|
|
//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR4D_H
#define VECTOR4D_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
#if !defined( PLATFORM_PPC ) && !defined( _PS3 )
#include <xmmintrin.h> // for sse
#endif
#include "tier0/basetypes.h" // For vec_t, put this somewhere else?
#include "tier0/dbg.h"
#include "mathlib/math_pfns.h"
#include "mathlib/vector.h"
#include "vstdlib/random.h"
// forward declarations
class Vector; class Vector2D;
//=========================================================
// 4D Vector4D
//=========================================================
class Vector4D { public: // Members
vec_t x, y, z, w;
// Construction/destruction
Vector4D(); Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W); explicit Vector4D(const float *pFloat);
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f, vec_t iw=0.0f); void Init( const Vector& src, vec_t iw=0.0f );
// Got any nasty NAN's?
bool IsValid() const;
// array access...
vec_t operator[](int i) const; vec_t& operator[](int i);
// Base address...
inline vec_t* Base(); inline vec_t const* Base() const;
// Cast to Vector and Vector2D...
Vector& AsVector3D(); Vector const& AsVector3D() const;
Vector2D& AsVector2D(); Vector2D const& AsVector2D() const;
// Initialization methods
void Random( vec_t minVal, vec_t maxVal );
// equality
bool operator==(const Vector4D& v) const; bool operator!=(const Vector4D& v) const;
// arithmetic operations
Vector4D& operator+=(const Vector4D &v); Vector4D& operator-=(const Vector4D &v); Vector4D& operator*=(const Vector4D &v); Vector4D& operator*=(float s); Vector4D& operator/=(const Vector4D &v); Vector4D& operator/=(float s);
Vector4D operator-( void ) const; Vector4D operator*( float fl ) const; Vector4D operator/( float fl ) const; Vector4D operator*( const Vector4D& v ) const; Vector4D operator+( const Vector4D& v ) const; Vector4D operator-( const Vector4D& v ) const;
// negate the Vector4D components
void Negate();
// Get the Vector4D's magnitude.
vec_t Length() const;
// Get the Vector4D's magnitude squared.
vec_t LengthSqr(void) const;
// return true if this vector is (0,0,0,0) within tolerance
bool IsZero( float tolerance = 0.01f ) const { return (x > -tolerance && x < tolerance && y > -tolerance && y < tolerance && z > -tolerance && z < tolerance && w > -tolerance && w < tolerance); }
// Get the distance from this Vector4D to the other one.
vec_t DistTo(const Vector4D &vOther) const;
// Get the distance from this Vector4D to the other one squared.
vec_t DistToSqr(const Vector4D &vOther) const;
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual Vector4D equation (because it's done per-component
// rather than per-Vector4D).
void MulAdd(Vector4D const& a, Vector4D const& b, float scalar);
// Dot product.
vec_t Dot(Vector4D const& vOther) const;
// No copy constructors allowed if we're in optimal mode
#ifdef VECTOR_NO_SLOW_OPERATIONS
private: #else
public: #endif
Vector4D(Vector4D const& vOther);
// No assignment operators either...
Vector4D& operator=( Vector4D const& src ); };
const Vector4D vec4_origin( 0.0f, 0.0f, 0.0f, 0.0f ); const Vector4D vec4_invalid( FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX );
//-----------------------------------------------------------------------------
// SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 Vector4DAligned : public Vector4D { public: Vector4DAligned(void) {} Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W );
inline void Set( vec_t X, vec_t Y, vec_t Z, vec_t W ); inline void InitZero( void );
inline __m128 &AsM128() { return *(__m128*)&x; } inline const __m128 &AsM128() const { return *(const __m128*)&x; }
private: // No copy constructors allowed if we're in optimal mode
Vector4DAligned( Vector4DAligned const& vOther );
// No assignment operators either...
Vector4DAligned& operator=( Vector4DAligned const& src ); } ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector4D related operations
//-----------------------------------------------------------------------------
// Vector4D clear
void Vector4DClear( Vector4D& a );
// Copy
void Vector4DCopy( Vector4D const& src, Vector4D& dst );
// Vector4D arithmetic
void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& result ); void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& result ); void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& result ); void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result );
// Vector4DAligned arithmetic
void Vector4DMultiplyAligned( Vector4DAligned const& a, vec_t b, Vector4DAligned& result );
#define Vector4DExpand( v ) (v).x, (v).y, (v).z, (v).w
// Normalization
vec_t Vector4DNormalize( Vector4D& v );
// Length
vec_t Vector4DLength( Vector4D const& v );
// Dot Product
vec_t DotProduct4D(Vector4D const& a, Vector4D const& b);
// Linearly interpolate between two vectors
void Vector4DLerp(Vector4D const& src1, Vector4D const& src2, vec_t t, Vector4D& dest );
//-----------------------------------------------------------------------------
//
// Inlined Vector4D methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D() { #ifdef _DEBUG
// Initialize to NAN to catch errors
x = y = z = w = VEC_T_NAN; #endif
}
inline Vector4D::Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); }
inline Vector4D::Vector4D(const float *pFloat) { Assert( pFloat ); x = pFloat[0]; y = pFloat[1]; z = pFloat[2]; w = pFloat[3]; Assert( IsValid() ); }
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D(const Vector4D &vOther) { Assert( vOther.IsValid() ); x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w; }
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector4D::Init( vec_t ix, vec_t iy, vec_t iz, vec_t iw ) { x = ix; y = iy; z = iz; w = iw; Assert( IsValid() ); }
inline void Vector4D::Init( const Vector& src, vec_t iw ) { x = src.x; y = src.y; z = src.z; w = iw; Assert( IsValid() ); }
#if !defined(__SPU__)
inline void Vector4D::Random( vec_t minVal, vec_t maxVal ) { x = RandomFloat( minVal , maxVal ); y = RandomFloat( minVal , maxVal ); z = RandomFloat( minVal , maxVal ); w = RandomFloat( minVal , maxVal ); } #endif
inline void Vector4DClear( Vector4D& a ) { a.x = a.y = a.z = a.w = 0.0f; }
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector4D& Vector4D::operator=(const Vector4D &vOther) { Assert( vOther.IsValid() ); x=vOther.x; y=vOther.y; z=vOther.z; w=vOther.w; return *this; }
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector4D::operator[](int i) { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; }
inline vec_t Vector4D::operator[](int i) const { Assert( (i >= 0) && (i < 4) ); return ((vec_t*)this)[i]; }
//-----------------------------------------------------------------------------
// Cast to Vector and Vector2D...
//-----------------------------------------------------------------------------
inline Vector& Vector4D::AsVector3D() { return *(Vector*)this; }
inline Vector const& Vector4D::AsVector3D() const { return *(Vector const*)this; }
inline Vector2D& Vector4D::AsVector2D() { return *(Vector2D*)this; }
inline Vector2D const& Vector4D::AsVector2D() const { return *(Vector2D const*)this; }
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector4D::Base() { return (vec_t*)this; }
inline vec_t const* Vector4D::Base() const { return (vec_t const*)this; }
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector4D::IsValid() const { return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w); }
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector4D::operator==( Vector4D const& src ) const { Assert( src.IsValid() && IsValid() ); return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w); }
inline bool Vector4D::operator!=( Vector4D const& src ) const { Assert( src.IsValid() && IsValid() ); return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w); }
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void Vector4DCopy( Vector4D const& src, Vector4D& dst ) { Assert( src.IsValid() ); dst.x = src.x; dst.y = src.y; dst.z = src.z; dst.w = src.w; }
inline void Vector4D::CopyToArray(float* rgfl) const { Assert( IsValid() ); Assert( rgfl ); rgfl[0] = x; rgfl[1] = y; rgfl[2] = z; rgfl[3] = w; }
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline void Vector4D::Negate() { Assert( IsValid() ); x = -x; y = -y; z = -z; w = -w; }
inline Vector4D& Vector4D::operator+=(const Vector4D& v) { Assert( IsValid() && v.IsValid() ); x+=v.x; y+=v.y; z += v.z; w += v.w; return *this; }
inline Vector4D& Vector4D::operator-=(const Vector4D& v) { Assert( IsValid() && v.IsValid() ); x-=v.x; y-=v.y; z -= v.z; w -= v.w; return *this; }
inline Vector4D& Vector4D::operator*=(float fl) { x *= fl; y *= fl; z *= fl; w *= fl; Assert( IsValid() ); return *this; }
inline Vector4D& Vector4D::operator*=(Vector4D const& v) { x *= v.x; y *= v.y; z *= v.z; w *= v.w; Assert( IsValid() ); return *this; }
inline Vector4D Vector4D::operator-(void) const { return Vector4D(-x,-y,-z,-w); }
inline Vector4D Vector4D::operator+(const Vector4D& v) const { Vector4D res; Vector4DAdd( *this, v, res ); return res; }
inline Vector4D Vector4D::operator-(const Vector4D& v) const { Vector4D res; Vector4DSubtract( *this, v, res ); return res; }
inline Vector4D Vector4D::operator*(float fl) const { Vector4D res; Vector4DMultiply( *this, fl, res ); return res; }
inline Vector4D Vector4D::operator*(const Vector4D& v) const { Vector4D res; Vector4DMultiply( *this, v, res ); return res; }
inline Vector4D Vector4D::operator/(float fl) const { Vector4D res; Vector4DDivide( *this, fl, res ); return res; }
inline Vector4D operator*( float fl, const Vector4D& v ) { return v * fl; }
inline Vector4D& Vector4D::operator/=(float fl) { Assert( fl != 0.0f ); float oofl = 1.0f / fl; x *= oofl; y *= oofl; z *= oofl; w *= oofl; Assert( IsValid() ); return *this; }
inline Vector4D& Vector4D::operator/=(Vector4D const& v) { Assert( v.x != 0.0f && v.y != 0.0f && v.z != 0.0f && v.w != 0.0f ); x /= v.x; y /= v.y; z /= v.z; w /= v.w; Assert( IsValid() ); return *this; }
inline void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x + b.x; c.y = a.y + b.y; c.z = a.z + b.z; c.w = a.w + b.w; }
inline void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x - b.x; c.y = a.y - b.y; c.z = a.z - b.z; c.w = a.w - b.w; }
inline void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& c ) { Assert( a.IsValid() && IsFinite(b) ); c.x = a.x * b; c.y = a.y * b; c.z = a.z * b; c.w = a.w * b; }
inline void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() && b.IsValid() ); c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; c.w = a.w * b.w; }
inline void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& c ) { Assert( a.IsValid() ); Assert( b != 0.0f ); vec_t oob = 1.0f / b; c.x = a.x * oob; c.y = a.y * oob; c.z = a.z * oob; c.w = a.w * oob; }
inline void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& c ) { Assert( a.IsValid() ); Assert( (b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) && (b.w != 0.0f) ); c.x = a.x / b.x; c.y = a.y / b.y; c.z = a.z / b.z; c.w = a.w / b.w; }
inline void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result ) { Assert( start.IsValid() && IsFinite(s) && dir.IsValid() ); result.x = start.x + s*dir.x; result.y = start.y + s*dir.y; result.z = start.z + s*dir.z; result.w = start.w + s*dir.w; }
// FIXME: Remove
// For backwards compatability
inline void Vector4D::MulAdd(Vector4D const& a, Vector4D const& b, float scalar) { x = a.x + b.x * scalar; y = a.y + b.y * scalar; z = a.z + b.z * scalar; w = a.w + b.w * scalar; }
inline void Vector4DLerp(const Vector4D& src1, const Vector4D& src2, vec_t t, Vector4D& dest ) { dest[0] = src1[0] + (src2[0] - src1[0]) * t; dest[1] = src1[1] + (src2[1] - src1[1]) * t; dest[2] = src1[2] + (src2[2] - src1[2]) * t; dest[3] = src1[3] + (src2[3] - src1[3]) * t; }
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
inline vec_t DotProduct4D(const Vector4D& a, const Vector4D& b) { Assert( a.IsValid() && b.IsValid() ); return( a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w ); }
// for backwards compatability
inline vec_t Vector4D::Dot( Vector4D const& vOther ) const { return DotProduct4D( *this, vOther ); }
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t Vector4DLength( Vector4D const& v ) { Assert( v.IsValid() ); return (vec_t)FastSqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w); }
inline vec_t Vector4D::LengthSqr(void) const { Assert( IsValid() ); return (x*x + y*y + z*z + w*w); }
inline vec_t Vector4D::Length(void) const { return Vector4DLength( *this ); }
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t Vector4DNormalize( Vector4D& v ) { Assert( v.IsValid() ); vec_t l = v.Length(); if (l != 0.0f) { v /= l; } else { v.x = v.y = v.z = v.w = 0.0f; } return l; }
//-----------------------------------------------------------------------------
// Get the distance from this Vector4D to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector4D::DistTo(const Vector4D &vOther) const { Vector4D delta; Vector4DSubtract( *this, vOther, delta ); return delta.Length(); }
inline vec_t Vector4D::DistToSqr(const Vector4D &vOther) const { Vector4D delta; Vector4DSubtract( *this, vOther, delta ); return delta.LengthSqr(); }
//-----------------------------------------------------------------------------
// Vector4DAligned routines
//-----------------------------------------------------------------------------
inline Vector4DAligned::Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); }
inline void Vector4DAligned::Set( vec_t X, vec_t Y, vec_t Z, vec_t W ) { x = X; y = Y; z = Z; w = W; Assert( IsValid() ); }
inline void Vector4DAligned::InitZero( void ) { #if !defined( PLATFORM_PPC )
this->AsM128() = _mm_set1_ps( 0.0f ); #elif defined(_PS3)
this->AsM128() =VMX_ZERO; #else
this->AsM128() = __vspltisw( 0 ); #endif
Assert( IsValid() ); }
inline void Vector4DMultiplyAligned( Vector4DAligned const& a, Vector4DAligned const& b, Vector4DAligned& c ) { Assert( a.IsValid() && b.IsValid() ); #if !defined( PLATFORM_PPC )
c.x = a.x * b.x; c.y = a.y * b.y; c.z = a.z * b.z; c.w = a.w * b.w; #elif defined(_PS3)
c.AsM128() = __vec_mul( a.AsM128(), b.AsM128()); #else
c.AsM128() = __vmulfp( a.AsM128(), b.AsM128() ); #endif
}
inline void Vector4DWeightMAD( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB ) { Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) );
#if !defined( PLATFORM_PPC )
vOutA.x += vInA.x * w; vOutA.y += vInA.y * w; vOutA.z += vInA.z * w; vOutA.w += vInA.w * w;
vOutB.x += vInB.x * w; vOutB.y += vInB.y * w; vOutB.z += vInB.z * w; vOutB.w += vInB.w * w; #elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp=vec_splats(w); #else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp=__m128(w); #endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = vec_madd( vInB.AsM128(), temp, vOutB.AsM128() ); #else
__vector4 temp;
temp = __lvlx( &w, 0 ); temp = __vspltw( temp, 0 );
vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() ); #endif
}
inline void Vector4DWeightMADSSE( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB ) { Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) );
#if !defined( PLATFORM_PPC )
// Replicate scalar float out to 4 components
__m128 packed = _mm_set1_ps( w );
// 4D SSE Vector MAD
vOutA.AsM128() = _mm_add_ps( vOutA.AsM128(), _mm_mul_ps( vInA.AsM128(), packed ) ); vOutB.AsM128() = _mm_add_ps( vOutB.AsM128(), _mm_mul_ps( vInB.AsM128(), packed ) ); #elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp=vec_splats(w); #else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp=__m128(w); #endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = vec_madd( vInB.AsM128(), temp, vOutB.AsM128() ); #else
__vector4 temp;
temp = __lvlx( &w, 0 ); temp = __vspltw( temp, 0 );
vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() ); vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() ); #endif
}
#endif // VECTOR4D_H
|