Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

307 lines
13 KiB

  1. //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
  2. //
  3. // The LLVM Compiler Infrastructure
  4. //
  5. // This file is distributed under the University of Illinois Open Source
  6. // License. See LICENSE.TXT for details.
  7. //
  8. //===----------------------------------------------------------------------===//
  9. //
  10. // This file implements the LiveVariables analysis pass. For each machine
  11. // instruction in the function, this pass calculates the set of registers that
  12. // are immediately dead after the instruction (i.e., the instruction calculates
  13. // the value, but it is never used) and the set of registers that are used by
  14. // the instruction, but are never used after the instruction (i.e., they are
  15. // killed).
  16. //
  17. // This class computes live variables using a sparse implementation based on
  18. // the machine code SSA form. This class computes live variable information for
  19. // each virtual and _register allocatable_ physical register in a function. It
  20. // uses the dominance properties of SSA form to efficiently compute live
  21. // variables for virtual registers, and assumes that physical registers are only
  22. // live within a single basic block (allowing it to do a single local analysis
  23. // to resolve physical register lifetimes in each basic block). If a physical
  24. // register is not register allocatable, it is not tracked. This is useful for
  25. // things like the stack pointer and condition codes.
  26. //
  27. //===----------------------------------------------------------------------===//
  28. #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
  29. #define LLVM_CODEGEN_LIVEVARIABLES_H
  30. #include "llvm/ADT/DenseMap.h"
  31. #include "llvm/ADT/IndexedMap.h"
  32. #include "llvm/ADT/SmallSet.h"
  33. #include "llvm/ADT/SmallVector.h"
  34. #include "llvm/ADT/SparseBitVector.h"
  35. #include "llvm/CodeGen/MachineFunctionPass.h"
  36. #include "llvm/CodeGen/MachineInstr.h"
  37. #include "llvm/Target/TargetRegisterInfo.h"
  38. namespace llvm {
  39. class MachineBasicBlock;
  40. class MachineRegisterInfo;
  41. class LiveVariables : public MachineFunctionPass {
  42. public:
  43. static char ID; // Pass identification, replacement for typeid
  44. LiveVariables() : MachineFunctionPass(ID) {
  45. initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
  46. }
  47. /// VarInfo - This represents the regions where a virtual register is live in
  48. /// the program. We represent this with three different pieces of
  49. /// information: the set of blocks in which the instruction is live
  50. /// throughout, the set of blocks in which the instruction is actually used,
  51. /// and the set of non-phi instructions that are the last users of the value.
  52. ///
  53. /// In the common case where a value is defined and killed in the same block,
  54. /// There is one killing instruction, and AliveBlocks is empty.
  55. ///
  56. /// Otherwise, the value is live out of the block. If the value is live
  57. /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
  58. /// where the liveness range ends are not included in AliveBlocks, instead
  59. /// being captured by the Kills set. In these blocks, the value is live into
  60. /// the block (unless the value is defined and killed in the same block) and
  61. /// lives until the specified instruction. Note that there cannot ever be a
  62. /// value whose Kills set contains two instructions from the same basic block.
  63. ///
  64. /// PHI nodes complicate things a bit. If a PHI node is the last user of a
  65. /// value in one of its predecessor blocks, it is not listed in the kills set,
  66. /// but does include the predecessor block in the AliveBlocks set (unless that
  67. /// block also defines the value). This leads to the (perfectly sensical)
  68. /// situation where a value is defined in a block, and the last use is a phi
  69. /// node in the successor. In this case, AliveBlocks is empty (the value is
  70. /// not live across any blocks) and Kills is empty (phi nodes are not
  71. /// included). This is sensical because the value must be live to the end of
  72. /// the block, but is not live in any successor blocks.
  73. struct VarInfo {
  74. /// AliveBlocks - Set of blocks in which this value is alive completely
  75. /// through. This is a bit set which uses the basic block number as an
  76. /// index.
  77. ///
  78. SparseBitVector<> AliveBlocks;
  79. /// Kills - List of MachineInstruction's which are the last use of this
  80. /// virtual register (kill it) in their basic block.
  81. ///
  82. std::vector<MachineInstr*> Kills;
  83. /// removeKill - Delete a kill corresponding to the specified
  84. /// machine instruction. Returns true if there was a kill
  85. /// corresponding to this instruction, false otherwise.
  86. bool removeKill(MachineInstr *MI) {
  87. std::vector<MachineInstr*>::iterator
  88. I = std::find(Kills.begin(), Kills.end(), MI);
  89. if (I == Kills.end())
  90. return false;
  91. Kills.erase(I);
  92. return true;
  93. }
  94. /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
  95. MachineInstr *findKill(const MachineBasicBlock *MBB) const;
  96. /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
  97. /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
  98. /// MBB, it is not considered live in.
  99. bool isLiveIn(const MachineBasicBlock &MBB,
  100. unsigned Reg,
  101. MachineRegisterInfo &MRI);
  102. void dump() const;
  103. };
  104. private:
  105. /// VirtRegInfo - This list is a mapping from virtual register number to
  106. /// variable information.
  107. ///
  108. IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
  109. /// PHIJoins - list of virtual registers that are PHI joins. These registers
  110. /// may have multiple definitions, and they require special handling when
  111. /// building live intervals.
  112. SparseBitVector<> PHIJoins;
  113. private: // Intermediate data structures
  114. MachineFunction *MF;
  115. MachineRegisterInfo* MRI;
  116. const TargetRegisterInfo *TRI;
  117. // PhysRegInfo - Keep track of which instruction was the last def of a
  118. // physical register. This is a purely local property, because all physical
  119. // register references are presumed dead across basic blocks.
  120. MachineInstr **PhysRegDef;
  121. // PhysRegInfo - Keep track of which instruction was the last use of a
  122. // physical register. This is a purely local property, because all physical
  123. // register references are presumed dead across basic blocks.
  124. MachineInstr **PhysRegUse;
  125. SmallVector<unsigned, 4> *PHIVarInfo;
  126. // DistanceMap - Keep track the distance of a MI from the start of the
  127. // current basic block.
  128. DenseMap<MachineInstr*, unsigned> DistanceMap;
  129. /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
  130. /// uses. Pay special attention to the sub-register uses which may come below
  131. /// the last use of the whole register.
  132. bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
  133. /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
  134. void HandleRegMask(const MachineOperand&);
  135. void HandlePhysRegUse(unsigned Reg, MachineInstr *MI);
  136. void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
  137. SmallVector<unsigned, 4> &Defs);
  138. void UpdatePhysRegDefs(MachineInstr *MI, SmallVector<unsigned, 4> &Defs);
  139. /// FindLastRefOrPartRef - Return the last reference or partial reference of
  140. /// the specified register.
  141. MachineInstr *FindLastRefOrPartRef(unsigned Reg);
  142. /// FindLastPartialDef - Return the last partial def of the specified
  143. /// register. Also returns the sub-registers that're defined by the
  144. /// instruction.
  145. MachineInstr *FindLastPartialDef(unsigned Reg,
  146. SmallSet<unsigned,4> &PartDefRegs);
  147. /// analyzePHINodes - Gather information about the PHI nodes in here. In
  148. /// particular, we want to map the variable information of a virtual
  149. /// register which is used in a PHI node. We map that to the BB the vreg
  150. /// is coming from.
  151. void analyzePHINodes(const MachineFunction& Fn);
  152. public:
  153. virtual bool runOnMachineFunction(MachineFunction &MF);
  154. /// RegisterDefIsDead - Return true if the specified instruction defines the
  155. /// specified register, but that definition is dead.
  156. bool RegisterDefIsDead(MachineInstr *MI, unsigned Reg) const;
  157. //===--------------------------------------------------------------------===//
  158. // API to update live variable information
  159. /// replaceKillInstruction - Update register kill info by replacing a kill
  160. /// instruction with a new one.
  161. void replaceKillInstruction(unsigned Reg, MachineInstr *OldMI,
  162. MachineInstr *NewMI);
  163. /// addVirtualRegisterKilled - Add information about the fact that the
  164. /// specified register is killed after being used by the specified
  165. /// instruction. If AddIfNotFound is true, add a implicit operand if it's
  166. /// not found.
  167. void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr *MI,
  168. bool AddIfNotFound = false) {
  169. if (MI->addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
  170. getVarInfo(IncomingReg).Kills.push_back(MI);
  171. }
  172. /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
  173. /// register from the live variable information. Returns true if the
  174. /// variable was marked as killed by the specified instruction,
  175. /// false otherwise.
  176. bool removeVirtualRegisterKilled(unsigned reg, MachineInstr *MI) {
  177. if (!getVarInfo(reg).removeKill(MI))
  178. return false;
  179. bool Removed = false;
  180. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
  181. MachineOperand &MO = MI->getOperand(i);
  182. if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
  183. MO.setIsKill(false);
  184. Removed = true;
  185. break;
  186. }
  187. }
  188. assert(Removed && "Register is not used by this instruction!");
  189. (void)Removed;
  190. return true;
  191. }
  192. /// removeVirtualRegistersKilled - Remove all killed info for the specified
  193. /// instruction.
  194. void removeVirtualRegistersKilled(MachineInstr *MI);
  195. /// addVirtualRegisterDead - Add information about the fact that the specified
  196. /// register is dead after being used by the specified instruction. If
  197. /// AddIfNotFound is true, add a implicit operand if it's not found.
  198. void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr *MI,
  199. bool AddIfNotFound = false) {
  200. if (MI->addRegisterDead(IncomingReg, TRI, AddIfNotFound))
  201. getVarInfo(IncomingReg).Kills.push_back(MI);
  202. }
  203. /// removeVirtualRegisterDead - Remove the specified kill of the virtual
  204. /// register from the live variable information. Returns true if the
  205. /// variable was marked dead at the specified instruction, false
  206. /// otherwise.
  207. bool removeVirtualRegisterDead(unsigned reg, MachineInstr *MI) {
  208. if (!getVarInfo(reg).removeKill(MI))
  209. return false;
  210. bool Removed = false;
  211. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
  212. MachineOperand &MO = MI->getOperand(i);
  213. if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
  214. MO.setIsDead(false);
  215. Removed = true;
  216. break;
  217. }
  218. }
  219. assert(Removed && "Register is not defined by this instruction!");
  220. (void)Removed;
  221. return true;
  222. }
  223. void getAnalysisUsage(AnalysisUsage &AU) const;
  224. virtual void releaseMemory() {
  225. VirtRegInfo.clear();
  226. }
  227. /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
  228. /// register.
  229. VarInfo &getVarInfo(unsigned RegIdx);
  230. void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
  231. MachineBasicBlock *BB);
  232. void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
  233. MachineBasicBlock *BB,
  234. std::vector<MachineBasicBlock*> &WorkList);
  235. void HandleVirtRegDef(unsigned reg, MachineInstr *MI);
  236. void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB,
  237. MachineInstr *MI);
  238. bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
  239. return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
  240. }
  241. /// isLiveOut - Determine if Reg is live out from MBB, when not considering
  242. /// PHI nodes. This means that Reg is either killed by a successor block or
  243. /// passed through one.
  244. bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
  245. /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
  246. /// variables that are live out of DomBB and live into SuccBB will be marked
  247. /// as passing live through BB. This method assumes that the machine code is
  248. /// still in SSA form.
  249. void addNewBlock(MachineBasicBlock *BB,
  250. MachineBasicBlock *DomBB,
  251. MachineBasicBlock *SuccBB);
  252. /// isPHIJoin - Return true if Reg is a phi join register.
  253. bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
  254. /// setPHIJoin - Mark Reg as a phi join register.
  255. void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
  256. };
  257. } // End llvm namespace
  258. #endif