|
|
//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the DominatorTree class, which provides fast and efficient
// dominance queries.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/Function.h"
#include "llvm/Pass.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
namespace llvm {
//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
template <class NodeT> class DominatorBase { protected: std::vector<NodeT*> Roots; const bool IsPostDominators; inline explicit DominatorBase(bool isPostDom) : Roots(), IsPostDominators(isPostDom) {} public:
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<NodeT*> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; } };
//===----------------------------------------------------------------------===//
// DomTreeNode - Dominator Tree Node
template<class NodeT> class DominatorTreeBase; struct PostDominatorTree; class MachineBasicBlock;
template <class NodeT> class DomTreeNodeBase { NodeT *TheBB; DomTreeNodeBase<NodeT> *IDom; std::vector<DomTreeNodeBase<NodeT> *> Children; int DFSNumIn, DFSNumOut;
template<class N> friend class DominatorTreeBase; friend struct PostDominatorTree; public: typedef typename std::vector<DomTreeNodeBase<NodeT> *>::iterator iterator; typedef typename std::vector<DomTreeNodeBase<NodeT> *>::const_iterator const_iterator;
iterator begin() { return Children.begin(); } iterator end() { return Children.end(); } const_iterator begin() const { return Children.begin(); } const_iterator end() const { return Children.end(); }
NodeT *getBlock() const { return TheBB; } DomTreeNodeBase<NodeT> *getIDom() const { return IDom; } const std::vector<DomTreeNodeBase<NodeT>*> &getChildren() const { return Children; }
DomTreeNodeBase(NodeT *BB, DomTreeNodeBase<NodeT> *iDom) : TheBB(BB), IDom(iDom), DFSNumIn(-1), DFSNumOut(-1) { }
DomTreeNodeBase<NodeT> *addChild(DomTreeNodeBase<NodeT> *C) { Children.push_back(C); return C; }
size_t getNumChildren() const { return Children.size(); }
void clearAllChildren() { Children.clear(); }
bool compare(const DomTreeNodeBase<NodeT> *Other) const { if (getNumChildren() != Other->getNumChildren()) return true;
SmallPtrSet<const NodeT *, 4> OtherChildren; for (const_iterator I = Other->begin(), E = Other->end(); I != E; ++I) { const NodeT *Nd = (*I)->getBlock(); OtherChildren.insert(Nd); }
for (const_iterator I = begin(), E = end(); I != E; ++I) { const NodeT *N = (*I)->getBlock(); if (OtherChildren.count(N) == 0) return true; } return false; }
void setIDom(DomTreeNodeBase<NodeT> *NewIDom) { assert(IDom && "No immediate dominator?"); if (IDom != NewIDom) { typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), this); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child...
IDom->Children.erase(I);
// Switch to new dominator
IDom = NewIDom; IDom->Children.push_back(this); } }
/// getDFSNumIn/getDFSNumOut - These are an internal implementation detail, do
/// not call them.
unsigned getDFSNumIn() const { return DFSNumIn; } unsigned getDFSNumOut() const { return DFSNumOut; } private: // Return true if this node is dominated by other. Use this only if DFS info
// is valid.
bool DominatedBy(const DomTreeNodeBase<NodeT> *other) const { return this->DFSNumIn >= other->DFSNumIn && this->DFSNumOut <= other->DFSNumOut; } };
EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<BasicBlock>); EXTERN_TEMPLATE_INSTANTIATION(class DomTreeNodeBase<MachineBasicBlock>);
template<class NodeT> inline raw_ostream &operator<<(raw_ostream &o, const DomTreeNodeBase<NodeT> *Node) { if (Node->getBlock()) WriteAsOperand(o, Node->getBlock(), false); else o << " <<exit node>>";
o << " {" << Node->getDFSNumIn() << "," << Node->getDFSNumOut() << "}";
return o << "\n"; }
template<class NodeT> inline void PrintDomTree(const DomTreeNodeBase<NodeT> *N, raw_ostream &o, unsigned Lev) { o.indent(2*Lev) << "[" << Lev << "] " << N; for (typename DomTreeNodeBase<NodeT>::const_iterator I = N->begin(), E = N->end(); I != E; ++I) PrintDomTree<NodeT>(*I, o, Lev+1); }
typedef DomTreeNodeBase<BasicBlock> DomTreeNode;
//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
template<class FuncT, class N> void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, FuncT& F);
template<class NodeT> class DominatorTreeBase : public DominatorBase<NodeT> { bool dominatedBySlowTreeWalk(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) const { assert(A != B); assert(isReachableFromEntry(B)); assert(isReachableFromEntry(A));
const DomTreeNodeBase<NodeT> *IDom; while ((IDom = B->getIDom()) != 0 && IDom != A && IDom != B) B = IDom; // Walk up the tree
return IDom != 0; }
protected: typedef DenseMap<NodeT*, DomTreeNodeBase<NodeT>*> DomTreeNodeMapType; DomTreeNodeMapType DomTreeNodes; DomTreeNodeBase<NodeT> *RootNode;
bool DFSInfoValid; unsigned int SlowQueries; // Information record used during immediate dominators computation.
struct InfoRec { unsigned DFSNum; unsigned Parent; unsigned Semi; NodeT *Label;
InfoRec() : DFSNum(0), Parent(0), Semi(0), Label(0) {} };
DenseMap<NodeT*, NodeT*> IDoms;
// Vertex - Map the DFS number to the BasicBlock*
std::vector<NodeT*> Vertex;
// Info - Collection of information used during the computation of idoms.
DenseMap<NodeT*, InfoRec> Info;
void reset() { for (typename DomTreeNodeMapType::iterator I = this->DomTreeNodes.begin(), E = DomTreeNodes.end(); I != E; ++I) delete I->second; DomTreeNodes.clear(); IDoms.clear(); this->Roots.clear(); Vertex.clear(); RootNode = 0; }
// NewBB is split and now it has one successor. Update dominator tree to
// reflect this change.
template<class N, class GraphT> void Split(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* NewBB) { assert(std::distance(GraphT::child_begin(NewBB), GraphT::child_end(NewBB)) == 1 && "NewBB should have a single successor!"); typename GraphT::NodeType* NewBBSucc = *GraphT::child_begin(NewBB);
std::vector<typename GraphT::NodeType*> PredBlocks; typedef GraphTraits<Inverse<N> > InvTraits; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBB), PE = InvTraits::child_end(NewBB); PI != PE; ++PI) PredBlocks.push_back(*PI);
assert(!PredBlocks.empty() && "No predblocks?");
bool NewBBDominatesNewBBSucc = true; for (typename InvTraits::ChildIteratorType PI = InvTraits::child_begin(NewBBSucc), E = InvTraits::child_end(NewBBSucc); PI != E; ++PI) { typename InvTraits::NodeType *ND = *PI; if (ND != NewBB && !DT.dominates(NewBBSucc, ND) && DT.isReachableFromEntry(ND)) { NewBBDominatesNewBBSucc = false; break; } }
// Find NewBB's immediate dominator and create new dominator tree node for
// NewBB.
NodeT *NewBBIDom = 0; unsigned i = 0; for (i = 0; i < PredBlocks.size(); ++i) if (DT.isReachableFromEntry(PredBlocks[i])) { NewBBIDom = PredBlocks[i]; break; }
// It's possible that none of the predecessors of NewBB are reachable;
// in that case, NewBB itself is unreachable, so nothing needs to be
// changed.
if (!NewBBIDom) return;
for (i = i + 1; i < PredBlocks.size(); ++i) { if (DT.isReachableFromEntry(PredBlocks[i])) NewBBIDom = DT.findNearestCommonDominator(NewBBIDom, PredBlocks[i]); }
// Create the new dominator tree node... and set the idom of NewBB.
DomTreeNodeBase<NodeT> *NewBBNode = DT.addNewBlock(NewBB, NewBBIDom);
// If NewBB strictly dominates other blocks, then it is now the immediate
// dominator of NewBBSucc. Update the dominator tree as appropriate.
if (NewBBDominatesNewBBSucc) { DomTreeNodeBase<NodeT> *NewBBSuccNode = DT.getNode(NewBBSucc); DT.changeImmediateDominator(NewBBSuccNode, NewBBNode); } }
public: explicit DominatorTreeBase(bool isPostDom) : DominatorBase<NodeT>(isPostDom), DFSInfoValid(false), SlowQueries(0) {} virtual ~DominatorTreeBase() { reset(); }
/// compare - Return false if the other dominator tree base matches this
/// dominator tree base. Otherwise return true.
bool compare(DominatorTreeBase &Other) const {
const DomTreeNodeMapType &OtherDomTreeNodes = Other.DomTreeNodes; if (DomTreeNodes.size() != OtherDomTreeNodes.size()) return true;
for (typename DomTreeNodeMapType::const_iterator I = this->DomTreeNodes.begin(), E = this->DomTreeNodes.end(); I != E; ++I) { NodeT *BB = I->first; typename DomTreeNodeMapType::const_iterator OI = OtherDomTreeNodes.find(BB); if (OI == OtherDomTreeNodes.end()) return true;
DomTreeNodeBase<NodeT>* MyNd = I->second; DomTreeNodeBase<NodeT>* OtherNd = OI->second;
if (MyNd->compare(OtherNd)) return true; }
return false; }
virtual void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline DomTreeNodeBase<NodeT> *getNode(NodeT *BB) const { return DomTreeNodes.lookup(BB); }
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNodeBase<NodeT> *getRootNode() { return RootNode; } const DomTreeNodeBase<NodeT> *getRootNode() const { return RootNode; }
/// properlyDominates - Returns true iff A dominates B and A != B.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) { if (A == 0 || B == 0) return false; if (A == B) return false; return dominates(A, B); }
bool properlyDominates(const NodeT *A, const NodeT *B);
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
bool isReachableFromEntry(const NodeT* A) const { assert(!this->isPostDominator() && "This is not implemented for post dominators"); return isReachableFromEntry(getNode(const_cast<NodeT *>(A))); }
inline bool isReachableFromEntry(const DomTreeNodeBase<NodeT> *A) const { return A; }
/// dominates - Returns true iff A dominates B. Note that this is not a
/// constant time operation!
///
inline bool dominates(const DomTreeNodeBase<NodeT> *A, const DomTreeNodeBase<NodeT> *B) { // A node trivially dominates itself.
if (B == A) return true;
// An unreachable node is dominated by anything.
if (!isReachableFromEntry(B)) return true;
// And dominates nothing.
if (!isReachableFromEntry(A)) return false;
// Compare the result of the tree walk and the dfs numbers, if expensive
// checks are enabled.
#ifdef XDEBUG
assert((!DFSInfoValid || (dominatedBySlowTreeWalk(A, B) == B->DominatedBy(A))) && "Tree walk disagrees with dfs numbers!"); #endif
if (DFSInfoValid) return B->DominatedBy(A);
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++; if (SlowQueries > 32) { updateDFSNumbers(); return B->DominatedBy(A); }
return dominatedBySlowTreeWalk(A, B); }
bool dominates(const NodeT *A, const NodeT *B);
NodeT *getRoot() const { assert(this->Roots.size() == 1 && "Should always have entry node!"); return this->Roots[0]; }
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
NodeT *findNearestCommonDominator(NodeT *A, NodeT *B) { assert(A->getParent() == B->getParent() && "Two blocks are not in same function");
// If either A or B is a entry block then it is nearest common dominator
// (for forward-dominators).
if (!this->isPostDominator()) { NodeT &Entry = A->getParent()->front(); if (A == &Entry || B == &Entry) return &Entry; }
// If B dominates A then B is nearest common dominator.
if (dominates(B, A)) return B;
// If A dominates B then A is nearest common dominator.
if (dominates(A, B)) return A;
DomTreeNodeBase<NodeT> *NodeA = getNode(A); DomTreeNodeBase<NodeT> *NodeB = getNode(B);
// Collect NodeA dominators set.
SmallPtrSet<DomTreeNodeBase<NodeT>*, 16> NodeADoms; NodeADoms.insert(NodeA); DomTreeNodeBase<NodeT> *IDomA = NodeA->getIDom(); while (IDomA) { NodeADoms.insert(IDomA); IDomA = IDomA->getIDom(); }
// Walk NodeB immediate dominators chain and find common dominator node.
DomTreeNodeBase<NodeT> *IDomB = NodeB->getIDom(); while (IDomB) { if (NodeADoms.count(IDomB) != 0) return IDomB->getBlock();
IDomB = IDomB->getIDom(); }
return NULL; }
const NodeT *findNearestCommonDominator(const NodeT *A, const NodeT *B) { // Cast away the const qualifiers here. This is ok since
// const is re-introduced on the return type.
return findNearestCommonDominator(const_cast<NodeT *>(A), const_cast<NodeT *>(B)); }
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
DomTreeNodeBase<NodeT> *addNewBlock(NodeT *BB, NodeT *DomBB) { assert(getNode(BB) == 0 && "Block already in dominator tree!"); DomTreeNodeBase<NodeT> *IDomNode = getNode(DomBB); assert(IDomNode && "Not immediate dominator specified for block!"); DFSInfoValid = false; return DomTreeNodes[BB] = IDomNode->addChild(new DomTreeNodeBase<NodeT>(BB, IDomNode)); }
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
void changeImmediateDominator(DomTreeNodeBase<NodeT> *N, DomTreeNodeBase<NodeT> *NewIDom) { assert(N && NewIDom && "Cannot change null node pointers!"); DFSInfoValid = false; N->setIDom(NewIDom); }
void changeImmediateDominator(NodeT *BB, NodeT *NewBB) { changeImmediateDominator(getNode(BB), getNode(NewBB)); }
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
void eraseNode(NodeT *BB) { DomTreeNodeBase<NodeT> *Node = getNode(BB); assert(Node && "Removing node that isn't in dominator tree."); assert(Node->getChildren().empty() && "Node is not a leaf node.");
// Remove node from immediate dominator's children list.
DomTreeNodeBase<NodeT> *IDom = Node->getIDom(); if (IDom) { typename std::vector<DomTreeNodeBase<NodeT>*>::iterator I = std::find(IDom->Children.begin(), IDom->Children.end(), Node); assert(I != IDom->Children.end() && "Not in immediate dominator children set!"); // I am no longer your child...
IDom->Children.erase(I); }
DomTreeNodes.erase(BB); delete Node; }
/// removeNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Invalidates any node pointing to removed
/// block.
void removeNode(NodeT *BB) { assert(getNode(BB) && "Removing node that isn't in dominator tree."); DomTreeNodes.erase(BB); }
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
void splitBlock(NodeT* NewBB) { if (this->IsPostDominators) this->Split<Inverse<NodeT*>, GraphTraits<Inverse<NodeT*> > >(*this, NewBB); else this->Split<NodeT*, GraphTraits<NodeT*> >(*this, NewBB); }
/// print - Convert to human readable form
///
void print(raw_ostream &o) const { o << "=============================--------------------------------\n"; if (this->isPostDominator()) o << "Inorder PostDominator Tree: "; else o << "Inorder Dominator Tree: "; if (!this->DFSInfoValid) o << "DFSNumbers invalid: " << SlowQueries << " slow queries."; o << "\n";
// The postdom tree can have a null root if there are no returns.
if (getRootNode()) PrintDomTree<NodeT>(getRootNode(), o, 1); }
protected: template<class GraphT> friend typename GraphT::NodeType* Eval( DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned LastLinked);
template<class GraphT> friend unsigned DFSPass(DominatorTreeBase<typename GraphT::NodeType>& DT, typename GraphT::NodeType* V, unsigned N);
template<class FuncT, class N> friend void Calculate(DominatorTreeBase<typename GraphTraits<N>::NodeType>& DT, FuncT& F);
/// updateDFSNumbers - Assign In and Out numbers to the nodes while walking
/// dominator tree in dfs order.
void updateDFSNumbers() { unsigned DFSNum = 0;
SmallVector<std::pair<DomTreeNodeBase<NodeT>*, typename DomTreeNodeBase<NodeT>::iterator>, 32> WorkStack;
DomTreeNodeBase<NodeT> *ThisRoot = getRootNode();
if (!ThisRoot) return;
// Even in the case of multiple exits that form the post dominator root
// nodes, do not iterate over all exits, but start from the virtual root
// node. Otherwise bbs, that are not post dominated by any exit but by the
// virtual root node, will never be assigned a DFS number.
WorkStack.push_back(std::make_pair(ThisRoot, ThisRoot->begin())); ThisRoot->DFSNumIn = DFSNum++;
while (!WorkStack.empty()) { DomTreeNodeBase<NodeT> *Node = WorkStack.back().first; typename DomTreeNodeBase<NodeT>::iterator ChildIt = WorkStack.back().second;
// If we visited all of the children of this node, "recurse" back up the
// stack setting the DFOutNum.
if (ChildIt == Node->end()) { Node->DFSNumOut = DFSNum++; WorkStack.pop_back(); } else { // Otherwise, recursively visit this child.
DomTreeNodeBase<NodeT> *Child = *ChildIt; ++WorkStack.back().second;
WorkStack.push_back(std::make_pair(Child, Child->begin())); Child->DFSNumIn = DFSNum++; } }
SlowQueries = 0; DFSInfoValid = true; }
DomTreeNodeBase<NodeT> *getNodeForBlock(NodeT *BB) { if (DomTreeNodeBase<NodeT> *Node = getNode(BB)) return Node;
// Haven't calculated this node yet? Get or calculate the node for the
// immediate dominator.
NodeT *IDom = getIDom(BB);
assert(IDom || this->DomTreeNodes[NULL]); DomTreeNodeBase<NodeT> *IDomNode = getNodeForBlock(IDom);
// Add a new tree node for this BasicBlock, and link it as a child of
// IDomNode
DomTreeNodeBase<NodeT> *C = new DomTreeNodeBase<NodeT>(BB, IDomNode); return this->DomTreeNodes[BB] = IDomNode->addChild(C); }
inline NodeT *getIDom(NodeT *BB) const { return IDoms.lookup(BB); }
inline void addRoot(NodeT* BB) { this->Roots.push_back(BB); }
public: /// recalculate - compute a dominator tree for the given function
template<class FT> void recalculate(FT& F) { typedef GraphTraits<FT*> TraitsTy; reset(); this->Vertex.push_back(0);
if (!this->IsPostDominators) { // Initialize root
NodeT *entry = TraitsTy::getEntryNode(&F); this->Roots.push_back(entry); this->IDoms[entry] = 0; this->DomTreeNodes[entry] = 0;
Calculate<FT, NodeT*>(*this, F); } else { // Initialize the roots list
for (typename TraitsTy::nodes_iterator I = TraitsTy::nodes_begin(&F), E = TraitsTy::nodes_end(&F); I != E; ++I) { if (TraitsTy::child_begin(I) == TraitsTy::child_end(I)) addRoot(I);
// Prepopulate maps so that we don't get iterator invalidation issues later.
this->IDoms[I] = 0; this->DomTreeNodes[I] = 0; }
Calculate<FT, Inverse<NodeT*> >(*this, F); } } };
// These two functions are declared out of line as a workaround for building
// with old (< r147295) versions of clang because of pr11642.
template<class NodeT> bool DominatorTreeBase<NodeT>::dominates(const NodeT *A, const NodeT *B) { if (A == B) return true;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); } template<class NodeT> bool DominatorTreeBase<NodeT>::properlyDominates(const NodeT *A, const NodeT *B) { if (A == B) return false;
// Cast away the const qualifiers here. This is ok since
// this function doesn't actually return the values returned
// from getNode.
return dominates(getNode(const_cast<NodeT *>(A)), getNode(const_cast<NodeT *>(B))); }
EXTERN_TEMPLATE_INSTANTIATION(class DominatorTreeBase<BasicBlock>);
class BasicBlockEdge { const BasicBlock *Start; const BasicBlock *End; public: BasicBlockEdge(const BasicBlock *Start_, const BasicBlock *End_) : Start(Start_), End(End_) { } const BasicBlock *getStart() const { return Start; } const BasicBlock *getEnd() const { return End; } bool isSingleEdge() const; };
//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class DominatorTree : public FunctionPass { public: static char ID; // Pass ID, replacement for typeid
DominatorTreeBase<BasicBlock>* DT;
DominatorTree() : FunctionPass(ID) { initializeDominatorTreePass(*PassRegistry::getPassRegistry()); DT = new DominatorTreeBase<BasicBlock>(false); }
~DominatorTree() { delete DT; }
DominatorTreeBase<BasicBlock>& getBase() { return *DT; }
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<BasicBlock*> &getRoots() const { return DT->getRoots(); }
inline BasicBlock *getRoot() const { return DT->getRoot(); }
inline DomTreeNode *getRootNode() const { return DT->getRootNode(); }
/// compare - Return false if the other dominator tree matches this
/// dominator tree. Otherwise return true.
inline bool compare(DominatorTree &Other) const { DomTreeNode *R = getRootNode(); DomTreeNode *OtherR = Other.getRootNode();
if (!R || !OtherR || R->getBlock() != OtherR->getBlock()) return true;
if (DT->compare(Other.getBase())) return true;
return false; }
virtual bool runOnFunction(Function &F);
virtual void verifyAnalysis() const;
virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); }
inline bool dominates(const DomTreeNode* A, const DomTreeNode* B) const { return DT->dominates(A, B); }
inline bool dominates(const BasicBlock* A, const BasicBlock* B) const { return DT->dominates(A, B); }
// dominates - Return true if Def dominates a use in User. This performs
// the special checks necessary if Def and User are in the same basic block.
// Note that Def doesn't dominate a use in Def itself!
bool dominates(const Instruction *Def, const Use &U) const; bool dominates(const Instruction *Def, const Instruction *User) const; bool dominates(const Instruction *Def, const BasicBlock *BB) const; bool dominates(const BasicBlockEdge &BBE, const Use &U) const; bool dominates(const BasicBlockEdge &BBE, const BasicBlock *BB) const;
bool properlyDominates(const DomTreeNode *A, const DomTreeNode *B) const { return DT->properlyDominates(A, B); }
bool properlyDominates(const BasicBlock *A, const BasicBlock *B) const { return DT->properlyDominates(A, B); }
/// findNearestCommonDominator - Find nearest common dominator basic block
/// for basic block A and B. If there is no such block then return NULL.
inline BasicBlock *findNearestCommonDominator(BasicBlock *A, BasicBlock *B) { return DT->findNearestCommonDominator(A, B); }
inline const BasicBlock *findNearestCommonDominator(const BasicBlock *A, const BasicBlock *B) { return DT->findNearestCommonDominator(A, B); }
inline DomTreeNode *operator[](BasicBlock *BB) const { return DT->getNode(BB); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline DomTreeNode *getNode(BasicBlock *BB) const { return DT->getNode(BB); }
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
inline DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) { return DT->addNewBlock(BB, DomBB); }
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
inline void changeImmediateDominator(BasicBlock *N, BasicBlock* NewIDom) { DT->changeImmediateDominator(N, NewIDom); }
inline void changeImmediateDominator(DomTreeNode *N, DomTreeNode* NewIDom) { DT->changeImmediateDominator(N, NewIDom); }
/// eraseNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Removes node from its immediate dominator's
/// children list. Deletes dominator node associated with basic block BB.
inline void eraseNode(BasicBlock *BB) { DT->eraseNode(BB); }
/// splitBlock - BB is split and now it has one successor. Update dominator
/// tree to reflect this change.
inline void splitBlock(BasicBlock* NewBB) { DT->splitBlock(NewBB); }
bool isReachableFromEntry(const BasicBlock* A) const { return DT->isReachableFromEntry(A); }
bool isReachableFromEntry(const Use &U) const;
virtual void releaseMemory() { DT->releaseMemory(); }
virtual void print(raw_ostream &OS, const Module* M= 0) const; };
//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DomTreeNode*> { typedef DomTreeNode NodeType; typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(NodeType *N) { return N; } static inline ChildIteratorType child_begin(NodeType *N) { return N->begin(); } static inline ChildIteratorType child_end(NodeType *N) { return N->end(); }
typedef df_iterator<DomTreeNode*> nodes_iterator;
static nodes_iterator nodes_begin(DomTreeNode *N) { return df_begin(getEntryNode(N)); }
static nodes_iterator nodes_end(DomTreeNode *N) { return df_end(getEntryNode(N)); } };
template <> struct GraphTraits<DominatorTree*> : public GraphTraits<DomTreeNode*> { static NodeType *getEntryNode(DominatorTree *DT) { return DT->getRootNode(); }
static nodes_iterator nodes_begin(DominatorTree *N) { return df_begin(getEntryNode(N)); }
static nodes_iterator nodes_end(DominatorTree *N) { return df_end(getEntryNode(N)); } };
} // End llvm namespace
#endif
|