mirror of https://github.com/tongzx/nt5src
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
402 lines
9.9 KiB
402 lines
9.9 KiB
/*
|
|
* (c) Copyright 1993, Silicon Graphics, Inc.
|
|
* ALL RIGHTS RESERVED
|
|
* Permission to use, copy, modify, and distribute this software for
|
|
* any purpose and without fee is hereby granted, provided that the above
|
|
* copyright notice appear in all copies and that both the copyright notice
|
|
* and this permission notice appear in supporting documentation, and that
|
|
* the name of Silicon Graphics, Inc. not be used in advertising
|
|
* or publicity pertaining to distribution of the software without specific,
|
|
* written prior permission.
|
|
*
|
|
* THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
|
|
* AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
|
|
* INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
|
|
* FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
|
|
* GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
|
|
* SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
|
|
* KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
|
|
* LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
|
|
* THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
|
|
* ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
|
|
* ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
|
|
* POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* US Government Users Restricted Rights
|
|
* Use, duplication, or disclosure by the Government is subject to
|
|
* restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
|
|
* (c)(1)(ii) of the Rights in Technical Data and Computer Software
|
|
* clause at DFARS 252.227-7013 and/or in similar or successor
|
|
* clauses in the FAR or the DOD or NASA FAR Supplement.
|
|
* Unpublished-- rights reserved under the copyright laws of the
|
|
* United States. Contractor/manufacturer is Silicon Graphics,
|
|
* Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
|
|
*
|
|
* OpenGL(TM) is a trademark of Silicon Graphics, Inc.
|
|
*/
|
|
#ifndef POINT_H
|
|
#define POINT_H
|
|
|
|
#ifndef POINT_EXTERN
|
|
#define POINT_EXTERN extern
|
|
#endif
|
|
|
|
#include <math.h>
|
|
|
|
const float point_fudge = .000001;
|
|
|
|
class Point {
|
|
public:
|
|
inline Point operator=(Point a);
|
|
inline Point operator=(GLfloat *a);
|
|
inline Point operator+(Point a);
|
|
inline Point operator+=(Point a);
|
|
inline Point operator-(Point a);
|
|
// This takes a cross-product
|
|
inline Point operator*(Point b);
|
|
inline Point operator*(GLfloat b);
|
|
inline Point operator*=(GLfloat b);
|
|
inline Point operator/(GLfloat b);
|
|
inline Point operator/=(GLfloat b);
|
|
inline GLfloat& operator[](int index);
|
|
|
|
inline void set(GLfloat x, GLfloat y, GLfloat z, GLfloat w = 1.0);
|
|
|
|
inline GLfloat dist(Point b);
|
|
inline GLfloat dot(Point b);
|
|
inline GLfloat dot(GLfloat x, GLfloat y, GLfloat z);
|
|
inline GLfloat mag();
|
|
inline GLfloat magsquared();
|
|
inline Point unit();
|
|
inline void unitize();
|
|
|
|
inline Point scale(Point p);
|
|
|
|
// Angle is in RADIANS
|
|
inline Point rotate(Point axis, GLfloat angle);
|
|
inline Point rotate(Point axis, GLfloat c, GLfloat s);
|
|
inline void rotate_self(Point axis, GLfloat c, GLfloat s);
|
|
Point rotate_abouty(GLfloat c, GLfloat s);
|
|
Point rotate_aboutz(GLfloat c, GLfloat s);
|
|
|
|
// Returns point projected through proj_pt into XY plane
|
|
// Does nothing if proj_pt - *this is parallel to XY plane
|
|
inline Point project(Point proj_pt);
|
|
inline void project_self(Point proj_pt);
|
|
inline void Point::project_self(GLfloat px, GLfloat py, GLfloat pz);
|
|
inline Point project_direction(Point direction);
|
|
inline Point Point::project_direction(GLfloat x, GLfloat y, GLfloat z);
|
|
// This projects (px, py, pz) into this in direction (dx, dy, dz)
|
|
inline void Point::compute_projected(GLfloat px, GLfloat py, GLfloat pz,
|
|
GLfloat x, GLfloat y, GLfloat z);
|
|
|
|
// Returns point projected through light and refracted into XY
|
|
// plane.
|
|
// N is normal at point (ie normal at *this)
|
|
// I is the index of refraction
|
|
inline Point refract(Point light, Point N, GLfloat I);
|
|
void refract_self(Point light, Point N, GLfloat I);
|
|
Point refract_direction(Point light, Point N, GLfloat I);
|
|
|
|
inline void glvertex();
|
|
inline void glnormal();
|
|
|
|
void print();
|
|
void print(const char *format);
|
|
|
|
GLfloat pt[4];
|
|
private:
|
|
};
|
|
|
|
POINT_EXTERN Point val;
|
|
|
|
#define DOT(a, b) (a.pt[0]*b.pt[0] + a.pt[1]*b.pt[1] + a.pt[2]*b.pt[2])
|
|
#define THIS_DOT(b) (pt[0]*b.pt[0] + pt[1]*b.pt[1] + pt[2]*b.pt[2])
|
|
|
|
inline Point Point::operator=(Point a)
|
|
{
|
|
pt[0] = a.pt[0];
|
|
pt[1] = a.pt[1];
|
|
pt[2] = a.pt[2];
|
|
pt[3] = a.pt[3];
|
|
return *this;
|
|
}
|
|
|
|
inline Point Point::operator=(GLfloat *a)
|
|
{
|
|
pt[0] = a[0];
|
|
pt[1] = a[1];
|
|
pt[2] = a[2];
|
|
pt[3] = 1;
|
|
return *this;
|
|
}
|
|
|
|
inline Point Point::operator+(Point a)
|
|
{
|
|
val.pt[0] = pt[0] + a.pt[0];
|
|
val.pt[1] = pt[1] + a.pt[1];
|
|
val.pt[2] = pt[2] + a.pt[2];
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::operator+=(Point a)
|
|
{
|
|
pt[0] += a.pt[0];
|
|
pt[1] += a.pt[1];
|
|
pt[2] += a.pt[2];
|
|
return *this;
|
|
}
|
|
|
|
inline Point Point::operator-(Point a)
|
|
{
|
|
val.pt[0] = pt[0] - a.pt[0];
|
|
val.pt[1] = pt[1] - a.pt[1];
|
|
val.pt[2] = pt[2] - a.pt[2];
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::operator*(Point b)
|
|
{
|
|
val.pt[0] = pt[1]*b.pt[2] - b.pt[1]*pt[2];
|
|
val.pt[1] = pt[2]*b.pt[0] - b.pt[2]*pt[0];
|
|
val.pt[2] = pt[0]*b.pt[1] - pt[1]*b.pt[0];
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::operator*(GLfloat b)
|
|
{
|
|
val.pt[0] = pt[0] * b;
|
|
val.pt[1] = pt[1] * b;
|
|
val.pt[2] = pt[2] * b;
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::operator*=(GLfloat b)
|
|
{
|
|
pt[0] *= b;
|
|
pt[1] *= b;
|
|
pt[2] *= b;
|
|
return *this;
|
|
}
|
|
|
|
inline Point Point::operator/(GLfloat b)
|
|
{
|
|
val.pt[0] = pt[0] / b;
|
|
val.pt[1] = pt[1] / b;
|
|
val.pt[2] = pt[2] / b;
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::operator/=(GLfloat b)
|
|
{
|
|
pt[0] /= b;
|
|
pt[1] /= b;
|
|
pt[2] /= b;
|
|
return *this;
|
|
}
|
|
|
|
inline GLfloat& Point::operator[](int index)
|
|
{
|
|
return pt[index];
|
|
}
|
|
|
|
inline void Point::set(GLfloat x, GLfloat y, GLfloat z, GLfloat w)
|
|
{
|
|
pt[0] = x;
|
|
pt[1] = y;
|
|
pt[2] = z;
|
|
pt[3] = w;
|
|
}
|
|
|
|
inline GLfloat Point::dist(Point b)
|
|
{
|
|
return (*this - b).mag();
|
|
}
|
|
|
|
inline GLfloat Point::dot(Point b)
|
|
{
|
|
return pt[0]*b.pt[0] + pt[1]*b.pt[1] + pt[2]*b.pt[2];
|
|
}
|
|
|
|
inline GLfloat Point::dot(GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
return pt[0]*x + pt[1]*y + pt[2]*z;
|
|
}
|
|
|
|
inline GLfloat Point::mag()
|
|
{
|
|
return sqrt(pt[0]*pt[0] + pt[1]*pt[1] +
|
|
pt[2]*pt[2]);
|
|
}
|
|
|
|
inline GLfloat Point::magsquared()
|
|
{
|
|
return pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2];
|
|
}
|
|
|
|
inline Point Point::unit()
|
|
{
|
|
GLfloat m = sqrt(pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2]);
|
|
val.pt[0] = pt[0] / m;
|
|
val.pt[1] = pt[1] / m;
|
|
val.pt[2] = pt[2] / m;
|
|
return val;
|
|
}
|
|
|
|
inline void Point::unitize()
|
|
{
|
|
GLfloat m = sqrt(pt[0]*pt[0] + pt[1]*pt[1] + pt[2]*pt[2]);
|
|
pt[0] /= m;
|
|
pt[1] /= m;
|
|
pt[2] /= m;
|
|
}
|
|
|
|
inline Point Point::scale(Point p)
|
|
{
|
|
val.pt[0] = pt[0] * p.pt[0];
|
|
val.pt[1] = pt[1] * p.pt[1];
|
|
val.pt[2] = pt[2] * p.pt[2];
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::rotate(Point axis, GLfloat angle)
|
|
{
|
|
return rotate(axis, cos(angle), sin(angle));
|
|
}
|
|
|
|
inline Point Point::rotate(Point axis, GLfloat c, GLfloat s)
|
|
{
|
|
float x = axis.pt[0], y = axis.pt[1], z = axis.pt[2], t = 1.0 - c;
|
|
float tx, ty;
|
|
|
|
tx = t*x;
|
|
/* Taking advantage of inside info that this is a common case */
|
|
if (y == 0.0) {
|
|
val.pt[0] = pt[0]*(tx*x + c) + pt[1]*(-s*z) + pt[2]*(tx*z);
|
|
val.pt[1] = pt[0]*(s*z) + pt[1]*c + pt[2]*(-s*x);
|
|
val.pt[2] = pt[0]*(tx*z) + pt[1]*s*x + pt[2]*(t*z*z + c);
|
|
} else {
|
|
ty = t*y;
|
|
val.pt[0] = pt[0]*(tx*x + c) + pt[1]*(tx*y - s*z) +
|
|
pt[2]*(tx*z + s*y);
|
|
val.pt[1] = pt[0]*(tx*y + s*z) + pt[1]*(ty*y + c) +
|
|
pt[2]*(ty*z - s*x);
|
|
val.pt[2] = pt[0]*(tx*z - s*y) + pt[1]*(ty*z + s*x) +
|
|
pt[2]*(t*z*z + c);
|
|
}
|
|
return val;
|
|
}
|
|
|
|
inline void Point::rotate_self(Point axis, GLfloat c, GLfloat s)
|
|
{
|
|
float Px, Py, Pz;
|
|
float x = axis.pt[0], y = axis.pt[1], z = axis.pt[2], t = 1.0 - c;
|
|
float tx, ty;
|
|
|
|
tx = t*x;
|
|
Px = pt[0];
|
|
Py = pt[1];
|
|
Pz = pt[2];
|
|
/* Taking advantage of inside info that this is a common case */
|
|
if (!y) {
|
|
pt[0] = Px*(tx*x + c) + Py*(-s*z) + Pz*(tx*z);
|
|
pt[1] = Px*(s*z) + Py*c + Pz*(-s*x);
|
|
pt[2] = Px*(tx*z) + Py*s*x + Pz*(t*z*z + c);
|
|
} else {
|
|
ty = t*y;
|
|
pt[0] = Px*(tx*x + c) + Py*(tx*y - s*z) +
|
|
Pz*(tx*z + s*y);
|
|
pt[1] = Px*(tx*y + s*z) + Py*(ty*y + c) +
|
|
Pz*(ty*z - s*x);
|
|
pt[2] = Px*(tx*z - s*y) + Py*(ty*z + s*x) +
|
|
Pz*(t*z*z + c);
|
|
}
|
|
}
|
|
|
|
inline void Point::glvertex()
|
|
{
|
|
glVertex3fv(pt);
|
|
}
|
|
|
|
inline void Point::glnormal()
|
|
{
|
|
glNormal3fv(pt);
|
|
}
|
|
|
|
inline Point Point::project(Point proj_pt)
|
|
{
|
|
GLfloat dirx = pt[0] - proj_pt.pt[0],
|
|
diry = pt[1] - proj_pt.pt[1],
|
|
dirz = pt[2] - proj_pt.pt[2];
|
|
GLfloat t;
|
|
|
|
if (fabs(dirz) < point_fudge) val = *this;
|
|
else {
|
|
t = -proj_pt.pt[2] / dirz;
|
|
val.pt[0] = proj_pt.pt[0] + dirx*t;
|
|
val.pt[1] = proj_pt.pt[1] + diry*t;
|
|
val.pt[2] = 0.0;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
// This naively assumes that proj_pt[z] != this->pt[z]
|
|
inline void Point::project_self(Point proj_pt)
|
|
{
|
|
GLfloat dirx = pt[0] - proj_pt.pt[0],
|
|
diry = pt[1] - proj_pt.pt[1],
|
|
dirz = pt[2] - proj_pt.pt[2];
|
|
GLfloat t;
|
|
|
|
t = -proj_pt.pt[2] / dirz;
|
|
pt[0] = proj_pt.pt[0] + dirx*t;
|
|
pt[1] = proj_pt.pt[1] + diry*t;
|
|
pt[2] = 0.0;
|
|
}
|
|
|
|
inline void Point::project_self(GLfloat px, GLfloat py, GLfloat pz)
|
|
{
|
|
GLfloat dirx = pt[0] - px,
|
|
diry = pt[1] - py,
|
|
dirz = pt[2] - pz, t;
|
|
|
|
t = -pz / dirz;
|
|
pt[0] = px + dirx*t;
|
|
pt[1] = py + diry*t;
|
|
pt[2] = 0.0;
|
|
}
|
|
|
|
inline Point Point::project_direction(Point direction) {
|
|
GLfloat t;
|
|
|
|
t = -pt[2] / direction.pt[2];
|
|
val.pt[0] = pt[0] + direction.pt[0]*t;
|
|
val.pt[1] = pt[1] + direction.pt[1]*t;
|
|
val.pt[2] = 0;
|
|
return val;
|
|
}
|
|
|
|
inline Point Point::project_direction(GLfloat x, GLfloat y, GLfloat z)
|
|
{
|
|
GLfloat t;
|
|
|
|
t = -pt[2] / z;
|
|
val.pt[0] = pt[0] + x*t;
|
|
val.pt[1] = pt[1] + y*t;
|
|
val.pt[2] = 0;
|
|
return val;
|
|
}
|
|
|
|
inline void Point::compute_projected(GLfloat px, GLfloat py, GLfloat pz,
|
|
GLfloat dx, GLfloat dy, GLfloat dz)
|
|
{
|
|
GLfloat t = -pz / dz;
|
|
pt[0] = px + dx*t;
|
|
pt[1] = py + dy*t;
|
|
pt[2] = 0;
|
|
}
|
|
|
|
|
|
#undef POINT_EXTERN
|
|
|
|
#endif
|