Source code of Windows XP (NT5)
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

608 lines
18 KiB

/******************************Module*Header*******************************\
* Module Name: gentex.c
*
* The Textured Flag style of the 3D Flying Objects screen saver.
*
* Texture maps .BMP files onto a simulation of a flag waving in the breeze.
*
* Copyright (c) 1994 Microsoft Corporation
*
\**************************************************************************/
#include <stdlib.h>
#include <windows.h>
#include <string.h>
#include <math.h>
#include <d3dx8.h>
#include "D3DSaver.h"
#include "FlyingObjects.h"
#include "resource.h"
#include "mesh.h"
static FLOAT winTotalwidth = (FLOAT)0.75;
static FLOAT winTotalheight = (FLOAT)0.75 * (FLOAT)0.75;
#define MAX_FRAMES 20
// IPREC is the number of faces in the mesh that models the flag.
#define IPREC 15
static int Frames = 10;
static MESH winMesh[MAX_FRAMES];
static FLOAT sinAngle = (FLOAT)0.0;
static FLOAT xTrans = (FLOAT)0.0;
static int curMatl = 0;
// Material properties.
static RGBA matlBrightSpecular = {1.0f, 1.0f, 1.0f, 1.0f};
static RGBA matlDimSpecular = {0.5f, 0.5f, 0.5f, 1.0f};
static RGBA matlNoSpecular = {0.0f, 0.0f, 0.0f, 0.0f};
// Lighting properties.
static FLOAT light0Pos[] = {20.0f, 5.0f, 20.0f, 0.0f};
static FLOAT light1Pos[] = {-20.0f, 5.0f, 0.0f, 0.0f};
static RGBA light1Ambient = {0.0f, 0.0f, 0.0f, 0.0f};
static RGBA light1Diffuse = {0.4f, 0.4f, 0.4f, 1.0f};
static RGBA light1Specular = {0.0f, 0.0f, 0.0f, 0.0f};
static RGBA flagColors[] = {{1.0f, 1.0f, 1.0f, 1.0f},
{0.94f, 0.37f, 0.13f, 1.0f}, // red
};
// Default texture resource
static TEX_RES gTexRes = { TEX_BMP, IDB_DEFTEX };
static TEXTURE gTex = {0}; // One global texture
/******************************Public*Routine******************************\
* iPtInList
*
* Add a vertex and its normal to the mesh. If the vertex already exists,
* add in the normal to the existing normal (we to accumulate the average
* normal at each vertex). Normalization of the normals is the
* responsibility of the caller.
*
\**************************************************************************/
static int iPtInList(MESH *mesh, int start,
POINT3D *p, POINT3D *norm, BOOL blend)
{
int i;
POINT3D *pts = mesh->pts + start;
if (blend) {
for (i = start; i < mesh->numPoints; i++, pts++) {
if ((pts->x == p->x) && (pts->y == p->y) && (pts->z == p->z)) {
mesh->norms[i].x += norm->x;
mesh->norms[i].y += norm->y;
mesh->norms[i].z += norm->z;
return i;
}
}
} else {
i = mesh->numPoints;
}
mesh->pts[i] = *p;
mesh->norms[i] = *norm;
mesh->numPoints++;
return i;
}
/******************************Public*Routine******************************\
* getZpos
*
* Get the z-position (depth) of the "wavy" flag component at the given x.
*
* The function used to model the wave is:
*
* 1/2
* z = x * sin((2*PI*x + sinAngle) / 4)
*
* The shape of the wave varies from frame to frame by changing the
* phase, sinAngle.
*
\**************************************************************************/
FLOAT getZpos(FLOAT x)
{
FLOAT xAbs = x - xTrans;
FLOAT angle = sinAngle + ((FLOAT) (2.0 * PI) * (xAbs / winTotalwidth));
xAbs = winTotalwidth - xAbs;
// xAbs += (winTotalwidth / 2.0);
return (FLOAT)((sin((double)angle) / 4.0) *
sqrt((double)(xAbs / winTotalwidth )));
}
/******************************Public*Routine******************************\
* genTex
*
* Generate a mesh representing a frame of the flag. The phase, sinAngle,
* is a global variable.
*
\**************************************************************************/
BOOL genTex(MESH *winMesh)
{
POINT3D pos;
POINT3D pts[4];
FLOAT w, h;
int i;
if( !newMesh(winMesh, IPREC * IPREC, IPREC * IPREC) )
return FALSE;
// Width and height of each face
w = (winTotalwidth) / (FLOAT)(IPREC + 1);
h = winTotalheight;
// Generate the mesh data. At equally spaced intervals along the x-axis,
// we compute the z-position of the flag surface.
pos.y = (FLOAT) 0.0;
pos.z = (FLOAT) 0.0;
for (i = 0, pos.x = xTrans; i < IPREC; i++, pos.x += w) {
int faceCount = winMesh->numFaces;
pts[0].x = (FLOAT)pos.x;
pts[0].y = (FLOAT)(pos.y);
pts[0].z = getZpos(pos.x);
pts[1].x = (FLOAT)pos.x;
pts[1].y = (FLOAT)(pos.y + h);
pts[1].z = getZpos(pos.x);
pts[2].x = (FLOAT)(pos.x + w);
pts[2].y = (FLOAT)(pos.y);
pts[2].z = getZpos(pos.x + w);
pts[3].x = (FLOAT)(pos.x + w);
pts[3].y = (FLOAT)(pos.y + h);
pts[3].z = getZpos(pos.x + w);
// Compute the face normal.
ss_calcNorm(&winMesh->faces[faceCount].norm, pts + 2, pts + 1, pts);
// Add the face to the mesh.
winMesh->faces[faceCount].material = 0;
winMesh->faces[faceCount].p[0] = iPtInList(winMesh, 0, pts,
&winMesh->faces[faceCount].norm, TRUE);
winMesh->faces[faceCount].p[1] = iPtInList(winMesh, 0, pts + 1,
&winMesh->faces[faceCount].norm, TRUE);
winMesh->faces[faceCount].p[2] = iPtInList(winMesh, 0, pts + 2,
&winMesh->faces[faceCount].norm, TRUE);
winMesh->faces[faceCount].p[3] = iPtInList(winMesh, 0, pts + 3,
&winMesh->faces[faceCount].norm, TRUE);
winMesh->numFaces++;
}
// Normalize the vertex normals in the mesh.
ss_normalizeNorms(winMesh->norms, winMesh->numPoints);
return TRUE;
}
/******************************Public*Routine******************************\
* initTexScene
*
* Initialize the screen saver.
*
* This function is exported to the main module in ss3dfo.c.
*
\**************************************************************************/
BOOL initTexScene()
{
int i;
FLOAT angleDelta;
// FLOAT aspectRatio;
// Initialize the transform.
/*
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glOrtho(-0.25, 1.0, -0.25, 1.0, 0.0, 3.0);
glTranslatef(0.0f, 0.0f, -1.5f);
*/
SetProjectionMatrixInfo( TRUE, 2.0f, 2.0f, 0.0f, 3.0f );
D3DXMATRIX matView;
D3DXMatrixTranslation(&matView, 0.0f, 0.0f, 1.5f);
m_pd3dDevice->SetTransform( D3DTS_VIEW, &matView );
// Initialize and turn on lighting.
/*
glDisable(GL_DEPTH_TEST);
*/
// Light 0
D3DLIGHT8 light;
m_pd3dDevice->GetLight(0, &light);
light.Position.x = light0Pos[0];
light.Position.y = light0Pos[1];
light.Position.z = light0Pos[2];
m_pd3dDevice->SetLight(0, &light);
// Light 1
light.Type = D3DLIGHT_POINT;
light.Ambient.r = light1Ambient.r;
light.Ambient.g = light1Ambient.g;
light.Ambient.b = light1Ambient.b;
light.Ambient.a = light1Ambient.a;
light.Diffuse.r = light1Diffuse.r;
light.Diffuse.g = light1Diffuse.g;
light.Diffuse.b = light1Diffuse.b;
light.Diffuse.a = light1Diffuse.a;
light.Specular.r = light1Specular.r;
light.Specular.g = light1Specular.g;
light.Specular.b = light1Specular.b;
light.Specular.a = light1Specular.a;
light.Position.x = light1Pos[0];
light.Position.y = light1Pos[1];
light.Position.z = light1Pos[2];
m_pd3dDevice->SetLight(1, &light);
m_pd3dDevice->LightEnable(1, TRUE);
// Leave OpenGL in a state ready to accept the model view transform (we
// are going to have the flag vary its orientation from frame to frame).
/*
glMatrixMode(GL_MODELVIEW);
*/
// Define orientation of polygon faces.
// glFrontFace(GL_CW);
// glEnable(GL_CULL_FACE);
m_pd3dDevice->SetRenderState( D3DRS_CULLMODE, D3DCULL_NONE );
m_pd3dDevice->SetTextureStageState( 0 , D3DTSS_COLORARG1 , D3DTA_TEXTURE );
m_pd3dDevice->SetTextureStageState( 0, D3DTSS_MIPFILTER, D3DTEXF_LINEAR );
m_pd3dDevice->SetTextureStageState( 0, D3DTSS_MINFILTER, D3DTEXF_LINEAR );
m_pd3dDevice->SetTextureStageState( 0, D3DTSS_MAGFILTER, D3DTEXF_LINEAR );
m_pd3dDevice->SetTextureStageState( 0, D3DTSS_ADDRESSU, D3DTADDRESS_CLAMP );
m_pd3dDevice->SetTextureStageState( 0, D3DTSS_ADDRESSV, D3DTADDRESS_CLAMP );
Frames = (int)((FLOAT)(MAX_FRAMES / 2) * fTesselFact);
// Load user texture - if that fails load default texture resource
#if 0
// glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
if( ss_LoadTextureFile( &gTexFile, &gTex ) ||
ss_LoadTextureResource( &gTexRes, &gTex) )
{
/* glEnable(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);
glTexEnvi(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
*/
ss_SetTexture( &gTex );
// Correct aspect ratio of flag to match image.
//
// The 1.4 is a correction factor to account for the length of the
// curve that models the surface ripple of the waving flag. This
// factor is the length of the curve at zero phase. It would be
// more accurate to determine the length of the curve at each phase,
// but this is a sufficient approximation for our purposes.
aspectRatio = ((FLOAT) gTex.height / (FLOAT) gTex.width)
* (FLOAT) 1.4;
if (aspectRatio < (FLOAT) 1.0) {
winTotalwidth = (FLOAT)0.75;
winTotalheight = winTotalwidth * aspectRatio;
} else {
winTotalheight = (FLOAT) 0.75;
winTotalwidth = winTotalheight / aspectRatio;
};
}
#endif
if (Frames < 5)
Frames = 5;
if (Frames > MAX_FRAMES)
Frames = MAX_FRAMES;
// Generate the geometry data (stored in the array of mesh structures),
// for each frame of the animation. The shape of the flag is varied by
// changing the global variable sinAngle.
angleDelta = (FLOAT)(2.0 * PI) / (FLOAT)Frames;
sinAngle = (FLOAT) 0.0;
for (i = 0; i < Frames; i++) {
if( !genTex(&winMesh[i]) )
return FALSE;
sinAngle += angleDelta;
}
return TRUE;
}
/******************************Public*Routine******************************\
* delTexScene
*
* Cleanup the data associated with this screen saver.
*
* This function is exported to the main module in ss3dfo.c.
*
\**************************************************************************/
void delTexScene()
{
int i;
for (i = 0; i < Frames; i++)
delMesh(&winMesh[i]);
// Delete the texture
ss_DeleteTexture( &gTex );
}
/******************************Public*Routine******************************\
* updateTexScene
*
* Generate a scene by taking one of the meshes and rendering it with
* OpenGL.
*
* This function is exported to the main module in ss3dfo.c.
*
\**************************************************************************/
void updateTexScene(int flags, FLOAT fElapsedTime)
{
MESH *mesh;
static double mxrot = 23.0;
static double myrot = 23.0;
static double mzrot = 5.7;
static double mxrotInc = 0.0;
static double myrotInc = 3.0;
static double mzrotInc = 0.0;
static int frameNum = 0;
static FLOAT fFrameNum = 0.0f;
if( fElapsedTime > 0.25f )
fElapsedTime = 0.25f;
FLOAT fTimeFactor = fElapsedTime * 20.0f;
/*
MFACE *faces;
int i;
POINT3D *pp;
POINT3D *pn;
int lastC, lastD;
int aOffs, bOffs, cOffs, dOffs;
int a, b;
*/
FLOAT s = (FLOAT) 0.0;
FLOAT ds;
// In addition to having the flag wave (an effect acheived by switching
// meshes from frame to frame), the flag changes its orientation from
// frame to frame. This is done by applying a model view transform.
D3DXMATRIX mat1, mat2, mat3, matFinal;
D3DXMatrixRotationX(&mat1, D3DXToRadian((FLOAT)mxrot));
D3DXMatrixRotationY(&mat2, D3DXToRadian((FLOAT)myrot));
D3DXMatrixRotationZ(&mat3, D3DXToRadian((FLOAT)mzrot));
matFinal = mat3 * mat2 * mat1 ;
m_pd3dDevice->SetTransform( D3DTS_WORLD, &matFinal );
// Divide the texture into IPREC slices. ds is the texture coordinate
// delta we apply as we move along the x-axis.
ds = (FLOAT)1.0 / (FLOAT)IPREC;
// Setup the material property of the flag. The material property, light
// properties, and polygon orientation will interact with the texture.
curMatl = 0;
myglMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, (FLOAT *) &flagColors[0]);
myglMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR, (FLOAT *) &matlBrightSpecular);
myglMaterialf(GL_FRONT_AND_BACK, GL_SHININESS, (FLOAT) 60.0);
// Pick the mesh for the current frame.
mesh = &winMesh[frameNum];
// Take the geometry data is the mesh and convert it to a single OpenGL
// quad strip. If smooth shading is required, use the vertex normals stored
// in the mesh. Otherwise, use the face normals.
//
// As we define each vertex, we also define a corresponding vertex and
// texture coordinate.
// glBegin(GL_QUAD_STRIP);
#if 0
pp = mesh->pts;
pn = mesh->norms;
for (i = 0, faces = mesh->faces, lastC = faces->p[0], lastD = faces->p[1];
i < mesh->numFaces; i++, faces++) {
a = faces->p[0];
b = faces->p[1];
if (!bSmoothShading) {
// Since flag is a single quad strip, this isn't needed.
// But lets keep it in case we ever change to a more
// complex model (ie., one that uses more than one quad
// strip).
#if 0
if ((a != lastC) || (b != lastD)) {
/*
glNormal3fv((FLOAT *)&(faces - 1)->norm);
glTexCoord2f(s, (FLOAT) 0.0);
glVertex3fv((FLOAT *)((char *)pp +
(lastC << 3) + (lastC << 2)));
glTexCoord2f(s, (FLOAT) 1.0);
glVertex3fv((FLOAT *)((char *)pp +
(lastD << 3) + (lastD << 2)));
*/
s += ds;
/*
glEnd();
glBegin(GL_QUAD_STRIP);
*/
}
#endif
if (faces->material != curMatl) {
curMatl = faces->material;
/*
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,
(FLOAT *) &matlNoSpecular);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE,
(FLOAT *) &flagColors[curMatl]);
*/
}
/*
glNormal3fv((FLOAT *)&faces->norm);
glTexCoord2f(s, (FLOAT) 0.0);
glVertex3fv((FLOAT *)((char *)pp + (a << 3) + (a << 2)));
glTexCoord2f(s, (FLOAT) 1.0);
glVertex3fv((FLOAT *)((char *)pp + (b << 3) + (b << 2)));
*/
s += ds;
} else {
aOffs = (a << 3) + (a << 2);
bOffs = (b << 3) + (b << 2);
if (faces->material != curMatl) {
curMatl = faces->material;
/*
glMaterialfv(GL_FRONT_AND_BACK, GL_SPECULAR,
(FLOAT *) &matlNoSpecular);
glMaterialfv(GL_FRONT, GL_AMBIENT_AND_DIFFUSE,
(FLOAT *) &flagColors[curMatl]);
*/
}
/*
glTexCoord2f(s, (FLOAT) 0.0);
glNormal3fv((FLOAT *)((char *)pn + aOffs));
glVertex3fv((FLOAT *)((char *)pp + aOffs));
glTexCoord2f(s, (FLOAT) 1.0);
glNormal3fv((FLOAT *)((char *)pn + bOffs));
glVertex3fv((FLOAT *)((char *)pp + bOffs));
*/
s += ds;
}
lastC = faces->p[2];
lastD = faces->p[3];
}
if (!bSmoothShading) {
/*
glNormal3fv((FLOAT *)&(faces - 1)->norm);
glTexCoord2f(s, (FLOAT) 0.0);
glVertex3fv((FLOAT *)((char *)pp + (lastC << 3) + (lastC << 2)));
glTexCoord2f(s, (FLOAT) 1.0);
glVertex3fv((FLOAT *)((char *)pp + (lastD << 3) + (lastD << 2)));
*/
} else {
cOffs = (lastC << 3) + (lastC << 2);
dOffs = (lastD << 3) + (lastD << 2);
/*
glTexCoord2f(s, (FLOAT) 0.0);
glNormal3fv((FLOAT *)((char *)pn + cOffs));
glVertex3fv((FLOAT *)((char *)pp + cOffs));
glTexCoord2f(s, (FLOAT) 1.0);
glNormal3fv((FLOAT *)((char *)pn + dOffs));
glVertex3fv((FLOAT *)((char *)pp + dOffs));
*/
}
// glEnd();
#endif
{
HRESULT hr;
WORD indexArray[4];
MYVERTEX2 vertexArray[4];
m_pd3dDevice->SetVertexShader( D3DFVF_MYVERTEX2 );
indexArray[0] = 0;
indexArray[1] = 1;
indexArray[2] = 2;
indexArray[3] = 3;
for( int iFace = 0; iFace < mesh->numFaces; iFace++ )
{
vertexArray[0].p = mesh->pts[ mesh->faces[iFace].p[0] ];
vertexArray[1].p = mesh->pts[ mesh->faces[iFace].p[1] ];
vertexArray[2].p = mesh->pts[ mesh->faces[iFace].p[2] ];
vertexArray[3].p = mesh->pts[ mesh->faces[iFace].p[3] ];
vertexArray[0].tu = s; vertexArray[0].tv = 1.0f;
vertexArray[1].tu = s; vertexArray[1].tv = 0.0f;
vertexArray[2].tu = s+ds; vertexArray[2].tv = 1.0f;
vertexArray[3].tu = s+ds; vertexArray[3].tv = 0.0f;
s += ds;
if( bSmoothShading )
{
vertexArray[0].n = mesh->norms[ mesh->faces[iFace].p[0] ];
vertexArray[1].n = mesh->norms[ mesh->faces[iFace].p[1] ];
vertexArray[2].n = mesh->norms[ mesh->faces[iFace].p[2] ];
vertexArray[3].n = mesh->norms[ mesh->faces[iFace].p[3] ];
}
else
{
vertexArray[0].n = mesh->faces[iFace].norm;
vertexArray[1].n = mesh->faces[iFace].norm;
vertexArray[2].n = mesh->faces[iFace].norm;
vertexArray[3].n = mesh->faces[iFace].norm;
}
hr = m_pd3dDevice->DrawIndexedPrimitiveUP( D3DPT_TRIANGLESTRIP, 0,
4, 2, indexArray, D3DFMT_INDEX16, vertexArray, sizeof(MYVERTEX2) );
}
}
// Transfer the image to the floating OpenGL window.
// Determine the flag orientation for the next frame.
// What we are doing is an oscillating rotation about the y-axis
// (mxrotInc and mzrotInc are currently 0).
mxrot += mxrotInc * fTimeFactor;
myrot += myrotInc * fTimeFactor;
mzrot += mzrotInc * fTimeFactor;
if ((myrot < -65.0 && myrotInc < 0) || (myrot > 25.0 && myrotInc > 0))
myrotInc = -myrotInc;
// frameNum++;
fFrameNum += fTimeFactor;
frameNum = (INT)fFrameNum;
if (frameNum >= Frames)
{
fFrameNum = 0.0f;
frameNum = 0;
}
}