Counter Strike : Global Offensive Source Code
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

771 lines
19 KiB

//========= Copyright 1996-2005, Valve Corporation, All rights reserved. ============//
//
// Purpose:
//
// $NoKeywords: $
//
//=============================================================================//
#ifndef VECTOR4D_H
#define VECTOR4D_H
#ifdef _WIN32
#pragma once
#endif
#include <math.h>
#include <float.h>
#if !defined( PLATFORM_PPC ) && !defined( _PS3 )
#include <xmmintrin.h> // for sse
#endif
#include "tier0/basetypes.h" // For vec_t, put this somewhere else?
#include "tier0/dbg.h"
#include "mathlib/math_pfns.h"
#include "mathlib/vector.h"
#include "vstdlib/random.h"
// forward declarations
class Vector;
class Vector2D;
//=========================================================
// 4D Vector4D
//=========================================================
class Vector4D
{
public:
// Members
vec_t x, y, z, w;
// Construction/destruction
Vector4D();
Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W);
explicit Vector4D(const float *pFloat);
// Initialization
void Init(vec_t ix=0.0f, vec_t iy=0.0f, vec_t iz=0.0f, vec_t iw=0.0f);
void Init( const Vector& src, vec_t iw=0.0f );
// Got any nasty NAN's?
bool IsValid() const;
// array access...
vec_t operator[](int i) const;
vec_t& operator[](int i);
// Base address...
inline vec_t* Base();
inline vec_t const* Base() const;
// Cast to Vector and Vector2D...
Vector& AsVector3D();
Vector const& AsVector3D() const;
Vector2D& AsVector2D();
Vector2D const& AsVector2D() const;
// Initialization methods
void Random( vec_t minVal, vec_t maxVal );
// equality
bool operator==(const Vector4D& v) const;
bool operator!=(const Vector4D& v) const;
// arithmetic operations
Vector4D& operator+=(const Vector4D &v);
Vector4D& operator-=(const Vector4D &v);
Vector4D& operator*=(const Vector4D &v);
Vector4D& operator*=(float s);
Vector4D& operator/=(const Vector4D &v);
Vector4D& operator/=(float s);
Vector4D operator-( void ) const;
Vector4D operator*( float fl ) const;
Vector4D operator/( float fl ) const;
Vector4D operator*( const Vector4D& v ) const;
Vector4D operator+( const Vector4D& v ) const;
Vector4D operator-( const Vector4D& v ) const;
// negate the Vector4D components
void Negate();
// Get the Vector4D's magnitude.
vec_t Length() const;
// Get the Vector4D's magnitude squared.
vec_t LengthSqr(void) const;
// return true if this vector is (0,0,0,0) within tolerance
bool IsZero( float tolerance = 0.01f ) const
{
return (x > -tolerance && x < tolerance &&
y > -tolerance && y < tolerance &&
z > -tolerance && z < tolerance &&
w > -tolerance && w < tolerance);
}
// Get the distance from this Vector4D to the other one.
vec_t DistTo(const Vector4D &vOther) const;
// Get the distance from this Vector4D to the other one squared.
vec_t DistToSqr(const Vector4D &vOther) const;
// Copy
void CopyToArray(float* rgfl) const;
// Multiply, add, and assign to this (ie: *this = a + b * scalar). This
// is about 12% faster than the actual Vector4D equation (because it's done per-component
// rather than per-Vector4D).
void MulAdd(Vector4D const& a, Vector4D const& b, float scalar);
// Dot product.
vec_t Dot(Vector4D const& vOther) const;
// No copy constructors allowed if we're in optimal mode
#ifdef VECTOR_NO_SLOW_OPERATIONS
private:
#else
public:
#endif
Vector4D(Vector4D const& vOther);
// No assignment operators either...
Vector4D& operator=( Vector4D const& src );
};
const Vector4D vec4_origin( 0.0f, 0.0f, 0.0f, 0.0f );
const Vector4D vec4_invalid( FLT_MAX, FLT_MAX, FLT_MAX, FLT_MAX );
//-----------------------------------------------------------------------------
// SSE optimized routines
//-----------------------------------------------------------------------------
class ALIGN16 Vector4DAligned : public Vector4D
{
public:
Vector4DAligned(void) {}
Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W );
inline void Set( vec_t X, vec_t Y, vec_t Z, vec_t W );
inline void InitZero( void );
inline __m128 &AsM128() { return *(__m128*)&x; }
inline const __m128 &AsM128() const { return *(const __m128*)&x; }
private:
// No copy constructors allowed if we're in optimal mode
Vector4DAligned( Vector4DAligned const& vOther );
// No assignment operators either...
Vector4DAligned& operator=( Vector4DAligned const& src );
} ALIGN16_POST;
//-----------------------------------------------------------------------------
// Vector4D related operations
//-----------------------------------------------------------------------------
// Vector4D clear
void Vector4DClear( Vector4D& a );
// Copy
void Vector4DCopy( Vector4D const& src, Vector4D& dst );
// Vector4D arithmetic
void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& result );
void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& result );
void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& result );
void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& result );
void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& result );
void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& result );
void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result );
// Vector4DAligned arithmetic
void Vector4DMultiplyAligned( Vector4DAligned const& a, vec_t b, Vector4DAligned& result );
#define Vector4DExpand( v ) (v).x, (v).y, (v).z, (v).w
// Normalization
vec_t Vector4DNormalize( Vector4D& v );
// Length
vec_t Vector4DLength( Vector4D const& v );
// Dot Product
vec_t DotProduct4D(Vector4D const& a, Vector4D const& b);
// Linearly interpolate between two vectors
void Vector4DLerp(Vector4D const& src1, Vector4D const& src2, vec_t t, Vector4D& dest );
//-----------------------------------------------------------------------------
//
// Inlined Vector4D methods
//
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
// constructors
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D()
{
#ifdef _DEBUG
// Initialize to NAN to catch errors
x = y = z = w = VEC_T_NAN;
#endif
}
inline Vector4D::Vector4D(vec_t X, vec_t Y, vec_t Z, vec_t W )
{
x = X; y = Y; z = Z; w = W;
Assert( IsValid() );
}
inline Vector4D::Vector4D(const float *pFloat)
{
Assert( pFloat );
x = pFloat[0]; y = pFloat[1]; z = pFloat[2]; w = pFloat[3];
Assert( IsValid() );
}
//-----------------------------------------------------------------------------
// copy constructor
//-----------------------------------------------------------------------------
inline Vector4D::Vector4D(const Vector4D &vOther)
{
Assert( vOther.IsValid() );
x = vOther.x; y = vOther.y; z = vOther.z; w = vOther.w;
}
//-----------------------------------------------------------------------------
// initialization
//-----------------------------------------------------------------------------
inline void Vector4D::Init( vec_t ix, vec_t iy, vec_t iz, vec_t iw )
{
x = ix; y = iy; z = iz; w = iw;
Assert( IsValid() );
}
inline void Vector4D::Init( const Vector& src, vec_t iw )
{
x = src.x; y = src.y; z = src.z; w = iw;
Assert( IsValid() );
}
#if !defined(__SPU__)
inline void Vector4D::Random( vec_t minVal, vec_t maxVal )
{
x = RandomFloat( minVal , maxVal );
y = RandomFloat( minVal , maxVal );
z = RandomFloat( minVal , maxVal );
w = RandomFloat( minVal , maxVal );
}
#endif
inline void Vector4DClear( Vector4D& a )
{
a.x = a.y = a.z = a.w = 0.0f;
}
//-----------------------------------------------------------------------------
// assignment
//-----------------------------------------------------------------------------
inline Vector4D& Vector4D::operator=(const Vector4D &vOther)
{
Assert( vOther.IsValid() );
x=vOther.x; y=vOther.y; z=vOther.z; w=vOther.w;
return *this;
}
//-----------------------------------------------------------------------------
// Array access
//-----------------------------------------------------------------------------
inline vec_t& Vector4D::operator[](int i)
{
Assert( (i >= 0) && (i < 4) );
return ((vec_t*)this)[i];
}
inline vec_t Vector4D::operator[](int i) const
{
Assert( (i >= 0) && (i < 4) );
return ((vec_t*)this)[i];
}
//-----------------------------------------------------------------------------
// Cast to Vector and Vector2D...
//-----------------------------------------------------------------------------
inline Vector& Vector4D::AsVector3D()
{
return *(Vector*)this;
}
inline Vector const& Vector4D::AsVector3D() const
{
return *(Vector const*)this;
}
inline Vector2D& Vector4D::AsVector2D()
{
return *(Vector2D*)this;
}
inline Vector2D const& Vector4D::AsVector2D() const
{
return *(Vector2D const*)this;
}
//-----------------------------------------------------------------------------
// Base address...
//-----------------------------------------------------------------------------
inline vec_t* Vector4D::Base()
{
return (vec_t*)this;
}
inline vec_t const* Vector4D::Base() const
{
return (vec_t const*)this;
}
//-----------------------------------------------------------------------------
// IsValid?
//-----------------------------------------------------------------------------
inline bool Vector4D::IsValid() const
{
return IsFinite(x) && IsFinite(y) && IsFinite(z) && IsFinite(w);
}
//-----------------------------------------------------------------------------
// comparison
//-----------------------------------------------------------------------------
inline bool Vector4D::operator==( Vector4D const& src ) const
{
Assert( src.IsValid() && IsValid() );
return (src.x == x) && (src.y == y) && (src.z == z) && (src.w == w);
}
inline bool Vector4D::operator!=( Vector4D const& src ) const
{
Assert( src.IsValid() && IsValid() );
return (src.x != x) || (src.y != y) || (src.z != z) || (src.w != w);
}
//-----------------------------------------------------------------------------
// Copy
//-----------------------------------------------------------------------------
inline void Vector4DCopy( Vector4D const& src, Vector4D& dst )
{
Assert( src.IsValid() );
dst.x = src.x;
dst.y = src.y;
dst.z = src.z;
dst.w = src.w;
}
inline void Vector4D::CopyToArray(float* rgfl) const
{
Assert( IsValid() );
Assert( rgfl );
rgfl[0] = x; rgfl[1] = y; rgfl[2] = z; rgfl[3] = w;
}
//-----------------------------------------------------------------------------
// standard math operations
//-----------------------------------------------------------------------------
inline void Vector4D::Negate()
{
Assert( IsValid() );
x = -x; y = -y; z = -z; w = -w;
}
inline Vector4D& Vector4D::operator+=(const Vector4D& v)
{
Assert( IsValid() && v.IsValid() );
x+=v.x; y+=v.y; z += v.z; w += v.w;
return *this;
}
inline Vector4D& Vector4D::operator-=(const Vector4D& v)
{
Assert( IsValid() && v.IsValid() );
x-=v.x; y-=v.y; z -= v.z; w -= v.w;
return *this;
}
inline Vector4D& Vector4D::operator*=(float fl)
{
x *= fl;
y *= fl;
z *= fl;
w *= fl;
Assert( IsValid() );
return *this;
}
inline Vector4D& Vector4D::operator*=(Vector4D const& v)
{
x *= v.x;
y *= v.y;
z *= v.z;
w *= v.w;
Assert( IsValid() );
return *this;
}
inline Vector4D Vector4D::operator-(void) const
{
return Vector4D(-x,-y,-z,-w);
}
inline Vector4D Vector4D::operator+(const Vector4D& v) const
{
Vector4D res;
Vector4DAdd( *this, v, res );
return res;
}
inline Vector4D Vector4D::operator-(const Vector4D& v) const
{
Vector4D res;
Vector4DSubtract( *this, v, res );
return res;
}
inline Vector4D Vector4D::operator*(float fl) const
{
Vector4D res;
Vector4DMultiply( *this, fl, res );
return res;
}
inline Vector4D Vector4D::operator*(const Vector4D& v) const
{
Vector4D res;
Vector4DMultiply( *this, v, res );
return res;
}
inline Vector4D Vector4D::operator/(float fl) const
{
Vector4D res;
Vector4DDivide( *this, fl, res );
return res;
}
inline Vector4D operator*( float fl, const Vector4D& v )
{
return v * fl;
}
inline Vector4D& Vector4D::operator/=(float fl)
{
Assert( fl != 0.0f );
float oofl = 1.0f / fl;
x *= oofl;
y *= oofl;
z *= oofl;
w *= oofl;
Assert( IsValid() );
return *this;
}
inline Vector4D& Vector4D::operator/=(Vector4D const& v)
{
Assert( v.x != 0.0f && v.y != 0.0f && v.z != 0.0f && v.w != 0.0f );
x /= v.x;
y /= v.y;
z /= v.z;
w /= v.w;
Assert( IsValid() );
return *this;
}
inline void Vector4DAdd( Vector4D const& a, Vector4D const& b, Vector4D& c )
{
Assert( a.IsValid() && b.IsValid() );
c.x = a.x + b.x;
c.y = a.y + b.y;
c.z = a.z + b.z;
c.w = a.w + b.w;
}
inline void Vector4DSubtract( Vector4D const& a, Vector4D const& b, Vector4D& c )
{
Assert( a.IsValid() && b.IsValid() );
c.x = a.x - b.x;
c.y = a.y - b.y;
c.z = a.z - b.z;
c.w = a.w - b.w;
}
inline void Vector4DMultiply( Vector4D const& a, vec_t b, Vector4D& c )
{
Assert( a.IsValid() && IsFinite(b) );
c.x = a.x * b;
c.y = a.y * b;
c.z = a.z * b;
c.w = a.w * b;
}
inline void Vector4DMultiply( Vector4D const& a, Vector4D const& b, Vector4D& c )
{
Assert( a.IsValid() && b.IsValid() );
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
}
inline void Vector4DDivide( Vector4D const& a, vec_t b, Vector4D& c )
{
Assert( a.IsValid() );
Assert( b != 0.0f );
vec_t oob = 1.0f / b;
c.x = a.x * oob;
c.y = a.y * oob;
c.z = a.z * oob;
c.w = a.w * oob;
}
inline void Vector4DDivide( Vector4D const& a, Vector4D const& b, Vector4D& c )
{
Assert( a.IsValid() );
Assert( (b.x != 0.0f) && (b.y != 0.0f) && (b.z != 0.0f) && (b.w != 0.0f) );
c.x = a.x / b.x;
c.y = a.y / b.y;
c.z = a.z / b.z;
c.w = a.w / b.w;
}
inline void Vector4DMA( Vector4D const& start, float s, Vector4D const& dir, Vector4D& result )
{
Assert( start.IsValid() && IsFinite(s) && dir.IsValid() );
result.x = start.x + s*dir.x;
result.y = start.y + s*dir.y;
result.z = start.z + s*dir.z;
result.w = start.w + s*dir.w;
}
// FIXME: Remove
// For backwards compatability
inline void Vector4D::MulAdd(Vector4D const& a, Vector4D const& b, float scalar)
{
x = a.x + b.x * scalar;
y = a.y + b.y * scalar;
z = a.z + b.z * scalar;
w = a.w + b.w * scalar;
}
inline void Vector4DLerp(const Vector4D& src1, const Vector4D& src2, vec_t t, Vector4D& dest )
{
dest[0] = src1[0] + (src2[0] - src1[0]) * t;
dest[1] = src1[1] + (src2[1] - src1[1]) * t;
dest[2] = src1[2] + (src2[2] - src1[2]) * t;
dest[3] = src1[3] + (src2[3] - src1[3]) * t;
}
//-----------------------------------------------------------------------------
// dot, cross
//-----------------------------------------------------------------------------
inline vec_t DotProduct4D(const Vector4D& a, const Vector4D& b)
{
Assert( a.IsValid() && b.IsValid() );
return( a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w );
}
// for backwards compatability
inline vec_t Vector4D::Dot( Vector4D const& vOther ) const
{
return DotProduct4D( *this, vOther );
}
//-----------------------------------------------------------------------------
// length
//-----------------------------------------------------------------------------
inline vec_t Vector4DLength( Vector4D const& v )
{
Assert( v.IsValid() );
return (vec_t)FastSqrt(v.x*v.x + v.y*v.y + v.z*v.z + v.w*v.w);
}
inline vec_t Vector4D::LengthSqr(void) const
{
Assert( IsValid() );
return (x*x + y*y + z*z + w*w);
}
inline vec_t Vector4D::Length(void) const
{
return Vector4DLength( *this );
}
//-----------------------------------------------------------------------------
// Normalization
//-----------------------------------------------------------------------------
// FIXME: Can't use until we're un-macroed in mathlib.h
inline vec_t Vector4DNormalize( Vector4D& v )
{
Assert( v.IsValid() );
vec_t l = v.Length();
if (l != 0.0f)
{
v /= l;
}
else
{
v.x = v.y = v.z = v.w = 0.0f;
}
return l;
}
//-----------------------------------------------------------------------------
// Get the distance from this Vector4D to the other one
//-----------------------------------------------------------------------------
inline vec_t Vector4D::DistTo(const Vector4D &vOther) const
{
Vector4D delta;
Vector4DSubtract( *this, vOther, delta );
return delta.Length();
}
inline vec_t Vector4D::DistToSqr(const Vector4D &vOther) const
{
Vector4D delta;
Vector4DSubtract( *this, vOther, delta );
return delta.LengthSqr();
}
//-----------------------------------------------------------------------------
// Vector4DAligned routines
//-----------------------------------------------------------------------------
inline Vector4DAligned::Vector4DAligned( vec_t X, vec_t Y, vec_t Z, vec_t W )
{
x = X; y = Y; z = Z; w = W;
Assert( IsValid() );
}
inline void Vector4DAligned::Set( vec_t X, vec_t Y, vec_t Z, vec_t W )
{
x = X; y = Y; z = Z; w = W;
Assert( IsValid() );
}
inline void Vector4DAligned::InitZero( void )
{
#if !defined( PLATFORM_PPC )
this->AsM128() = _mm_set1_ps( 0.0f );
#elif defined(_PS3)
this->AsM128() =VMX_ZERO;
#else
this->AsM128() = __vspltisw( 0 );
#endif
Assert( IsValid() );
}
inline void Vector4DMultiplyAligned( Vector4DAligned const& a, Vector4DAligned const& b, Vector4DAligned& c )
{
Assert( a.IsValid() && b.IsValid() );
#if !defined( PLATFORM_PPC )
c.x = a.x * b.x;
c.y = a.y * b.y;
c.z = a.z * b.z;
c.w = a.w * b.w;
#elif defined(_PS3)
c.AsM128() = __vec_mul( a.AsM128(), b.AsM128());
#else
c.AsM128() = __vmulfp( a.AsM128(), b.AsM128() );
#endif
}
inline void Vector4DWeightMAD( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB )
{
Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) );
#if !defined( PLATFORM_PPC )
vOutA.x += vInA.x * w;
vOutA.y += vInA.y * w;
vOutA.z += vInA.z * w;
vOutA.w += vInA.w * w;
vOutB.x += vInB.x * w;
vOutB.y += vInB.y * w;
vOutB.z += vInB.z * w;
vOutB.w += vInB.w * w;
#elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp=vec_splats(w);
#else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp=__m128(w);
#endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd( vInA.AsM128(), temp, vOutA.AsM128() );
vOutB.AsM128() = vec_madd( vInB.AsM128(), temp, vOutB.AsM128() );
#else
__vector4 temp;
temp = __lvlx( &w, 0 );
temp = __vspltw( temp, 0 );
vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() );
vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() );
#endif
}
inline void Vector4DWeightMADSSE( vec_t w, Vector4DAligned const& vInA, Vector4DAligned& vOutA, Vector4DAligned const& vInB, Vector4DAligned& vOutB )
{
Assert( vInA.IsValid() && vInB.IsValid() && IsFinite(w) );
#if !defined( PLATFORM_PPC )
// Replicate scalar float out to 4 components
__m128 packed = _mm_set1_ps( w );
// 4D SSE Vector MAD
vOutA.AsM128() = _mm_add_ps( vOutA.AsM128(), _mm_mul_ps( vInA.AsM128(), packed ) );
vOutB.AsM128() = _mm_add_ps( vOutB.AsM128(), _mm_mul_ps( vInB.AsM128(), packed ) );
#elif defined(_PS3)
#if ( __GNUC__ == 4 ) && ( __GNUC_MINOR__ == 1 ) && ( __GNUC_PATCHLEVEL__ == 1 )
// GCC 4.1.1
__m128 temp=vec_splats(w);
#else //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
__m128 temp=__m128(w);
#endif //__GNUC__ == 4 && __GNUC_MINOR__ == 1 && __GNUC_PATCHLEVEL__ == 1
vOutA.AsM128() = vec_madd( vInA.AsM128(), temp, vOutA.AsM128() );
vOutB.AsM128() = vec_madd( vInB.AsM128(), temp, vOutB.AsM128() );
#else
__vector4 temp;
temp = __lvlx( &w, 0 );
temp = __vspltw( temp, 0 );
vOutA.AsM128() = __vmaddfp( vInA.AsM128(), temp, vOutA.AsM128() );
vOutB.AsM128() = __vmaddfp( vInB.AsM128(), temp, vOutB.AsM128() );
#endif
}
#endif // VECTOR4D_H