;
m_pReverbSend = pReverbSend;
m_pChorusSend = pChorusSend;
m_CCutOffFreqIn = pCCutOffFreqIn;
m_pVolumeIn = pVolumeIn;
m_BusIds = *pBusIds;
m_fNoteOn = TRUE;
m_fTag = FALSE;
m_fSustainOn = FALSE;
m_stStartTime = stStartTime;
m_stLastMix = stStartTime - 1;
m_stStopTime = 0x7fffffffffffffff;
m_stWaveStopTime = 0;
//
// Zero length attack,
// be sure initial settings aren't missed....
//
if (m_stMixTime == 0)
{
PREL prNewPitch;
COEFF cfK, cfB1, cfB2;
GetNewPitch(stStartTime, prNewPitch);
GetNewCoeff(stStartTime, m_prLastCutOff, cfK, cfB1, cfB2);
m_DigitalAudio.Mix(NULL,
0,
0,
0,
0,
NULL,
NULL,
prNewPitch + prBusPitchBend,
m_Filter.IsFiltered(),
cfK, cfB1, cfB2);
}
m_vrVolume = MAX_VOLUME;
return (TRUE);
}
BOOL CVoice::StartWave(CSynth *pSynth,
CWaveArt *pWaveArt,
DWORD dwVoiceId,
STIME stStartTime,
CPitchBendIn * pPitchBendIn,
CExpressionIn * pExpressionIn,
CVolumeIn * pVolumeIn,
CPanIn * pPanIn,
CReverbIn * pReverbSend,
CChorusIn * pChorusSend,
CCutOffFreqIn * pCCutOffFreqIn,
CBusIds * pBusIds,
VREL vrVolume,
PREL prPitch,
SAMPLE_TIME stVoiceStart,
SAMPLE_TIME stLoopStart,
SAMPLE_TIME stLoopEnd
)
{
m_pSynth = pSynth;
DWORD dwFuncId = pWaveArt->m_WaveArtDl.ulBus;
VREL vrVolumeReverb = vrVolume;
VREL vrVolumeChorus = vrVolume;
m_fIgnorePan = (BOOL)(DSBUSID_IS_SPKR_LOC(dwFuncId) && (pWaveArt->m_WaveArtDl.usOptions & F_WAVELINK_MULTICHANNEL));
if (pBusIds->m_dwBusCount == 1)
{
DWORD dwFunctionID;
if (m_pSynth->BusIDToFunctionID(pBusIds->m_dwBusIds[0], &dwFunctionID, NULL, NULL))
{
if (dwFunctionID == DSBUSID_LEFT)
{
m_fIgnorePan = TRUE;
}
}
}
for( DWORD i = 0; i < pBusIds->m_dwBusCount; i++ )
{
m_vrBaseVolume[i] = MIN_VOLUME;
DWORD dwFunctionID;
if (m_pSynth->BusIDToFunctionID(pBusIds->m_dwBusIds[i], &dwFunctionID, NULL, NULL))
{
// If this bus is a speaker location
//
if (DSBUSID_IS_SPKR_LOC(dwFunctionID))
{
if (pWaveArt->m_WaveArtDl.usOptions & F_WAVELINK_MULTICHANNEL)
{
if (dwFuncId == dwFunctionID)
{
m_vrBaseVolume[i] = vrVolume;
}
}
else
{
if (dwFunctionID == DSBUSID_LEFT || dwFunctionID == DSBUSID_RIGHT)
{
m_vrBaseVolume[i] = vrVolume;
}
}
}
else switch (dwFunctionID)
{
case DSBUSID_REVERB_SEND:
m_vrBaseVolume[i] = vrVolumeReverb;
break;
case DSBUSID_CHORUS_SEND:
m_vrBaseVolume[i] = vrVolumeChorus;
break;
case DSBUSID_NULL:
m_vrBaseVolume[i] = MIN_VOLUME;
break;
default:
m_vrBaseVolume[i] = vrVolume;
}
m_vrLastVolume[i] = MIN_VOLUME;
m_vfLastVolume[i] = m_DigitalAudio.VRELToVFRACT(MIN_VOLUME);
}
}
// Initialize an envelope for wave playing
//
CSourceEG WaveVolumeEG;
WaveVolumeEG.Init();
WaveVolumeEG.m_pcSustain = 1000;
// Force the envelope attack and release to be no smaller than 4ms. This ensures we won't get
// clicks if we start and stop at non-zero crossings.
m_stMixTime = m_VolumeEG.StartVoice(&WaveVolumeEG, stStartTime, 0, 0, pSynth->m_dwSampleRate/250);
if (m_stMixTime > pSynth->m_stMaxSpan)
{
m_stMixTime = pSynth->m_stMaxSpan;
}
m_pPitchBendIn = pPitchBendIn;
m_pExpressionIn = pExpressionIn;
m_pPanIn = pPanIn;
m_pReverbSend = pReverbSend;
m_pChorusSend = pChorusSend;
m_CCutOffFreqIn = pCCutOffFreqIn;
m_pVolumeIn = pVolumeIn;
m_BusIds = *pBusIds;
m_fNoteOn = TRUE;
m_fTag = FALSE;
m_stStartTime = stStartTime;
m_stLastMix = stStartTime - 1;
m_stStopTime = 0x7fffffffffffffff;
m_stWaveStopTime = 0;
m_dwGroup = 0;
m_lDefaultPan = 0;
m_vrVolume = 0;
m_fAllowOverlap = FALSE;
m_fSustainOn = FALSE;
m_dwVoiceId = dwVoiceId;
m_LFO.Enable(FALSE); // Disable LFO.
m_LFO2.Enable(FALSE); // Disable LFO2.
m_PitchEG.Enable(FALSE); // Disable Pitch Envelope.
m_Filter.m_Source.m_prCutoff = 0x7FFF;
m_DigitalAudio.StartWave(pSynth,
pWaveArt,
prPitch,
stVoiceStart,
stLoopStart,
stLoopEnd);
return (TRUE);
}
SAMPLE_POSITION CVoice::GetCurrentPos()
{
return m_DigitalAudio.GetCurrentPos();
}
void CVoice::ClearVoice()
{
m_fInUse = FALSE;
m_DigitalAudio.ClearVoice();
}
// return the volume delta at time <stTime>.
// volume is sum of volume envelope, LFO, expression, optionally the
// channel volume if we're allowing it to change, and optionally the current
// pan if we're allowing that to change.
// This will be added to the base volume calculated in CVoice::StartVoice().
inline void CVoice::GetNewVolume(STIME stTime, VREL& vrVolume, VREL& vrVolumeL, VREL& vrVolumeR, VREL& vrVolumeReverb, VREL& vrVolumeChorus)
{
STIME stMixTime = m_stMixTime;
//
// the evelope volume is used by code that detects whether this note is off
// and for voice stealing
//
m_vrVolume = m_VolumeEG.GetVolume(stTime, &stMixTime);
if (stMixTime < m_stMixTime)
m_stMixTime = stMixTime;
vrVolume = m_vrVolume;
vrVolume += m_LFO.GetVolume(stTime, &stMixTime);
if (stMixTime < m_stMixTime)
m_stMixTime = stMixTime;
vrVolume += m_pExpressionIn->GetVolume(stTime);
if (m_pSynth->m_fAllowVolumeChangeWhilePlayingNote)
vrVolume += m_pVolumeIn->GetVolume(stTime);
vrVolume += m_pSynth->m_vrGainAdjust;
// handle pan here if allowing pan to vary after note starts
vrVolumeL = vrVolume;
vrVolumeR = vrVolume;
if (m_pSynth->m_dwStereo && m_pSynth->m_fAllowPanWhilePlayingNote && !m_fIgnorePan)
{
// add current pan & instrument default pan
LONG lPan;
if (m_pPanIn)
{
lPan = m_pPanIn->GetPan(stTime) + m_lDefaultPan;
}
else
{
lPan = 63;
}
// don't go off either end....
if (lPan < 0) lPan = 0;
if (lPan > 127) lPan = 127;
vrVolumeL += m_svrPanToVREL[127 - lPan];
vrVolumeR += m_svrPanToVREL[lPan];
}
// Get Reverb Send volume
vrVolumeReverb = vrVolume + m_pReverbSend->GetVolume(stTime);
// Get Chorus Send volume
vrVolumeChorus = vrVolume + m_pChorusSend->GetVolume(stTime);
}
// Returns the current pitch for time <stTime>.
// Pitch is the sum of the pitch LFO, the pitch envelope, and the current
// pitch bend.
inline void CVoice::GetNewPitch(STIME stTime, PREL& prPitch)
{
STIME stMixTime = m_stMixTime;
prPitch = m_LFO.GetPitch(stTime, &stMixTime);
if (m_stMixTime > stMixTime) m_stMixTime = stMixTime;
prPitch += m_LFO2.GetPitch(stTime, &stMixTime);
if (m_stMixTime > stMixTime) m_stMixTime = stMixTime;
prPitch += m_PitchEG.GetPitch(stTime, &stMixTime);
if (m_stMixTime > stMixTime) m_stMixTime = stMixTime;
prPitch += m_pPitchBendIn->GetPitch(stTime);
}
// Returns the current cutoff frequency for time <stTime>.
// cutoff frequency is the sum of the pitch LFO, the pitch envelope, and the current
// MIDI filter CC control.
inline void CVoice::GetNewCoeff(STIME stTime, PREL& prCutOff, COEFF& cfK, COEFF& cfB1, COEFF& cfB2)
{
DWORD dwfreq;
// returned frequency is in semitones, where 64 is the mid range
dwfreq = m_CCutOffFreqIn->GetFrequency(stTime);
prCutOff = (dwfreq - 64)*100; // convert to PREL's
m_Filter.GetCoeff(stTime, prCutOff, cfK, cfB1, cfB2);
}
DWORD CVoice::Mix(short **ppvBuffer,
DWORD dwBufferFlags,
DWORD dwLength,
STIME stStart,
STIME stEnd)
{
BOOL fInUse = TRUE;
BOOL fFullMix = TRUE;
STIME stEndMix = stStart;
STIME stStartMix = m_stStartTime;
COEFF cfK, cfB1, cfB2;
PREL prPitch;
PREL prCutOff;
VREL vrVolume, vrVolumeL, vrVolumeR;
VREL vrVolumeReverb, vrVolumeChorus;
VREL vrMaxVolumeDelta;
VFRACT vfNewVolume[MAX_DAUD_CHAN];
VFRACT vfLastVolume[MAX_DAUD_CHAN];
short *ppsMixBuffers[MAX_DAUD_CHAN];
if (stStartMix < stStart)
{
stStartMix = stStart;
}
if (m_stLastMix >= stEnd)
{
return (0);
}
if (m_stLastMix >= stStartMix)
{
stStartMix = m_stLastMix;
}
while (stStartMix < stEnd && fInUse)
{
stEndMix = stStartMix + m_stMixTime;
if (stEndMix > stEnd)
{
stEndMix = stEnd;
}
m_stMixTime = m_pSynth->m_stMaxSpan;
if ((m_stLastMix < m_stStopTime) && (m_stStopTime < stEnd))
{
if (m_stMixTime > (m_stStopTime - m_stLastMix))
{
m_stMixTime = m_stStopTime - m_stLastMix;
}
}
//
// Get the new pitch
//
GetNewPitch(stEndMix, prPitch);
//
// Get the new volume
//
GetNewVolume(stEndMix, vrVolume, vrVolumeL, vrVolumeR, vrVolumeReverb, vrVolumeChorus);
//
// Get the new filter coeficients
//
GetNewCoeff(stEndMix, prCutOff, cfK, cfB1, cfB2);
//
// Check to see if the volume is precievable, if not kill voice
//
if (m_VolumeEG.InRelease(stEndMix))
{
if (m_vrVolume < PERCEIVED_MIN_VOLUME) // End of release slope
{
// Breaking the loop ensures that the mixmulti functions don't mix any more samples
// for looped wave Without this the mix engine will mix a few more samples for
// looped waves resulting in a pop at the end of the wave.
m_DigitalAudio.BreakLoop();
fInUse = FALSE;
}
}
vrMaxVolumeDelta = 0;
vfNewVolume[0] = 0;
ppsMixBuffers[0] = NULL;
DWORD dwMixBufferCount = 0;
PREL prBusPitchBend = 0; // This gets a pitch offset that is set by DSound in response to SetFrequency and Doppler commands.
// When this is applied to multiple buses, only one of the values can be used, so we always give
// preference to the buffer that has DSBUSID_DYNAMIC_0 for the functional id, since that
// would most likely be a 3D sound effect.
BOOL fDynamic = false;
if (dwBufferFlags & BUFFERFLAG_MULTIBUFFER)
{
// Iterate through each bus id in the voice, assigning a sink bus to each one.
for ( DWORD nBusID = 0; nBusID < m_BusIds.m_dwBusCount; nBusID++ )
{
DWORD dwFunctionalID;
DWORD dwBusIndex;
PREL prGetPitch;
if (m_pSynth->BusIDToFunctionID(m_BusIds.m_dwBusIds[nBusID], &dwFunctionalID, &prGetPitch, &dwBusIndex))
{
if (!fDynamic)
{
// If no previous bus was dynamic, get this value.
prBusPitchBend = prGetPitch;
}
// Default to original volume (before pan, reverb or chorus modifiers.)
VREL vrTemp = vrVolume;
// Replace for any of the other cases (left, right, reverb, chorus.)
if ( dwFunctionalID == DSBUSID_NULL )
{
continue;
}
if ( dwFunctionalID == DSBUSID_LEFT )
{
vrTemp = vrVolumeL;
}
if ( dwFunctionalID == DSBUSID_RIGHT )
{
vrTemp = vrVolumeR;
}
else if ( dwFunctionalID == DSBUSID_REVERB_SEND )
{
vrTemp = vrVolumeReverb;
}
else if ( dwFunctionalID == DSBUSID_CHORUS_SEND )
{
vrTemp = vrVolumeChorus;
}
else if ( dwFunctionalID == DSBUSID_DYNAMIC_0 )
{
fDynamic = true;
}
vrMaxVolumeDelta = max((long)vrMaxVolumeDelta, abs(vrTemp - m_vrLastVolume[nBusID]));
m_vrLastVolume[nBusID] = vrTemp;
vrTemp += m_vrBaseVolume[nBusID];
vfNewVolume[dwMixBufferCount] = m_DigitalAudio.VRELToVFRACT(vrTemp);
vfLastVolume[dwMixBufferCount] = m_vfLastVolume[nBusID];
m_vfLastVolume[nBusID] = vfNewVolume[dwMixBufferCount];
ppsMixBuffers[dwMixBufferCount] = &ppvBuffer[dwBusIndex][(stStartMix - stStart)];
dwMixBufferCount++;
}
}
}
else
{
// This is the DX7 compatibility case.
vrMaxVolumeDelta = max((long)vrMaxVolumeDelta, abs(vrVolumeL - m_vrLastVolume[0]));
m_vrLastVolume[0] = vrVolumeL;
vfNewVolume[0] = m_DigitalAudio.VRELToVFRACT(m_vrBaseVolume[0] + vrVolumeL);
vfLastVolume[0] = m_vfLastVolume[0];
m_vfLastVolume[0] = vfNewVolume[0];
dwMixBufferCount = 1;
if ( dwBufferFlags & BUFFERFLAG_INTERLEAVED ) // Is this a stereo buffer?
{
vrMaxVolumeDelta = max((long)vrMaxVolumeDelta, abs(vrVolumeR - m_vrLastVolume[1]));
m_vrLastVolume[1] = vrVolumeR;
vfNewVolume[1] = m_DigitalAudio.VRELToVFRACT(m_vrBaseVolume[1] + vrVolumeR);
vfLastVolume[1] = m_vfLastVolume[1];
m_vfLastVolume[1] = vfNewVolume[1];
ppsMixBuffers[0] = &ppvBuffer[0][(stStartMix - stStart) << 1];
}
else // Or mono?
{
ppsMixBuffers[0] = &ppvBuffer[0][(stStartMix - stStart)];
}
}
// If dwMixBufferCount is 0, this indicates there is no buffer available to play into.
// This is caused by a buffer being deactivated. Under such circumstances, the
// voice should not continue playing, or it will hold until the buffer reactivates, which
// doesn't make sense. So, set fInUse to FALSE.
if (dwMixBufferCount)
{
DWORD dwIsFiltered = m_Filter.IsFiltered();
if (dwIsFiltered)
{
vrMaxVolumeDelta = max((long)vrMaxVolumeDelta, abs(prCutOff - m_prLastCutOff));
m_prLastCutOff = prCutOff;
}
//
// note: mix will in some cases modify the pointers found ppsMixBuffers array
//
fFullMix = m_DigitalAudio.Mix(ppsMixBuffers, // Array of mix buffers
dwMixBufferCount, // Number of mix buffers
(dwBufferFlags & BUFFERFLAG_INTERLEAVED), // Are the buffers interleaved data?
(DWORD) (stEndMix - stStartMix), // Length to mix in Samples
vrMaxVolumeDelta, //
vfNewVolume,
vfLastVolume,
prPitch + prBusPitchBend, // Pitch to play the sample too
dwIsFiltered, // Is the mix filtered
cfK, cfB1, cfB2);
stStartMix = stEndMix;
}
else
{
fInUse = FALSE;
}
}
m_fInUse = fInUse && fFullMix;
if (!m_fInUse)
{
ClearVoice();
m_stStopTime = stEndMix; // For measurement purposes.
}
m_stLastMix = stEndMix;
return (dwLength);
}