|
|
//===---- LiveRangeEdit.h - Basic tools for split and spill -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The LiveRangeEdit class represents changes done to a virtual register when it
// is spilled or split.
//
// The parent register is never changed. Instead, a number of new virtual
// registers are created and added to the newRegs vector.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVERANGEEDIT_H
#define LLVM_CODEGEN_LIVERANGEEDIT_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/Target/TargetMachine.h"
namespace llvm {
class AliasAnalysis; class LiveIntervals; class MachineLoopInfo; class MachineRegisterInfo; class VirtRegMap;
class LiveRangeEdit { public: /// Callback methods for LiveRangeEdit owners.
class Delegate { virtual void anchor(); public: /// Called immediately before erasing a dead machine instruction.
virtual void LRE_WillEraseInstruction(MachineInstr *MI) {}
/// Called when a virtual register is no longer used. Return false to defer
/// its deletion from LiveIntervals.
virtual bool LRE_CanEraseVirtReg(unsigned) { return true; }
/// Called before shrinking the live range of a virtual register.
virtual void LRE_WillShrinkVirtReg(unsigned) {}
/// Called after cloning a virtual register.
/// This is used for new registers representing connected components of Old.
virtual void LRE_DidCloneVirtReg(unsigned New, unsigned Old) {}
virtual ~Delegate() {} };
private: LiveInterval *Parent; SmallVectorImpl<LiveInterval*> &NewRegs; MachineRegisterInfo &MRI; LiveIntervals &LIS; VirtRegMap *VRM; const TargetInstrInfo &TII; Delegate *const TheDelegate;
/// FirstNew - Index of the first register added to NewRegs.
const unsigned FirstNew;
/// ScannedRemattable - true when remattable values have been identified.
bool ScannedRemattable;
/// Remattable - Values defined by remattable instructions as identified by
/// tii.isTriviallyReMaterializable().
SmallPtrSet<const VNInfo*,4> Remattable;
/// Rematted - Values that were actually rematted, and so need to have their
/// live range trimmed or entirely removed.
SmallPtrSet<const VNInfo*,4> Rematted;
/// scanRemattable - Identify the Parent values that may rematerialize.
void scanRemattable(AliasAnalysis *aa);
/// allUsesAvailableAt - Return true if all registers used by OrigMI at
/// OrigIdx are also available with the same value at UseIdx.
bool allUsesAvailableAt(const MachineInstr *OrigMI, SlotIndex OrigIdx, SlotIndex UseIdx) const;
/// foldAsLoad - If LI has a single use and a single def that can be folded as
/// a load, eliminate the register by folding the def into the use.
bool foldAsLoad(LiveInterval *LI, SmallVectorImpl<MachineInstr*> &Dead);
public: /// Create a LiveRangeEdit for breaking down parent into smaller pieces.
/// @param parent The register being spilled or split.
/// @param newRegs List to receive any new registers created. This needn't be
/// empty initially, any existing registers are ignored.
/// @param MF The MachineFunction the live range edit is taking place in.
/// @param lis The collection of all live intervals in this function.
/// @param vrm Map of virtual registers to physical registers for this
/// function. If NULL, no virtual register map updates will
/// be done. This could be the case if called before Regalloc.
LiveRangeEdit(LiveInterval *parent, SmallVectorImpl<LiveInterval*> &newRegs, MachineFunction &MF, LiveIntervals &lis, VirtRegMap *vrm, Delegate *delegate = 0) : Parent(parent), NewRegs(newRegs), MRI(MF.getRegInfo()), LIS(lis), VRM(vrm), TII(*MF.getTarget().getInstrInfo()), TheDelegate(delegate), FirstNew(newRegs.size()), ScannedRemattable(false) {}
LiveInterval &getParent() const { assert(Parent && "No parent LiveInterval"); return *Parent; } unsigned getReg() const { return getParent().reg; }
/// Iterator for accessing the new registers added by this edit.
typedef SmallVectorImpl<LiveInterval*>::const_iterator iterator; iterator begin() const { return NewRegs.begin()+FirstNew; } iterator end() const { return NewRegs.end(); } unsigned size() const { return NewRegs.size()-FirstNew; } bool empty() const { return size() == 0; } LiveInterval *get(unsigned idx) const { return NewRegs[idx+FirstNew]; }
ArrayRef<LiveInterval*> regs() const { return makeArrayRef(NewRegs).slice(FirstNew); }
/// createFrom - Create a new virtual register based on OldReg.
LiveInterval &createFrom(unsigned OldReg);
/// create - Create a new register with the same class and original slot as
/// parent.
LiveInterval &create() { return createFrom(getReg()); }
/// anyRematerializable - Return true if any parent values may be
/// rematerializable.
/// This function must be called before any rematerialization is attempted.
bool anyRematerializable(AliasAnalysis*);
/// checkRematerializable - Manually add VNI to the list of rematerializable
/// values if DefMI may be rematerializable.
bool checkRematerializable(VNInfo *VNI, const MachineInstr *DefMI, AliasAnalysis*);
/// Remat - Information needed to rematerialize at a specific location.
struct Remat { VNInfo *ParentVNI; // parent_'s value at the remat location.
MachineInstr *OrigMI; // Instruction defining ParentVNI.
explicit Remat(VNInfo *ParentVNI) : ParentVNI(ParentVNI), OrigMI(0) {} };
/// canRematerializeAt - Determine if ParentVNI can be rematerialized at
/// UseIdx. It is assumed that parent_.getVNINfoAt(UseIdx) == ParentVNI.
/// When cheapAsAMove is set, only cheap remats are allowed.
bool canRematerializeAt(Remat &RM, SlotIndex UseIdx, bool cheapAsAMove);
/// rematerializeAt - Rematerialize RM.ParentVNI into DestReg by inserting an
/// instruction into MBB before MI. The new instruction is mapped, but
/// liveness is not updated.
/// Return the SlotIndex of the new instruction.
SlotIndex rematerializeAt(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI, unsigned DestReg, const Remat &RM, const TargetRegisterInfo&, bool Late = false);
/// markRematerialized - explicitly mark a value as rematerialized after doing
/// it manually.
void markRematerialized(const VNInfo *ParentVNI) { Rematted.insert(ParentVNI); }
/// didRematerialize - Return true if ParentVNI was rematerialized anywhere.
bool didRematerialize(const VNInfo *ParentVNI) const { return Rematted.count(ParentVNI); }
/// eraseVirtReg - Notify the delegate that Reg is no longer in use, and try
/// to erase it from LIS.
void eraseVirtReg(unsigned Reg);
/// eliminateDeadDefs - Try to delete machine instructions that are now dead
/// (allDefsAreDead returns true). This may cause live intervals to be trimmed
/// and further dead efs to be eliminated.
/// RegsBeingSpilled lists registers currently being spilled by the register
/// allocator. These registers should not be split into new intervals
/// as currently those new intervals are not guaranteed to spill.
void eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead, ArrayRef<unsigned> RegsBeingSpilled = ArrayRef<unsigned>());
/// calculateRegClassAndHint - Recompute register class and hint for each new
/// register.
void calculateRegClassAndHint(MachineFunction&, const MachineLoopInfo&); };
}
#endif
|