mirror of https://github.com/tongzx/nt5src
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
415 lines
11 KiB
415 lines
11 KiB
package Math::BigInt;
|
|
|
|
use overload
|
|
'+' => sub {new Math::BigInt &badd},
|
|
'-' => sub {new Math::BigInt
|
|
$_[2]? bsub($_[1],${$_[0]}) : bsub(${$_[0]},$_[1])},
|
|
'<=>' => sub {new Math::BigInt
|
|
$_[2]? bcmp($_[1],${$_[0]}) : bcmp(${$_[0]},$_[1])},
|
|
'cmp' => sub {new Math::BigInt
|
|
$_[2]? ($_[1] cmp ${$_[0]}) : (${$_[0]} cmp $_[1])},
|
|
'*' => sub {new Math::BigInt &bmul},
|
|
'/' => sub {new Math::BigInt
|
|
$_[2]? scalar bdiv($_[1],${$_[0]}) :
|
|
scalar bdiv(${$_[0]},$_[1])},
|
|
'%' => sub {new Math::BigInt
|
|
$_[2]? bmod($_[1],${$_[0]}) : bmod(${$_[0]},$_[1])},
|
|
'**' => sub {new Math::BigInt
|
|
$_[2]? bpow($_[1],${$_[0]}) : bpow(${$_[0]},$_[1])},
|
|
'neg' => sub {new Math::BigInt &bneg},
|
|
'abs' => sub {new Math::BigInt &babs},
|
|
|
|
qw(
|
|
"" stringify
|
|
0+ numify) # Order of arguments unsignificant
|
|
;
|
|
|
|
$NaNOK=1;
|
|
|
|
sub new {
|
|
my($class) = shift;
|
|
my($foo) = bnorm(shift);
|
|
die "Not a number initialized to Math::BigInt" if !$NaNOK && $foo eq "NaN";
|
|
bless \$foo, $class;
|
|
}
|
|
sub stringify { "${$_[0]}" }
|
|
sub numify { 0 + "${$_[0]}" } # Not needed, additional overhead
|
|
# comparing to direct compilation based on
|
|
# stringify
|
|
sub import {
|
|
shift;
|
|
return unless @_;
|
|
die "unknown import: @_" unless @_ == 1 and $_[0] eq ':constant';
|
|
overload::constant integer => sub {Math::BigInt->new(shift)};
|
|
}
|
|
|
|
$zero = 0;
|
|
|
|
|
|
# normalize string form of number. Strip leading zeros. Strip any
|
|
# white space and add a sign, if missing.
|
|
# Strings that are not numbers result the value 'NaN'.
|
|
|
|
sub bnorm { #(num_str) return num_str
|
|
local($_) = @_;
|
|
s/\s+//g; # strip white space
|
|
if (s/^([+-]?)0*(\d+)$/$1$2/) { # test if number
|
|
substr($_,$[,0) = '+' unless $1; # Add missing sign
|
|
s/^-0/+0/;
|
|
$_;
|
|
} else {
|
|
'NaN';
|
|
}
|
|
}
|
|
|
|
# Convert a number from string format to internal base 100000 format.
|
|
# Assumes normalized value as input.
|
|
sub internal { #(num_str) return int_num_array
|
|
local($d) = @_;
|
|
($is,$il) = (substr($d,$[,1),length($d)-2);
|
|
substr($d,$[,1) = '';
|
|
($is, reverse(unpack("a" . ($il%5+1) . ("a5" x ($il/5)), $d)));
|
|
}
|
|
|
|
# Convert a number from internal base 100000 format to string format.
|
|
# This routine scribbles all over input array.
|
|
sub external { #(int_num_array) return num_str
|
|
$es = shift;
|
|
grep($_ > 9999 || ($_ = substr('0000'.$_,-5)), @_); # zero pad
|
|
&bnorm(join('', $es, reverse(@_))); # reverse concat and normalize
|
|
}
|
|
|
|
# Negate input value.
|
|
sub bneg { #(num_str) return num_str
|
|
local($_) = &bnorm(@_);
|
|
return $_ if $_ eq '+0' or $_ eq 'NaN';
|
|
vec($_,0,8) ^= ord('+') ^ ord('-');
|
|
$_;
|
|
}
|
|
|
|
# Returns the absolute value of the input.
|
|
sub babs { #(num_str) return num_str
|
|
&abs(&bnorm(@_));
|
|
}
|
|
|
|
sub abs { # post-normalized abs for internal use
|
|
local($_) = @_;
|
|
s/^-/+/;
|
|
$_;
|
|
}
|
|
|
|
# Compares 2 values. Returns one of undef, <0, =0, >0. (suitable for sort)
|
|
sub bcmp { #(num_str, num_str) return cond_code
|
|
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
undef;
|
|
} elsif ($y eq 'NaN') {
|
|
undef;
|
|
} else {
|
|
&cmp($x,$y) <=> 0;
|
|
}
|
|
}
|
|
|
|
sub cmp { # post-normalized compare for internal use
|
|
local($cx, $cy) = @_;
|
|
|
|
return 0 if ($cx eq $cy);
|
|
|
|
local($sx, $sy) = (substr($cx, 0, 1), substr($cy, 0, 1));
|
|
local($ld);
|
|
|
|
if ($sx eq '+') {
|
|
return 1 if ($sy eq '-' || $cy eq '+0');
|
|
$ld = length($cx) - length($cy);
|
|
return $ld if ($ld);
|
|
return $cx cmp $cy;
|
|
} else { # $sx eq '-'
|
|
return -1 if ($sy eq '+');
|
|
$ld = length($cy) - length($cx);
|
|
return $ld if ($ld);
|
|
return $cy cmp $cx;
|
|
}
|
|
}
|
|
|
|
sub badd { #(num_str, num_str) return num_str
|
|
local(*x, *y); ($x, $y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
@x = &internal($x); # convert to internal form
|
|
@y = &internal($y);
|
|
local($sx, $sy) = (shift @x, shift @y); # get signs
|
|
if ($sx eq $sy) {
|
|
&external($sx, &add(*x, *y)); # if same sign add
|
|
} else {
|
|
($x, $y) = (&abs($x),&abs($y)); # make abs
|
|
if (&cmp($y,$x) > 0) {
|
|
&external($sy, &sub(*y, *x));
|
|
} else {
|
|
&external($sx, &sub(*x, *y));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
sub bsub { #(num_str, num_str) return num_str
|
|
&badd($_[$[],&bneg($_[$[+1]));
|
|
}
|
|
|
|
# GCD -- Euclids algorithm Knuth Vol 2 pg 296
|
|
sub bgcd { #(num_str, num_str) return num_str
|
|
local($x,$y) = (&bnorm($_[$[]),&bnorm($_[$[+1]));
|
|
if ($x eq 'NaN' || $y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
($x, $y) = ($y,&bmod($x,$y)) while $y ne '+0';
|
|
$x;
|
|
}
|
|
}
|
|
|
|
# routine to add two base 1e5 numbers
|
|
# stolen from Knuth Vol 2 Algorithm A pg 231
|
|
# there are separate routines to add and sub as per Kunth pg 233
|
|
sub add { #(int_num_array, int_num_array) return int_num_array
|
|
local(*x, *y) = @_;
|
|
$car = 0;
|
|
for $x (@x) {
|
|
last unless @y || $car;
|
|
$x -= 1e5 if $car = (($x += (@y ? shift(@y) : 0) + $car) >= 1e5) ? 1 : 0;
|
|
}
|
|
for $y (@y) {
|
|
last unless $car;
|
|
$y -= 1e5 if $car = (($y += $car) >= 1e5) ? 1 : 0;
|
|
}
|
|
(@x, @y, $car);
|
|
}
|
|
|
|
# subtract base 1e5 numbers -- stolen from Knuth Vol 2 pg 232, $x > $y
|
|
sub sub { #(int_num_array, int_num_array) return int_num_array
|
|
local(*sx, *sy) = @_;
|
|
$bar = 0;
|
|
for $sx (@sx) {
|
|
last unless @sy || $bar;
|
|
$sx += 1e5 if $bar = (($sx -= (@sy ? shift(@sy) : 0) + $bar) < 0);
|
|
}
|
|
@sx;
|
|
}
|
|
|
|
# multiply two numbers -- stolen from Knuth Vol 2 pg 233
|
|
sub bmul { #(num_str, num_str) return num_str
|
|
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($y eq 'NaN') {
|
|
'NaN';
|
|
} else {
|
|
@x = &internal($x);
|
|
@y = &internal($y);
|
|
&external(&mul(*x,*y));
|
|
}
|
|
}
|
|
|
|
# multiply two numbers in internal representation
|
|
# destroys the arguments, supposes that two arguments are different
|
|
sub mul { #(*int_num_array, *int_num_array) return int_num_array
|
|
local(*x, *y) = (shift, shift);
|
|
local($signr) = (shift @x ne shift @y) ? '-' : '+';
|
|
@prod = ();
|
|
for $x (@x) {
|
|
($car, $cty) = (0, $[);
|
|
for $y (@y) {
|
|
$prod = $x * $y + ($prod[$cty] || 0) + $car;
|
|
$prod[$cty++] =
|
|
$prod - ($car = int($prod * 1e-5)) * 1e5;
|
|
}
|
|
$prod[$cty] += $car if $car;
|
|
$x = shift @prod;
|
|
}
|
|
($signr, @x, @prod);
|
|
}
|
|
|
|
# modulus
|
|
sub bmod { #(num_str, num_str) return num_str
|
|
(&bdiv(@_))[$[+1];
|
|
}
|
|
|
|
sub bdiv { #(dividend: num_str, divisor: num_str) return num_str
|
|
local (*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
|
|
return wantarray ? ('NaN','NaN') : 'NaN'
|
|
if ($x eq 'NaN' || $y eq 'NaN' || $y eq '+0');
|
|
return wantarray ? ('+0',$x) : '+0' if (&cmp(&abs($x),&abs($y)) < 0);
|
|
@x = &internal($x); @y = &internal($y);
|
|
$srem = $y[$[];
|
|
$sr = (shift @x ne shift @y) ? '-' : '+';
|
|
$car = $bar = $prd = 0;
|
|
if (($dd = int(1e5/($y[$#y]+1))) != 1) {
|
|
for $x (@x) {
|
|
$x = $x * $dd + $car;
|
|
$x -= ($car = int($x * 1e-5)) * 1e5;
|
|
}
|
|
push(@x, $car); $car = 0;
|
|
for $y (@y) {
|
|
$y = $y * $dd + $car;
|
|
$y -= ($car = int($y * 1e-5)) * 1e5;
|
|
}
|
|
}
|
|
else {
|
|
push(@x, 0);
|
|
}
|
|
@q = (); ($v2,$v1) = ($y[-2] || 0, $y[-1]);
|
|
while ($#x > $#y) {
|
|
($u2,$u1,$u0) = ($x[-3] || 0, $x[-2] || 0, $x[-1]);
|
|
$q = (($u0 == $v1) ? 99999 : int(($u0*1e5+$u1)/$v1));
|
|
--$q while ($v2*$q > ($u0*1e5+$u1-$q*$v1)*1e5+$u2);
|
|
if ($q) {
|
|
($car, $bar) = (0,0);
|
|
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
|
|
$prd = $q * $y[$y] + $car;
|
|
$prd -= ($car = int($prd * 1e-5)) * 1e5;
|
|
$x[$x] += 1e5 if ($bar = (($x[$x] -= $prd + $bar) < 0));
|
|
}
|
|
if ($x[$#x] < $car + $bar) {
|
|
$car = 0; --$q;
|
|
for ($y = $[, $x = $#x-$#y+$[-1; $y <= $#y; ++$y,++$x) {
|
|
$x[$x] -= 1e5
|
|
if ($car = (($x[$x] += $y[$y] + $car) > 1e5));
|
|
}
|
|
}
|
|
}
|
|
pop(@x); unshift(@q, $q);
|
|
}
|
|
if (wantarray) {
|
|
@d = ();
|
|
if ($dd != 1) {
|
|
$car = 0;
|
|
for $x (reverse @x) {
|
|
$prd = $car * 1e5 + $x;
|
|
$car = $prd - ($tmp = int($prd / $dd)) * $dd;
|
|
unshift(@d, $tmp);
|
|
}
|
|
}
|
|
else {
|
|
@d = @x;
|
|
}
|
|
(&external($sr, @q), &external($srem, @d, $zero));
|
|
} else {
|
|
&external($sr, @q);
|
|
}
|
|
}
|
|
|
|
# compute power of two numbers -- stolen from Knuth Vol 2 pg 233
|
|
sub bpow { #(num_str, num_str) return num_str
|
|
local(*x, *y); ($x, $y) = (&bnorm($_[$[]), &bnorm($_[$[+1]));
|
|
if ($x eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($y eq 'NaN') {
|
|
'NaN';
|
|
} elsif ($x eq '+1') {
|
|
'+1';
|
|
} elsif ($x eq '-1') {
|
|
&bmod($x,2) ? '-1': '+1';
|
|
} elsif ($y =~ /^-/) {
|
|
'NaN';
|
|
} elsif ($x eq '+0' && $y eq '+0') {
|
|
'NaN';
|
|
} else {
|
|
@x = &internal($x);
|
|
local(@pow2)=@x;
|
|
local(@pow)=&internal("+1");
|
|
local($y1,$res,@tmp1,@tmp2)=(1); # need tmp to send to mul
|
|
while ($y ne '+0') {
|
|
($y,$res)=&bdiv($y,2);
|
|
if ($res ne '+0') {@tmp=@pow2; @pow=&mul(*pow,*tmp);}
|
|
if ($y ne '+0') {@tmp=@pow2;@pow2=&mul(*pow2,*tmp);}
|
|
}
|
|
&external(@pow);
|
|
}
|
|
}
|
|
|
|
1;
|
|
__END__
|
|
|
|
=head1 NAME
|
|
|
|
Math::BigInt - Arbitrary size integer math package
|
|
|
|
=head1 SYNOPSIS
|
|
|
|
use Math::BigInt;
|
|
$i = Math::BigInt->new($string);
|
|
|
|
$i->bneg return BINT negation
|
|
$i->babs return BINT absolute value
|
|
$i->bcmp(BINT) return CODE compare numbers (undef,<0,=0,>0)
|
|
$i->badd(BINT) return BINT addition
|
|
$i->bsub(BINT) return BINT subtraction
|
|
$i->bmul(BINT) return BINT multiplication
|
|
$i->bdiv(BINT) return (BINT,BINT) division (quo,rem) just quo if scalar
|
|
$i->bmod(BINT) return BINT modulus
|
|
$i->bgcd(BINT) return BINT greatest common divisor
|
|
$i->bnorm return BINT normalization
|
|
|
|
=head1 DESCRIPTION
|
|
|
|
All basic math operations are overloaded if you declare your big
|
|
integers as
|
|
|
|
$i = new Math::BigInt '123 456 789 123 456 789';
|
|
|
|
|
|
=over 2
|
|
|
|
=item Canonical notation
|
|
|
|
Big integer value are strings of the form C</^[+-]\d+$/> with leading
|
|
zeros suppressed.
|
|
|
|
=item Input
|
|
|
|
Input values to these routines may be strings of the form
|
|
C</^\s*[+-]?[\d\s]+$/>.
|
|
|
|
=item Output
|
|
|
|
Output values always always in canonical form
|
|
|
|
=back
|
|
|
|
Actual math is done in an internal format consisting of an array
|
|
whose first element is the sign (/^[+-]$/) and whose remaining
|
|
elements are base 100000 digits with the least significant digit first.
|
|
The string 'NaN' is used to represent the result when input arguments
|
|
are not numbers, as well as the result of dividing by zero.
|
|
|
|
=head1 EXAMPLES
|
|
|
|
'+0' canonical zero value
|
|
' -123 123 123' canonical value '-123123123'
|
|
'1 23 456 7890' canonical value '+1234567890'
|
|
|
|
|
|
=head1 Autocreating constants
|
|
|
|
After C<use Math::BigInt ':constant'> all the integer decimal constants
|
|
in the given scope are converted to C<Math::BigInt>. This conversion
|
|
happens at compile time.
|
|
|
|
In particular
|
|
|
|
perl -MMath::BigInt=:constant -e 'print 2**100'
|
|
|
|
print the integer value of C<2**100>. Note that without conversion of
|
|
constants the expression 2**100 will be calculated as floating point number.
|
|
|
|
=head1 BUGS
|
|
|
|
The current version of this module is a preliminary version of the
|
|
real thing that is currently (as of perl5.002) under development.
|
|
|
|
=head1 AUTHOR
|
|
|
|
Mark Biggar, overloaded interface by Ilya Zakharevich.
|
|
|
|
=cut
|