Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

364 lines
9.4 KiB

/*
* (c) Copyright 1993, Silicon Graphics, Inc.
* ALL RIGHTS RESERVED
* Permission to use, copy, modify, and distribute this software for
* any purpose and without fee is hereby granted, provided that the above
* copyright notice appear in all copies and that both the copyright notice
* and this permission notice appear in supporting documentation, and that
* the name of Silicon Graphics, Inc. not be used in advertising
* or publicity pertaining to distribution of the software without specific,
* written prior permission.
*
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
*
* US Government Users Restricted Rights
* Use, duplication, or disclosure by the Government is subject to
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
* clause at DFARS 252.227-7013 and/or in similar or successor
* clauses in the FAR or the DOD or NASA FAR Supplement.
* Unpublished-- rights reserved under the copyright laws of the
* United States. Contractor/manufacturer is Silicon Graphics,
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
*
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
*/
#ifndef POINT_H
#define POINT_H
#ifndef POINT_EXTERN
#define POINT_EXTERN extern
#endif
const float point_fudge = .000001;
class Point {
public:
inline Point operator=(Point a);
inline Point operator=(GLfloat *a);
inline Point operator+(Point a);
inline Point operator+=(Point a);
inline Point operator-(Point a);
// This takes a cross-product
inline Point operator*(Point b);
inline Point operator*(GLfloat b);
inline Point operator/(GLfloat b);
inline Point operator/=(GLfloat b);
inline GLfloat& operator[](int index);
inline GLfloat dist(Point b);
inline GLfloat dot(Point b);
inline GLfloat mag();
inline GLfloat magsquared();
inline Point unit();
inline void unitize();
// Angle is in RADIANS
inline Point rotate(Point axis, GLfloat angle);
inline Point rotate(Point axis, GLfloat c, GLfloat s);
inline void rotate_self(Point axis, GLfloat c, GLfloat s);
Point rotate_abouty(GLfloat c, GLfloat s);
// Returns point projected through proj_pt into XY plane
// Does nothing if proj_pt - *this is parallel to XY plane
inline Point project(Point proj_pt);
inline void project_self(Point proj_pt);
inline void Point::project_self(GLfloat px, GLfloat py, GLfloat pz);
inline Point project_direction(Point direction);
inline Point Point::project_direction(GLfloat x, GLfloat y, GLfloat z);
// This projects (px, py, pz) into this in direction (dx, dy, dz)
inline void Point::compute_projected(GLfloat px, GLfloat py, GLfloat pz,
GLfloat x, GLfloat y, GLfloat z);
// Returns point projected through light and refracted into XY
// plane.
// N is normal at point (ie normal at *this)
// I is the index of refraction
inline Point refract(Point light, Point N, GLfloat I);
void refract_self(Point light, Point N, GLfloat I);
Point refract_direction(Point light, Point N, GLfloat I);
inline void glvertex();
inline void glnormal();
void print();
void print(const char *format);
GLfloat pt[4];
private:
};
POINT_EXTERN Point val;
#define DOT(a, b) (a.pt[0]*b.pt[0] + a.pt[1]*b.pt[1] + a.pt[2]*b.pt[2])
#define THIS_DOT(b) (pt[0]*b.pt[0] + pt[1]*b.pt[1] + pt[2]*b.pt[2])
inline Point Point::operator=(Point a)
{
pt[0] = a.pt[0];
pt[1] = a.pt[1];
pt[2] = a.pt[2];
pt[3] = a.pt[3];
return *this;
}
inline Point Point::operator=(GLfloat *a)
{
pt[0] = a[0];
pt[1] = a[1];
pt[2] = a[2];
pt[3] = 1;
return *this;
}
inline Point Point::operator+(Point a)
{
val.pt[0] = pt[0] + a.pt[0];
val.pt[1] = pt[1] + a.pt[1];
val.pt[2] = pt[2] + a.pt[2];
return val;
}
inline Point Point::operator+=(Point a)
{
pt[0] += a.pt[0];
pt[1] += a.pt[1];
pt[2] += a.pt[2];
return *this;
}
inline Point Point::operator-(Point a)
{
val.pt[0] = pt[0] - a.pt[0];
val.pt[1] = pt[1] - a.pt[1];
val.pt[2] = pt[2] - a.pt[2];
return val;
}
inline Point Point::operator*(Point b)
{
val.pt[0] = pt[1]*b.pt[2] - b.pt[1]*pt[2];
val.pt[1] = pt[2]*b.pt[0] - b.pt[2]*pt[0];
val.pt[2] = pt[0]*b.pt[1] - pt[1]*b.pt[0];
return val;
}
inline Point Point::operator*(GLfloat b)
{
val.pt[0] = pt[0] * b;
val.pt[1] = pt[1] * b;
val.pt[2] = pt[2] * b;
return val;
}
inline Point Point::operator/(GLfloat b)
{
val.pt[0] = pt[0] / b;
val.pt[1] = pt[1] / b;
val.pt[2] = pt[2] / b;
return val;
}
inline Point Point::operator/=(GLfloat b)
{
pt[0] /= b;
pt[1] /= b;
pt[2] /= b;
return *this;
}
inline GLfloat& Point::operator[](int index)
{
return pt[index];
}
inline GLfloat Point::dist(Point b)
{
return (*this - b).mag();
}
inline GLfloat Point::dot(Point b)
{
return pt[0]*b.pt[0] + pt[1]*b.pt[1] + pt[2]*b.pt[2];
}
inline GLfloat Point::mag()
{
return (GLfloat)sqrt((float)(pt[0]*pt[0] + pt[1]*pt[1] +
pt[2]*pt[2]));
}
inline GLfloat Point::magsquared()
{
return pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2];
}
inline Point Point::unit()
{
GLfloat m = (GLfloat)sqrt((float)(pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2]));
val.pt[0] = pt[0] / m;
val.pt[1] = pt[1] / m;
val.pt[2] = pt[2] / m;
return val;
}
inline void Point::unitize()
{
GLfloat m = (GLfloat)sqrt((float)(pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2]));
pt[0] /= m;
pt[1] /= m;
pt[2] /= m;
}
inline Point Point::rotate(Point axis, GLfloat angle)
{
return rotate(axis, (GLfloat)cos((float)angle), (GLfloat)sin((float)angle));
}
inline Point Point::rotate(Point axis, GLfloat c, GLfloat s)
{
float x = (float)axis.pt[0], y = (float)axis.pt[1], z = (float)axis.pt[2], t = (float)(1.0 - c);
float tx, ty;
tx = t*x;
/* Taking advantage of inside info that this is a common case */
if (y == 0.0) {
val.pt[0] = pt[0]*(tx*x + c) + pt[1]*(-s*z) + pt[2]*(tx*z);
val.pt[1] = pt[0]*(s*z) + pt[1]*c + pt[2]*(-s*x);
val.pt[2] = pt[0]*(tx*z) + pt[1]*s*x + pt[2]*(t*z*z + c);
} else {
ty = t*y;
val.pt[0] = pt[0]*(tx*x + c) + pt[1]*(tx*y - s*z) +
pt[2]*(tx*z + s*y);
val.pt[1] = pt[0]*(tx*y + s*z) + pt[1]*(ty*y + c) +
pt[2]*(ty*z - s*x);
val.pt[2] = pt[0]*(tx*z - s*y) + pt[1]*(ty*z + s*x) +
pt[2]*(t*z*z + c);
}
return val;
}
inline void Point::rotate_self(Point axis, GLfloat c, GLfloat s)
{
float Px, Py, Pz;
float x = (float)axis.pt[0], y = (float)axis.pt[1], z = (float)axis.pt[2], t = (float)(1.0 - c);
float tx, ty;
tx = t*x;
Px = pt[0];
Py = pt[1];
Pz = pt[2];
/* Taking advantage of inside info that this is a common case */
if (!y) {
pt[0] = Px*(tx*x + c) + Py*(-s*z) + Pz*(tx*z);
pt[1] = Px*(s*z) + Py*c + Pz*(-s*x);
pt[2] = Px*(tx*z) + Py*s*x + Pz*(t*z*z + c);
} else {
ty = t*y;
pt[0] = Px*(tx*x + c) + Py*(tx*y - s*z) +
Pz*(tx*z + s*y);
pt[1] = Px*(tx*y + s*z) + Py*(ty*y + c) +
Pz*(ty*z - s*x);
pt[2] = Px*(tx*z - s*y) + Py*(ty*z + s*x) +
Pz*(t*z*z + c);
}
}
inline void Point::glvertex()
{
glVertex3fv(pt);
}
inline void Point::glnormal()
{
glNormal3fv(pt);
}
inline Point Point::project(Point proj_pt)
{
GLfloat dirx = pt[0] - proj_pt.pt[0],
diry = pt[1] - proj_pt.pt[1],
dirz = pt[2] - proj_pt.pt[2];
GLfloat t;
if (fabs(dirz) < point_fudge) val = *this;
else {
t = -proj_pt.pt[2] / dirz;
val.pt[0] = proj_pt.pt[0] + dirx*t;
val.pt[1] = proj_pt.pt[1] + diry*t;
val.pt[2] = 0.0;
}
return val;
}
// This naively assumes that proj_pt[z] != this->pt[z]
inline void Point::project_self(Point proj_pt)
{
GLfloat dirx = pt[0] - proj_pt.pt[0],
diry = pt[1] - proj_pt.pt[1],
dirz = pt[2] - proj_pt.pt[2];
GLfloat t;
t = -proj_pt.pt[2] / dirz;
pt[0] = proj_pt.pt[0] + dirx*t;
pt[1] = proj_pt.pt[1] + diry*t;
pt[2] = 0.0;
}
inline void Point::project_self(GLfloat px, GLfloat py, GLfloat pz)
{
GLfloat dirx = pt[0] - px,
diry = pt[1] - py,
dirz = pt[2] - pz, t;
t = -pz / dirz;
pt[0] = px + dirx*t;
pt[1] = py + diry*t;
pt[2] = 0.0;
}
inline Point Point::project_direction(Point direction) {
GLfloat t;
t = -pt[2] / direction.pt[2];
val.pt[0] = pt[0] + direction.pt[0]*t;
val.pt[1] = pt[1] + direction.pt[1]*t;
val.pt[2] = 0;
return val;
}
inline Point Point::project_direction(GLfloat x, GLfloat y, GLfloat z)
{
GLfloat t;
t = -pt[2] / z;
val.pt[0] = pt[0] + x*t;
val.pt[1] = pt[1] + y*t;
val.pt[2] = 0;
return val;
}
inline void Point::compute_projected(GLfloat px, GLfloat py, GLfloat pz,
GLfloat dx, GLfloat dy, GLfloat dz)
{
GLfloat t = -pz / dz;
pt[0] = px + dx*t;
pt[1] = py + dy*t;
pt[2] = 0;
}
#undef POINT_EXTERN
#endif