Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

367 lines
11 KiB

/*++
Copyright (c) 2000 Microsoft Corporation
Module Name:
dblint.h
Abstract:
Support primitives for bignum package.
--*/
/*
File: dblint.h. Supplement to bignum.h
This file has declarations related to
double-precision integers,
such as typedefs, constants, and primitive operations.
Before #including this, one should #define
digit_t -- typedef for single-precision integers.
RADIX_BITS -- Number of bits per digit_t.
and identify which compiler one is using.
Constants defined herein include
DBLINT_BUILTIN -- 1 if compiler directly
supports double integers, 0 if not.
DBLINT_HIGH_INDEX (optional) -- When DBLINT_BUILTIN == 1,
this is 0 if compiler stores
the most significant half of a
dblint_t datum first, and 1
if compiler stores the least
significant half first. See
HIGH_DIGIT and MAKE_DBLINT below.
If this is not defined, then HIGH_DIGIT
and MAKE_DBLINT are defined using
shifts by RADIX_BITS. If the compiler
optimizes such shifts, then
leave DBLINT_HIGH_INDEX undefined.
The dblint_t type is unsigned and holds
twice as many bits as a digit_t datum.
If (DBLINT_BUILTIN = 1),
then use the type already in the language.
Otherwise (DBLINT_BUILTIN = 0)
construct one of our own,
using a struct with two digit_t fields.
Let u, u1, u2 have type digit_t and
d, d1, d2 have type dblint_t.
The following primitives are defined,
whether we use the built-in type or our own type:
DBLINT(u) -- Convert u from type digit_t to type dblint_t.
DBLINT_ADD(d1, d2) -- Sum d1 + d2.
DBLINT_EQ(d1, d2) -- Test whether d1 == d2.
DBLINT_GE(d1, d2) -- Test whether d1 >= d2.
DBLINT_GT(d1, d2) -- Test whether d1 > d2.
DBLINT_LE(d1, d2) -- Test whether d1 >= d2.
DBLINT_LT(d1, d2) -- Test whether d1 > d2.
DBLINT_NE(d1, d2) -- Test whether d1 <> d2.
DBLINT_SUB(d1, d2) -- Difference d1 - d2.
DPRODUU(u1, u2) -- Product of u1 and u2, as a dblint_t.
HPRODUU(u1, u2) -- Most significant half of product
of u1 and u2, as a digit_t.
HIGH_DIGIT(d) -- Most significant half of d.
LOW_DIGIT(d) -- Least significant half of d.
MAKE_DBLINT(u1, u2) -- Construct a dblint_t
whose most significant half is u1 and
whose least significant half is u2.
*/
#if COMPILER == COMPILER_GCC
#define DBLINT_BUILTIN 1
typedef unsigned long long dblint_t;
#define DBLINT_HIGH_INDEX 0
/* GCC on SPARC stores high half of dblint_t first */
#endif
#if COMPILER == COMPILER_VC && RADIX_BITS == 32
#define DBLINT_BUILTIN 1
typedef unsigned __int64 dblint_t;
#if TARGET == TARGET_ALPHA
/* If the Alpha is using RADIX_BITS == 32,
then use the shift instruction
for HIGH_DIGIT and MAKE_DBLINT */
#else
#define DBLINT_HIGH_INDEX 1
/* Visual C++ on ix86 stores low half of dblint_t first */
#endif
#endif
#ifndef DBLINT_BUILTIN
/* No language support -- simulate using structs */
#define DBLINT_BUILTIN 0
typedef struct {
digit_t high;
digit_t low;
} dblint_t;
#endif
typedef const dblint_t dblint_tc;
#if DBLINT_BUILTIN
/*
If language has support for double-length integers, use it.
Good compilers will inline these simple operations.
*/
#define DBLINT(u) ((dblint_t)(u))
#define DBLINT_ADD(d1, d2) ((d1) + (d2))
#define DBLINT_EQ( d1, d2) ((d1) == (d2))
#define DBLINT_GE( d1, d2) ((d1) >= (d2))
#define DBLINT_GT( d1, d2) ((d1) > (d2))
#define DBLINT_LE( d1, d2) ((d1) <= (d2))
#define DBLINT_LT( d1, d2) ((d1) < (d2))
#define DBLINT_NE( d1, d2) ((d1) != (d2))
#define DBLINT_SUB(d1, d2) ((d1) - (d2))
#if COMPILER == COMPILER_GCC
#define DPRODUU(u1, u2) (DBLINT(u1) * DBLINT(u2))
#endif
#if COMPILER == COMPILER_VC
/*
A problem in Visual C/C++ 4.0 (x86 version, 1995)
prevents proper inlining of the DPRODUU function
if we code it in a straightforward way. Specifically,
if we have two nearby references DPRODUU(x, y)
and DPRODUU(x, z), where one argument (here x) is
repeated, then the compiler calls library function
__allmul rather than emit a MUL instruction.
The -volatile- keyword inhibits the compiler from
recognizing the repeated subexpression DBLINT(x),
and circumvents the problem, alas with extra memory
references.
x86 version of VC 4.1 adds an __emulu function
*/
static inline dblint_t DPRODUU(digit_tc u1, digit_tc u2)
{
#if TARGET == TARGET_IX86
#if _MFC_VER < 0x0410
volatile digit_tc u1copy = u1, u2copy = u2;
return DBLINT(u1copy) * DBLINT(u2copy);
#else
#pragma intrinsic(__emulu)
return __emulu(u1, u2);
#endif
#elif TARGET == TARGET_MIPS
#pragma intrinsic(__emulu)
return __emulu(u1, u2);
#else
return DBLINT(u1) * DBLINT(u2);
#endif
}
#endif
#define LOW_DIGIT(d) ((digit_t)(d))
#ifdef DBLINT_HIGH_INDEX
#if DBLINT_HIGH_INDEX < 0 || DBLINT_HIGH_INDEX > 1
#error "Illegal value of DBLINT_HIGH_INDEX"
#endif
static inline digit_t HIGH_DIGIT(dblint_tc d)
{
dblint_tc dcopy = d;
return ((digit_tc*)&dcopy)[DBLINT_HIGH_INDEX];
}
static inline dblint_t MAKE_DBLINT(digit_tc high, digit_tc low)
{
dblint_t build = low;
((digit_t*)&build)[DBLINT_HIGH_INDEX] = high;
return build;
}
#else /* DBLINT_HIGH_INDEX */
#define HIGH_DIGIT(d) ((digit_t)((d) >> RADIX_BITS))
#define MAKE_DBLINT(high, low) \
( (DBLINT(high) << RADIX_BITS) | DBLINT(low) )
#endif /* DBLINT_HIGH_INDEX */
#else /* DBLINT_BUILTIN */
static inline dblint_t DBLINT(digit_tc d)
{
dblint_t answer;
answer.low = d;
answer.high = 0;
return answer;
}
static inline dblint_t DBLINT_ADD(dblint_tc d1, dblint_tc d2)
{
dblint_t answer;
answer.low = d1.low + d2.low;
answer.high = d1.high + d2.high + (answer.low < d1.low);
return answer;
}
static inline BOOL DBLINT_EQ(dblint_tc d1, dblint_tc d2)
{
return (d1.high == d2.high && d1.low == d2.low);
}
static inline BOOL DBLINT_GE(dblint_tc d1, dblint_tc d2)
{
return (d1.high == d2.high ? d1.low >= d2.low
: d1.high >= d2.high);
}
static inline BOOL DBLINT_GT(dblint_tc d1, dblint_tc d2)
{
return (d1.high == d2.high ? d1.low > d2.low
: d1.high > d2.high);
}
#define DBLINT_LE(d1, d2) DBLINT_GE(d2, d1)
#define DBLINT_LT(d1, d2) DBLINT_GT(d2, d1)
static inline BOOL DBLINT_NE(dblint_tc d1, dblint_tc d2)
{
return (d1.high != d2.high || d1.low != d2.low);
}
static inline dblint_t DBLINT_SUB(dblint_tc d1, dblint_tc d2)
{
dblint_t answer;
answer.low = d1.low - d2.low;
answer.high = d1.high - d2.high - (d1.low < d2.low);
return answer;
}
#define HIGH_DIGIT(d) ((d).high)
#define LOW_DIGIT(d) ((d).low)
static inline dblint_t MAKE_DBLINT(digit_tc high, digit_tc low)
{
dblint_t answer;
answer.low = low;
answer.high = high;
return answer;
}
#if TARGET == TARGET_ALPHA
#pragma intrinsic(__UMULH)
#define HPRODUU(u1, u2) __UMULH(u1, u2)
static inline dblint_t DPRODUU(digit_tc u1, digit_tc u2)
{
dblint_t answer;
answer.high = HPRODUU(u1, u2); /* Upper product */
answer.low = u1*u2; /* Lower product */
return answer;
}
#else
static inline dblint_t DPRODUU(digit_tc u1, digit_tc u2)
/*
Multiply two single-precision operands,
return double precision product.
This will normally be replaced by an assembly language routine.
unless the top half of the product is available in C.
*/
{
dblint_t answer;
digit_tc u1bot = u1 & RADIX_HALFMASK_BOTTOM, u1top = u1 >> HALF_RADIX_BITS;
digit_tc u2bot = u2 & RADIX_HALFMASK_BOTTOM, u2top = u2 >> HALF_RADIX_BITS;
digit_tc low = u1bot * u2bot;
digit_t mid1 = u1bot * u2top;
digit_tc mid2 = u1top * u2bot;
digit_tc high = u1top * u2top;
/*
Each half-word product is bounded by
(SQRT(RADIX) - 1)^2 = RADIX - 2*SQRT(RADIX) + 1,
so we can add two half-word operands
to any product without risking integer overflow.
*/
mid1 += (mid2 & RADIX_HALFMASK_BOTTOM) + (low >> HALF_RADIX_BITS);
answer.high = high + (mid1 >> HALF_RADIX_BITS)
+ (mid2 >> HALF_RADIX_BITS);
answer.low = (low & RADIX_HALFMASK_BOTTOM) + (mid1 << HALF_RADIX_BITS);
return answer;
}
#endif /* multiplication */
#endif /* DBLINT_BUILTIN */
#ifndef HPRODUU
#define HPRODUU(u1, u2) HIGH_DIGIT(DPRODUU(u1, u2))
#endif
/*
The DBLINT_SUM, MULTIPLY_ADD1. MULTIPLY_ADD2
functions take single-length (digit_t) operands and
return double-length (dblint_t) results.
Overflow is impossible.
*/
#if TARGET == TARGET_ALPHA && RADIX_BITS == 64 && !DBLINT_BUILT_IN
static inline dblint_t DBLINT_SUM(digit_tc d1, digit_tc d2)
{
dblint_t answer;
answer.low = d1 + d2;
answer.high = (answer.low < d1);
return answer;
}
static inline dblint_t MULTIPLY_ADD1(digit_tc d1, digit_tc d2, digit_tc d3)
{
dblint_t answer;
digit_t ah, al;
al = d1*d2;
ah = __UMULH(d1, d2);
al += d3;
answer.high = ah + (al < d3);
answer.low = al;
return answer;
}
static inline dblint_t MULTIPLY_ADD2(digit_tc d1, digit_tc d2,
digit_tc d3, digit_tc d4)
{
dblint_t answer;
digit_t ah, al, bh, bl;
al = d1*d2;
ah = __UMULH(d1, d2);
bl = d3 + d4;
bh = (bl < d3);
answer.low = al + bl;
answer.high = ah + bh + (answer.low < al);
return answer;
}
#else
#define DBLINT_SUM(d1, d2) DBLINT_ADD(DBLINT(d1), DBLINT(d2))
/* d1 + d2 */
#define MULTIPLY_ADD1(d1, d2, d3) \
DBLINT_ADD(DPRODUU(d1, d2), DBLINT(d3));
/* d1*d2 + d3 */
#define MULTIPLY_ADD2(d1, d2, d3, d4) \
DBLINT_ADD(DBLINT_ADD(DPRODUU(d1, d2), DBLINT(d3)), \
DBLINT(d4))
/* d1*d2 + d3 + d4 */
#endif