|
|
//========= Copyright � 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $Header: $
// $NoKeywords: $
//=============================================================================//
#ifndef UTLMAP_H
#define UTLMAP_H
#ifdef _WIN32
#pragma once
#endif
#include "tier0/dbg.h"
#include "utlrbtree.h"
//-----------------------------------------------------------------------------
//
// Purpose: An associative container. Pretty much identical to std::map.
//
//-----------------------------------------------------------------------------
// This is a useful macro to iterate from start to end in order in a map
#define FOR_EACH_MAP( mapName, iteratorName ) \
for ( int iteratorName = (mapName).FirstInorder(); (mapName).IsUtlMap && iteratorName != (mapName).InvalidIndex(); iteratorName = (mapName).NextInorder( iteratorName ) )
// faster iteration, but in an unspecified order
#define FOR_EACH_MAP_FAST( mapName, iteratorName ) \
for ( int iteratorName = 0; (mapName).IsUtlMap && iteratorName < (mapName).MaxElement(); ++iteratorName ) if ( !(mapName).IsValidIndex( iteratorName ) ) continue; else
struct base_utlmap_t { public: // This enum exists so that FOR_EACH_MAP and FOR_EACH_MAP_FAST cannot accidentally
// be used on a type that is not a CUtlMap. If the code compiles then all is well.
// The check for IsUtlMap being true should be free.
// Using an enum rather than a static const bool ensures that this trick works even
// with optimizations disabled on gcc.
enum { IsUtlMap = true }; };
template <typename K, typename T, typename I = unsigned short, typename LessFunc_t = bool (*)( const K &, const K & )> class CUtlMap : public base_utlmap_t { public: typedef K KeyType_t; typedef T ElemType_t; typedef I IndexType_t;
// constructor, destructor
// Left at growSize = 0, the memory will first allocate 1 element and double in size
// at each increment.
// LessFunc_t is required, but may be set after the constructor using SetLessFunc() below
CUtlMap( int growSize = 0, int initSize = 0, const LessFunc_t &lessfunc = 0 ) : m_Tree( growSize, initSize, CKeyLess( lessfunc ) ) { }
CUtlMap( LessFunc_t lessfunc ) : m_Tree( CKeyLess( lessfunc ) ) { } void EnsureCapacity( int num ) { m_Tree.EnsureCapacity( num ); }
// gets particular elements
ElemType_t & Element( IndexType_t i ) { return m_Tree.Element( i ).elem; } const ElemType_t & Element( IndexType_t i ) const { return m_Tree.Element( i ).elem; } ElemType_t & operator[]( IndexType_t i ) { return m_Tree.Element( i ).elem; } const ElemType_t & operator[]( IndexType_t i ) const { return m_Tree.Element( i ).elem; } KeyType_t & Key( IndexType_t i ) { return m_Tree.Element( i ).key; } const KeyType_t & Key( IndexType_t i ) const { return m_Tree.Element( i ).key; }
// Num elements
unsigned int Count() const { return m_Tree.Count(); } // Max "size" of the vector
IndexType_t MaxElement() const { return m_Tree.MaxElement(); } // Checks if a node is valid and in the map
bool IsValidIndex( IndexType_t i ) const { return m_Tree.IsValidIndex( i ); } // Checks if the map as a whole is valid
bool IsValid() const { return m_Tree.IsValid(); } // Invalid index
static IndexType_t InvalidIndex() { return CTree::InvalidIndex(); } // Sets the less func
void SetLessFunc( LessFunc_t func ) { m_Tree.SetLessFunc( CKeyLess( func ) ); } // Insert method (inserts in order)
IndexType_t Insert( const KeyType_t &key, const ElemType_t &insert ) { Node_t node; node.key = key; node.elem = insert; return m_Tree.Insert( node ); } IndexType_t Insert( const KeyType_t &key ) { Node_t node; node.key = key; return m_Tree.Insert( node ); }
// API to macth src2 for Panormama
// Note in src2 straight Insert() calls will assert on duplicates
// Chosing not to take that change until discussed further
IndexType_t InsertWithDupes( const KeyType_t &key, const ElemType_t &insert ) { Node_t node; node.key = key; node.elem = insert; return m_Tree.Insert( node ); }
IndexType_t InsertWithDupes( const KeyType_t &key ) { Node_t node; node.key = key; return m_Tree.Insert( node ); }
bool HasElement( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.HasElement( dummyNode ); }
// Find method
IndexType_t Find( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.Find( dummyNode ); }
// FindFirst method
// This finds the first inorder occurrence of key
IndexType_t FindFirst( const KeyType_t &key ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.FindFirst( dummyNode ); }
const ElemType_t &FindElement( const KeyType_t &key, const ElemType_t &defaultValue ) const { IndexType_t i = Find( key ); if ( i == InvalidIndex() ) return defaultValue; return Element( i ); }
// First element >= key
IndexType_t FindClosest( const KeyType_t &key, CompareOperands_t eFindCriteria ) const { Node_t dummyNode; dummyNode.key = key; return m_Tree.FindClosest( dummyNode, eFindCriteria ); } // Remove methods
void RemoveAt( IndexType_t i ) { m_Tree.RemoveAt( i ); } bool Remove( const KeyType_t &key ) { Node_t dummyNode; dummyNode.key = key; return m_Tree.Remove( dummyNode ); } void RemoveAll( ) { m_Tree.RemoveAll(); } void Purge( ) { m_Tree.Purge(); }
// Purges the list and calls delete on each element in it.
void PurgeAndDeleteElements(); // Iteration
IndexType_t FirstInorder() const { return m_Tree.FirstInorder(); } IndexType_t NextInorder( IndexType_t i ) const { return m_Tree.NextInorder( i ); } IndexType_t PrevInorder( IndexType_t i ) const { return m_Tree.PrevInorder( i ); } IndexType_t LastInorder() const { return m_Tree.LastInorder(); } // API Matching src2 for Panorama
IndexType_t NextInorderSameKey( IndexType_t i ) const { IndexType_t iNext = NextInorder( i ); if ( !IsValidIndex( iNext ) ) return InvalidIndex(); if ( Key( iNext ) != Key( i ) ) return InvalidIndex(); return iNext; }
// If you change the search key, this can be used to reinsert the
// element into the map.
void Reinsert( const KeyType_t &key, IndexType_t i ) { m_Tree[i].key = key; m_Tree.Reinsert(i); }
IndexType_t InsertOrReplace( const KeyType_t &key, const ElemType_t &insert ) { IndexType_t i = Find( key ); if ( i != InvalidIndex() ) { Element( i ) = insert; return i; } return Insert( key, insert ); }
void Swap( CUtlMap< K, T, I > &that ) { m_Tree.Swap( that.m_Tree ); }
struct Node_t { Node_t() { }
Node_t( const Node_t &from ) : key( from.key ), elem( from.elem ) { }
KeyType_t key; ElemType_t elem; }; class CKeyLess { public: CKeyLess( const LessFunc_t& lessFunc ) : m_LessFunc(lessFunc) {}
bool operator!() const { return !m_LessFunc; }
bool operator()( const Node_t &left, const Node_t &right ) const { return m_LessFunc( left.key, right.key ); }
LessFunc_t m_LessFunc; };
typedef CUtlRBTree<Node_t, I, CKeyLess> CTree;
CTree *AccessTree() { return &m_Tree; }
protected: CTree m_Tree; };
//-----------------------------------------------------------------------------
// Purges the list and calls delete on each element in it.
template< typename K, typename T, typename I, typename LessFunc_t > inline void CUtlMap<K, T, I, LessFunc_t>::PurgeAndDeleteElements() { for ( I i = 0; i < MaxElement(); ++i ) { if ( !IsValidIndex( i ) ) continue;
delete Element( i ); }
Purge(); }
#endif // UTLMAP_H
|