You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1572 lines
45 KiB
1572 lines
45 KiB
//========= Copyright © 1996-2005, Valve Corporation, All rights reserved. ============//
|
|
//
|
|
// Purpose:
|
|
//
|
|
//=============================================================================//
|
|
|
|
#ifndef INTERPOLATEDVAR_H
|
|
#define INTERPOLATEDVAR_H
|
|
#ifdef _WIN32
|
|
#pragma once
|
|
#endif
|
|
|
|
#include "tier1/utllinkedlist.h"
|
|
#include "tier1/rangecheckedvar.h"
|
|
#include "tier1/lerp_functions.h"
|
|
#include "tier1/convar.h"
|
|
|
|
|
|
#include "tier0/memdbgon.h"
|
|
|
|
#define COMPARE_HISTORY(a,b) \
|
|
( memcmp( m_VarHistory[a].GetValue(), m_VarHistory[b].GetValue(), sizeof(Type)*GetMaxCount() ) == 0 )
|
|
|
|
// Define this to have it measure whether or not the interpolated entity list
|
|
// is accurate.
|
|
//#define INTERPOLATEDVAR_PARANOID_MEASUREMENT
|
|
|
|
#define LATCH_ANIMATION_VAR (1<<0) // use AnimTime as sample basis
|
|
#define LATCH_SIMULATION_VAR (1<<1) // use SimulationTime as sample basis
|
|
|
|
#define EXCLUDE_AUTO_LATCH (1<<2)
|
|
#define EXCLUDE_AUTO_INTERPOLATE (1<<3)
|
|
|
|
#define INTERPOLATE_LINEAR_ONLY (1<<4) // don't do hermite interpolation
|
|
#define INTERPOLATE_OMIT_UPDATE_LAST_NETWORKED (1<<5)
|
|
|
|
|
|
|
|
#define EXTRA_INTERPOLATION_HISTORY_STORED 0.05f // It stores this much extra interpolation history,
|
|
// so you can always call Interpolate() this far
|
|
// in the past from your last call and be able to
|
|
// get an interpolated value.
|
|
|
|
// this global keeps the last known server packet tick (to avoid calling engine->GetLastTimestamp() all the time)
|
|
extern float g_flLastPacketTimestamp;
|
|
// when we renormalize hermite spline samples (on the time axis), determines whether we hold the previous sample at a fixed up time or lerp the sample as well as
|
|
// fix up the time (to get two even time intervals)
|
|
extern bool g_bHermiteFix;
|
|
|
|
inline void Interpolation_SetLastPacketTimeStamp( float timestamp )
|
|
{
|
|
Assert( timestamp > 0 );
|
|
g_flLastPacketTimestamp = timestamp;
|
|
}
|
|
|
|
|
|
// Before calling Interpolate(), you can use this use this to setup the context if
|
|
// you want to enable extrapolation.
|
|
class CInterpolationContext
|
|
{
|
|
public:
|
|
|
|
CInterpolationContext()
|
|
{
|
|
m_bOldAllowExtrapolation = s_bAllowExtrapolation;
|
|
m_flOldLastTimeStamp = s_flLastTimeStamp;
|
|
|
|
// By default, disable extrapolation unless they call EnableExtrapolation.
|
|
s_bAllowExtrapolation = false;
|
|
|
|
// this is the context stack
|
|
m_pNext = s_pHead;
|
|
s_pHead = this;
|
|
}
|
|
|
|
~CInterpolationContext()
|
|
{
|
|
// restore values from prev stack element
|
|
s_bAllowExtrapolation = m_bOldAllowExtrapolation;
|
|
s_flLastTimeStamp = m_flOldLastTimeStamp;
|
|
|
|
Assert( s_pHead == this );
|
|
s_pHead = m_pNext;
|
|
}
|
|
|
|
static void EnableExtrapolation(bool state)
|
|
{
|
|
s_bAllowExtrapolation = state;
|
|
}
|
|
|
|
static bool IsThereAContext()
|
|
{
|
|
return s_pHead != NULL;
|
|
}
|
|
|
|
static bool IsExtrapolationAllowed()
|
|
{
|
|
return s_bAllowExtrapolation;
|
|
}
|
|
|
|
static void SetLastTimeStamp(float timestamp)
|
|
{
|
|
s_flLastTimeStamp = timestamp;
|
|
}
|
|
|
|
static float GetLastTimeStamp()
|
|
{
|
|
return s_flLastTimeStamp;
|
|
}
|
|
|
|
|
|
private:
|
|
|
|
CInterpolationContext *m_pNext;
|
|
bool m_bOldAllowExtrapolation;
|
|
float m_flOldLastTimeStamp;
|
|
|
|
static CInterpolationContext *s_pHead;
|
|
static bool s_bAllowExtrapolation;
|
|
static float s_flLastTimeStamp;
|
|
};
|
|
|
|
|
|
extern ConVar cl_extrapolate_amount;
|
|
|
|
|
|
template< class T >
|
|
inline T ExtrapolateInterpolatedVarType( const T &oldVal, const T &newVal, float divisor, float flExtrapolationAmount )
|
|
{
|
|
return newVal;
|
|
}
|
|
|
|
inline Vector ExtrapolateInterpolatedVarType( const Vector &oldVal, const Vector &newVal, float divisor, float flExtrapolationAmount )
|
|
{
|
|
return Lerp( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal );
|
|
}
|
|
|
|
inline float ExtrapolateInterpolatedVarType( const float &oldVal, const float &newVal, float divisor, float flExtrapolationAmount )
|
|
{
|
|
return Lerp( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal );
|
|
}
|
|
|
|
inline QAngle ExtrapolateInterpolatedVarType( const QAngle &oldVal, const QAngle &newVal, float divisor, float flExtrapolationAmount )
|
|
{
|
|
return Lerp<QAngle>( 1.0f + flExtrapolationAmount * divisor, oldVal, newVal );
|
|
}
|
|
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// IInterpolatedVar interface.
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
abstract_class IInterpolatedVar
|
|
{
|
|
public:
|
|
virtual ~IInterpolatedVar() {}
|
|
|
|
virtual void Setup( void *pValue, int type ) = 0;
|
|
virtual void SetInterpolationAmount( float seconds ) = 0;
|
|
|
|
// Returns true if the new value is different from the prior most recent value.
|
|
virtual void NoteLastNetworkedValue() = 0;
|
|
virtual bool NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue ) = 0;
|
|
virtual void Reset( float flCurrentTime ) = 0;
|
|
|
|
// Returns 1 if the value will always be the same if currentTime is always increasing.
|
|
virtual int Interpolate( float currentTime ) = 0;
|
|
|
|
virtual int GetType() const = 0;
|
|
virtual void RestoreToLastNetworked() = 0;
|
|
virtual void Copy( IInterpolatedVar *pSrc ) = 0;
|
|
|
|
virtual const char *GetDebugName() = 0;
|
|
virtual void SetDebugName( const char* pName ) = 0;
|
|
};
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
struct CInterpolatedVarEntryBase
|
|
{
|
|
CInterpolatedVarEntryBase()
|
|
{
|
|
value = NULL;
|
|
count = 0;
|
|
flChangeTime = 0;
|
|
}
|
|
~CInterpolatedVarEntryBase()
|
|
{
|
|
delete[] value;
|
|
value = NULL;
|
|
}
|
|
|
|
// This will transfer the data from another varentry. This is used to avoid allocation
|
|
// pointers can be transferred (only one varentry has a copy), but not trivially copied
|
|
void FastTransferFrom( CInterpolatedVarEntryBase &src )
|
|
{
|
|
Assert(!value);
|
|
value = src.value;
|
|
count = src.count;
|
|
flChangeTime = src.flChangeTime;
|
|
src.value = 0;
|
|
src.count = 0;
|
|
}
|
|
|
|
CInterpolatedVarEntryBase& operator=( const CInterpolatedVarEntryBase& src )
|
|
{
|
|
delete[] value;
|
|
value = NULL;
|
|
count = 0;
|
|
if ( src.value )
|
|
{
|
|
count = src.count;
|
|
value = new Type[count];
|
|
for ( int i = 0; i < count; i++ )
|
|
{
|
|
value[i] = src.value[i];
|
|
}
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
Type *GetValue() { return value; }
|
|
const Type *GetValue() const { return value; }
|
|
|
|
void Init(int maxCount)
|
|
{
|
|
if ( !maxCount )
|
|
{
|
|
DeleteEntry();
|
|
}
|
|
else
|
|
{
|
|
// resize
|
|
if ( maxCount != count )
|
|
{
|
|
DeleteEntry();
|
|
}
|
|
|
|
if ( !value )
|
|
{
|
|
count = maxCount;
|
|
value = new Type[maxCount];
|
|
}
|
|
}
|
|
Assert(count==maxCount);
|
|
}
|
|
Type *NewEntry( const Type *pValue, int maxCount, float time )
|
|
{
|
|
flChangeTime = time;
|
|
Init(maxCount);
|
|
if ( value && maxCount)
|
|
{
|
|
memcpy( value, pValue, maxCount*sizeof(Type) );
|
|
}
|
|
return value;
|
|
}
|
|
|
|
void DeleteEntry()
|
|
{
|
|
delete[] value;
|
|
value = NULL;
|
|
count = 0;
|
|
}
|
|
|
|
float flChangeTime;
|
|
int count;
|
|
Type * value;
|
|
|
|
private:
|
|
CInterpolatedVarEntryBase( const CInterpolatedVarEntryBase &src );
|
|
};
|
|
|
|
template<typename Type>
|
|
struct CInterpolatedVarEntryBase<Type, false>
|
|
{
|
|
CInterpolatedVarEntryBase() {}
|
|
~CInterpolatedVarEntryBase() {}
|
|
|
|
const Type *GetValue() const { return &value; }
|
|
Type *GetValue() { return &value; }
|
|
|
|
void Init(int maxCount)
|
|
{
|
|
Assert(maxCount==1);
|
|
}
|
|
Type *NewEntry( const Type *pValue, int maxCount, float time )
|
|
{
|
|
Assert(maxCount==1);
|
|
flChangeTime = time;
|
|
memcpy( &value, pValue, maxCount*sizeof(Type) );
|
|
return &value;
|
|
}
|
|
void FastTransferFrom( CInterpolatedVarEntryBase &src )
|
|
{
|
|
*this = src;
|
|
}
|
|
|
|
void DeleteEntry() {}
|
|
|
|
float flChangeTime;
|
|
Type value;
|
|
};
|
|
|
|
template<typename T>
|
|
class CSimpleRingBuffer
|
|
{
|
|
public:
|
|
CSimpleRingBuffer( int startSize = 4 )
|
|
{
|
|
m_pElements = 0;
|
|
m_maxElement = 0;
|
|
m_firstElement = 0;
|
|
m_count = 0;
|
|
m_growSize = 16;
|
|
EnsureCapacity(startSize);
|
|
}
|
|
~CSimpleRingBuffer()
|
|
{
|
|
delete[] m_pElements;
|
|
m_pElements = NULL;
|
|
}
|
|
|
|
inline int Count() const { return m_count; }
|
|
|
|
int Head() const { return (m_count>0) ? 0 : InvalidIndex(); }
|
|
|
|
bool IsIdxValid( int i ) const { return (i >= 0 && i < m_count) ? true : false; }
|
|
bool IsValidIndex(int i) const { return IsIdxValid(i); }
|
|
static int InvalidIndex() { return -1; }
|
|
|
|
T& operator[]( int i )
|
|
{
|
|
Assert( IsIdxValid(i) );
|
|
i += m_firstElement;
|
|
i = WrapRange(i);
|
|
return m_pElements[i];
|
|
}
|
|
|
|
const T& operator[]( int i ) const
|
|
{
|
|
Assert( IsIdxValid(i) );
|
|
i += m_firstElement;
|
|
i = WrapRange(i);
|
|
return m_pElements[i];
|
|
}
|
|
|
|
void EnsureCapacity( int capSize )
|
|
{
|
|
if ( capSize > m_maxElement )
|
|
{
|
|
int newMax = m_maxElement + ((capSize+m_growSize-1)/m_growSize) * m_growSize;
|
|
T *pNew = new T[newMax];
|
|
for ( int i = 0; i < m_maxElement; i++ )
|
|
{
|
|
// ------------
|
|
// If you wanted to make this a more generic container you'd probably want this code
|
|
// instead - since FastTransferFrom() is an optimization dependent on types stored
|
|
// here defining this operation.
|
|
//pNew[i] = m_pElements[WrapRange(i+m_firstElement)];
|
|
pNew[i].FastTransferFrom( m_pElements[WrapRange(i+m_firstElement)] );
|
|
// ------------
|
|
}
|
|
m_firstElement = 0;
|
|
m_maxElement = newMax;
|
|
delete[] m_pElements;
|
|
m_pElements = pNew;
|
|
}
|
|
}
|
|
|
|
int AddToHead()
|
|
{
|
|
EnsureCapacity( m_count + 1 );
|
|
int i = m_firstElement + m_maxElement - 1;
|
|
m_count++;
|
|
i = WrapRange(i);
|
|
m_firstElement = i;
|
|
return 0;
|
|
}
|
|
|
|
int AddToHead( const T &elem )
|
|
{
|
|
AddToHead();
|
|
m_pElements[m_firstElement] = elem;
|
|
return 0;
|
|
}
|
|
|
|
int AddToTail()
|
|
{
|
|
EnsureCapacity( m_count + 1 );
|
|
m_count++;
|
|
return WrapRange(m_firstElement+m_count-1);
|
|
}
|
|
|
|
void RemoveAll()
|
|
{
|
|
m_count = 0;
|
|
m_firstElement = 0;
|
|
}
|
|
|
|
void RemoveAtHead()
|
|
{
|
|
if ( m_count > 0 )
|
|
{
|
|
m_firstElement = WrapRange(m_firstElement+1);
|
|
m_count--;
|
|
}
|
|
}
|
|
|
|
void Truncate( int newLength )
|
|
{
|
|
if ( newLength < m_count )
|
|
{
|
|
Assert(newLength>=0);
|
|
m_count = newLength;
|
|
}
|
|
}
|
|
|
|
private:
|
|
inline int WrapRange( int i ) const
|
|
{
|
|
return ( i >= m_maxElement ) ? (i - m_maxElement) : i;
|
|
}
|
|
|
|
T *m_pElements;
|
|
unsigned short m_maxElement;
|
|
unsigned short m_firstElement;
|
|
unsigned short m_count;
|
|
unsigned short m_growSize;
|
|
};
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// CInterpolatedVarArrayBase - the main implementation of IInterpolatedVar.
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template< typename Type, bool IS_ARRAY>
|
|
class CInterpolatedVarArrayBase : public IInterpolatedVar
|
|
{
|
|
public:
|
|
friend class CInterpolatedVarPrivate;
|
|
|
|
CInterpolatedVarArrayBase( const char *pDebugName="no debug name" );
|
|
virtual ~CInterpolatedVarArrayBase();
|
|
|
|
|
|
// IInterpolatedVar overrides.
|
|
public:
|
|
|
|
virtual void Setup( void *pValue, int type );
|
|
virtual void SetInterpolationAmount( float seconds );
|
|
virtual void NoteLastNetworkedValue();
|
|
virtual bool NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue );
|
|
virtual void Reset( float flCurrentTime );
|
|
virtual int Interpolate( float currentTime );
|
|
virtual int GetType() const;
|
|
virtual void RestoreToLastNetworked();
|
|
virtual void Copy( IInterpolatedVar *pInSrc );
|
|
virtual const char *GetDebugName() { return m_pDebugName; }
|
|
|
|
|
|
public:
|
|
|
|
// Just like the IInterpolatedVar functions, but you can specify an interpolation amount.
|
|
bool NoteChanged( float flCurrentTime, float flChangeTime, float interpolation_amount, bool bUpdateLastNetworkedValue );
|
|
int Interpolate( float currentTime, float interpolation_amount );
|
|
|
|
void DebugInterpolate( Type *pOut, float currentTime );
|
|
|
|
void GetDerivative( Type *pOut, float currentTime );
|
|
void GetDerivative_SmoothVelocity( Type *pOut, float currentTime, bool bAllowHermiteFix ); // See notes on ::Derivative_HermiteLinearVelocity for info.
|
|
|
|
void ClearHistory();
|
|
void AddToHead( float changeTime, const Type* values, bool bFlushNewer );
|
|
const Type& GetPrev( int iArrayIndex=0 ) const;
|
|
const Type& GetCurrent( int iArrayIndex=0 ) const;
|
|
|
|
// Returns the time difference betweem the most recent sample and its previous sample.
|
|
float GetInterval() const;
|
|
bool IsValidIndex( int i );
|
|
Type *GetHistoryValue( int index, float& flChangeTime, int iArrayIndex=0 );
|
|
int GetHead() { return 0; }
|
|
int GetNext( int i )
|
|
{
|
|
int next = i + 1;
|
|
if ( !m_VarHistory.IsValidIndex(next) )
|
|
return m_VarHistory.InvalidIndex();
|
|
return next;
|
|
}
|
|
|
|
void SetHistoryValuesForItem( int item, Type& value );
|
|
void SetLooping( bool looping, int iArrayIndex=0 );
|
|
|
|
void SetMaxCount( float flCurrentTime, int newmax );
|
|
int GetMaxCount() const;
|
|
|
|
// Get the time of the oldest entry.
|
|
float GetOldestEntry();
|
|
|
|
// set a debug name (if not provided by constructor)
|
|
void SetDebugName(const char *pName ) { m_pDebugName = pName; }
|
|
|
|
bool GetInterpolationInfo( float currentTime, int *pNewer, int *pOlder, int *pOldest );
|
|
|
|
protected:
|
|
|
|
typedef CInterpolatedVarEntryBase<Type, IS_ARRAY> CInterpolatedVarEntry;
|
|
typedef CSimpleRingBuffer< CInterpolatedVarEntry > CVarHistory;
|
|
friend class CInterpolationInfo;
|
|
|
|
class CInterpolationInfo
|
|
{
|
|
public:
|
|
bool m_bHermite;
|
|
int oldest; // Only set if using hermite.
|
|
int older;
|
|
int newer;
|
|
float frac;
|
|
};
|
|
|
|
|
|
protected:
|
|
|
|
void RemoveOldEntries( float oldesttime );
|
|
void RemoveEntriesPreviousTo( float flTime );
|
|
|
|
bool GetInterpolationInfo(
|
|
CInterpolationInfo *pInfo,
|
|
float currentTime,
|
|
float interpolation_amount,
|
|
int *pNoMoreChanges );
|
|
|
|
void TimeFixup_Hermite(
|
|
CInterpolatedVarEntry &fixup,
|
|
CInterpolatedVarEntry*& prev,
|
|
CInterpolatedVarEntry*& start,
|
|
CInterpolatedVarEntry*& end,
|
|
bool bAllowHermiteFix );
|
|
|
|
// Force the time between prev and start to be dt (and extend prev out farther if necessary).
|
|
void TimeFixup2_Hermite(
|
|
CInterpolatedVarEntry &fixup,
|
|
CInterpolatedVarEntry*& prev,
|
|
CInterpolatedVarEntry*& start,
|
|
float dt,
|
|
bool bAllowHermiteFix
|
|
);
|
|
|
|
void _Extrapolate(
|
|
Type *pOut,
|
|
CInterpolatedVarEntry *pOld,
|
|
CInterpolatedVarEntry *pNew,
|
|
float flDestinationTime,
|
|
float flMaxExtrapolationAmount
|
|
);
|
|
|
|
void _Interpolate( Type *out, float frac, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end );
|
|
void _Interpolate_Hermite( Type *out, float frac, CInterpolatedVarEntry *pOriginalPrev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end, bool looping = false );
|
|
|
|
void _Derivative_Hermite( Type *out, float frac, CInterpolatedVarEntry *pOriginalPrev, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end );
|
|
void _Derivative_Hermite_SmoothVelocity( Type *out, float frac, CInterpolatedVarEntry *b, CInterpolatedVarEntry *c, CInterpolatedVarEntry *d, bool bAllowHermiteFix );
|
|
void _Derivative_Linear( Type *out, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end );
|
|
|
|
bool ValidOrder();
|
|
|
|
protected:
|
|
// The underlying data element
|
|
Type *m_pValue;
|
|
CVarHistory m_VarHistory;
|
|
// Store networked values so when we latch we can detect which values were changed via networking
|
|
Type * m_LastNetworkedValue;
|
|
float m_LastNetworkedTime;
|
|
byte m_fType;
|
|
byte m_nMaxCount;
|
|
byte * m_bLooping;
|
|
float m_InterpolationAmount;
|
|
const char * m_pDebugName;
|
|
};
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarArrayBase( const char *pDebugName )
|
|
{
|
|
m_pDebugName = pDebugName;
|
|
m_pValue = NULL;
|
|
m_fType = LATCH_ANIMATION_VAR;
|
|
m_InterpolationAmount = 0.0f;
|
|
m_nMaxCount = 0;
|
|
m_LastNetworkedTime = 0;
|
|
m_LastNetworkedValue = NULL;
|
|
m_bLooping = NULL;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline CInterpolatedVarArrayBase<Type, IS_ARRAY>::~CInterpolatedVarArrayBase()
|
|
{
|
|
ClearHistory();
|
|
delete [] m_bLooping;
|
|
delete [] m_LastNetworkedValue;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Setup( void *pValue, int type )
|
|
{
|
|
m_pValue = ( Type * )pValue;
|
|
m_fType = type;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetInterpolationAmount( float seconds )
|
|
{
|
|
m_InterpolationAmount = seconds;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetType() const
|
|
{
|
|
return m_fType;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteLastNetworkedValue()
|
|
{
|
|
memcpy( m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof( Type ) );
|
|
m_LastNetworkedTime = g_flLastPacketTimestamp;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteChanged( float flCurrentTime, float flChangeTime, float interpolation_amount, bool bUpdateLastNetworkedValue )
|
|
{
|
|
Assert( m_pValue );
|
|
|
|
// This is a big optimization where it can potentially avoid expensive interpolation
|
|
// involving this variable if it didn't get an actual new value in here.
|
|
bool bRet = true;
|
|
if ( m_VarHistory.Count() )
|
|
{
|
|
if ( memcmp( m_pValue, m_VarHistory[0].GetValue(), sizeof( Type ) * m_nMaxCount ) == 0 )
|
|
{
|
|
bRet = false;
|
|
}
|
|
}
|
|
|
|
AddToHead( flChangeTime, m_pValue, true );
|
|
|
|
if ( bUpdateLastNetworkedValue )
|
|
{
|
|
NoteLastNetworkedValue();
|
|
}
|
|
|
|
// Paul : I am re-instating a RemoveOldEntries()
|
|
// call to delete very old entries which cause glitches entering PVS (JIRA 4524)
|
|
// I have also changed RemoveOldEntries() to never keep entries older than 0.5s
|
|
// even if that means there are no remaining history samples.
|
|
// Since we don't clean out the old entries until Interpolate(), make sure that there
|
|
// aren't any super old entries hanging around.
|
|
RemoveOldEntries( flCurrentTime - interpolation_amount - 0.5f );
|
|
|
|
// JAY: It doesn't seem like the above code is correct. This is keeping more than two seconds of history
|
|
// for variables that aren't being interpolated for some reason. For example, the player model isn't drawn
|
|
// in first person, so the history is only truncated here and will accumulate ~40 entries instead of 2 or 3
|
|
// changing over to the method in Interpolate() means that we always have a 3-sample neighborhood around
|
|
// any data we're going to need. Unless flCurrentTime is different when samples are added vs. when
|
|
// they are interpolated I can't see this having any ill effects.
|
|
RemoveEntriesPreviousTo( flCurrentTime - interpolation_amount - EXTRA_INTERPOLATION_HISTORY_STORED );
|
|
|
|
return bRet;
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::NoteChanged( float flCurrentTime, float flChangeTime, bool bUpdateLastNetworkedValue )
|
|
{
|
|
return NoteChanged( flCurrentTime, flChangeTime, m_InterpolationAmount, bUpdateLastNetworkedValue );
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RestoreToLastNetworked()
|
|
{
|
|
Assert( m_pValue );
|
|
memcpy( m_pValue, m_LastNetworkedValue, m_nMaxCount * sizeof( Type ) );
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::ClearHistory()
|
|
{
|
|
for ( int i = 0; i < m_VarHistory.Count(); i++ )
|
|
{
|
|
m_VarHistory[i].DeleteEntry();
|
|
}
|
|
m_VarHistory.RemoveAll();
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::AddToHead( float changeTime, const Type* values, bool bFlushNewer )
|
|
{
|
|
MEM_ALLOC_CREDIT_CLASS();
|
|
int newslot;
|
|
|
|
if ( bFlushNewer )
|
|
{
|
|
// Get rid of anything that has a timestamp after this sample. The server might have
|
|
// corrected our clock and moved us back, so our current changeTime is less than a
|
|
// changeTime we added samples during previously.
|
|
while ( m_VarHistory.Count() )
|
|
{
|
|
if ( (m_VarHistory[0].flChangeTime+0.0001f) > changeTime )
|
|
{
|
|
m_VarHistory.RemoveAtHead();
|
|
}
|
|
else
|
|
{
|
|
break;
|
|
}
|
|
}
|
|
|
|
newslot = m_VarHistory.AddToHead();
|
|
}
|
|
else
|
|
{
|
|
newslot = m_VarHistory.AddToHead();
|
|
for ( int i = 1; i < m_VarHistory.Count(); i++ )
|
|
{
|
|
if ( m_VarHistory[i].flChangeTime <= changeTime )
|
|
break;
|
|
m_VarHistory[newslot].FastTransferFrom( m_VarHistory[i] );
|
|
newslot = i;
|
|
}
|
|
}
|
|
|
|
CInterpolatedVarEntry *e = &m_VarHistory[ newslot ];
|
|
e->NewEntry( values, m_nMaxCount, changeTime );
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Reset( float flCurrentTime )
|
|
{
|
|
ClearHistory();
|
|
|
|
if ( m_pValue )
|
|
{
|
|
AddToHead( flCurrentTime, m_pValue, false );
|
|
AddToHead( flCurrentTime, m_pValue, false );
|
|
AddToHead( flCurrentTime, m_pValue, false );
|
|
|
|
memcpy( m_LastNetworkedValue, m_pValue, m_nMaxCount * sizeof( Type ) );
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline float CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetOldestEntry()
|
|
{
|
|
float lastVal = 0;
|
|
if ( m_VarHistory.Count() )
|
|
{
|
|
lastVal = m_VarHistory[m_VarHistory.Count()-1].flChangeTime;
|
|
}
|
|
return lastVal;
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RemoveOldEntries( float oldesttime )
|
|
{
|
|
int newCount = m_VarHistory.Count();
|
|
for ( int i = m_VarHistory.Count(); --i > -1; )
|
|
{
|
|
if ( m_VarHistory[i].flChangeTime > oldesttime )
|
|
break;
|
|
newCount = i;
|
|
}
|
|
m_VarHistory.Truncate(newCount);
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::RemoveEntriesPreviousTo( float flTime )
|
|
{
|
|
for ( int i = 0; i < m_VarHistory.Count(); i++ )
|
|
{
|
|
if ( m_VarHistory[i].flChangeTime < flTime )
|
|
{
|
|
// We need to preserve this sample (ie: the one right before this timestamp)
|
|
// and the sample right before it (for hermite blending), and we can get rid
|
|
// of everything else.
|
|
m_VarHistory.Truncate( i + 3 );
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterpolationInfo(
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolationInfo *pInfo,
|
|
float currentTime,
|
|
float interpolation_amount,
|
|
int *pNoMoreChanges
|
|
)
|
|
{
|
|
Assert( m_pValue );
|
|
|
|
CVarHistory &varHistory = m_VarHistory;
|
|
|
|
float targettime = currentTime - interpolation_amount;
|
|
|
|
pInfo->m_bHermite = false;
|
|
pInfo->frac = 0;
|
|
pInfo->oldest = pInfo->older = pInfo->newer = varHistory.InvalidIndex();
|
|
|
|
for ( int i = 0; i < varHistory.Count(); i++ )
|
|
{
|
|
pInfo->older = i;
|
|
|
|
float older_change_time = m_VarHistory[ i ].flChangeTime;
|
|
if ( older_change_time == 0.0f )
|
|
break;
|
|
|
|
if ( targettime < older_change_time )
|
|
{
|
|
pInfo->newer = pInfo->older;
|
|
continue;
|
|
}
|
|
|
|
if ( pInfo->newer == varHistory.InvalidIndex() )
|
|
{
|
|
// Have it linear interpolate between the newest 2 entries.
|
|
pInfo->newer = pInfo->older;
|
|
|
|
// Since the time given is PAST all of our entries, then as long
|
|
// as time continues to increase, we'll be returning the same value.
|
|
if ( pNoMoreChanges )
|
|
*pNoMoreChanges = 1;
|
|
return true;
|
|
}
|
|
|
|
float newer_change_time = varHistory[ pInfo->newer ].flChangeTime;
|
|
float dt = newer_change_time - older_change_time;
|
|
if ( dt > 0.0001f )
|
|
{
|
|
pInfo->frac = ( targettime - older_change_time ) / ( newer_change_time - older_change_time );
|
|
pInfo->frac = MIN( pInfo->frac, 2.0f );
|
|
|
|
int oldestindex = i+1;
|
|
|
|
if ( !(m_fType & INTERPOLATE_LINEAR_ONLY) && varHistory.IsIdxValid(oldestindex) )
|
|
{
|
|
pInfo->oldest = oldestindex;
|
|
float oldest_change_time = varHistory[ oldestindex ].flChangeTime;
|
|
float dt2 = older_change_time - oldest_change_time;
|
|
if ( dt2 > 0.0001f )
|
|
{
|
|
pInfo->m_bHermite = true;
|
|
}
|
|
}
|
|
|
|
// If pInfo->newer is the most recent entry we have, and all 2 or 3 other
|
|
// entries are identical, then we're always going to return the same value
|
|
// if currentTime increases.
|
|
if ( pNoMoreChanges && pInfo->newer == m_VarHistory.Head() )
|
|
{
|
|
if ( COMPARE_HISTORY( pInfo->newer, pInfo->older ) )
|
|
{
|
|
if ( !pInfo->m_bHermite || COMPARE_HISTORY( pInfo->newer, pInfo->oldest ) )
|
|
*pNoMoreChanges = 1;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Didn't find any, return last entry???
|
|
if ( pInfo->newer != varHistory.InvalidIndex() )
|
|
{
|
|
pInfo->older = pInfo->newer;
|
|
return true;
|
|
}
|
|
|
|
|
|
// This is the single-element case
|
|
pInfo->newer = pInfo->older;
|
|
return (pInfo->older != varHistory.InvalidIndex());
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterpolationInfo( float currentTime, int *pNewer, int *pOlder, int *pOldest )
|
|
{
|
|
CInterpolationInfo info;
|
|
bool result = GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL );
|
|
|
|
if (pNewer)
|
|
*pNewer = (int)info.newer;
|
|
|
|
if (pOlder)
|
|
*pOlder = (int)info.older;
|
|
|
|
if (pOldest)
|
|
*pOldest = (int)info.oldest;
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::DebugInterpolate( Type *pOut, float currentTime )
|
|
{
|
|
float interpolation_amount = m_InterpolationAmount;
|
|
|
|
int noMoreChanges = 0;
|
|
|
|
CInterpolationInfo info;
|
|
GetInterpolationInfo( &info, currentTime, interpolation_amount, &noMoreChanges );
|
|
|
|
CVarHistory &history = m_VarHistory;
|
|
|
|
if ( info.m_bHermite )
|
|
{
|
|
// base cast, we have 3 valid sample point
|
|
_Interpolate_Hermite( pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer] );
|
|
}
|
|
else if ( info.newer == info.older )
|
|
{
|
|
// This means the server clock got way behind the client clock. Extrapolate the value here based on its
|
|
// previous velocity (out to a certain amount).
|
|
int realOlder = info.newer+1;
|
|
if ( CInterpolationContext::IsExtrapolationAllowed() &&
|
|
IsValidIndex( realOlder ) &&
|
|
history[realOlder].flChangeTime != 0.0 &&
|
|
interpolation_amount > 0.000001f &&
|
|
CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime )
|
|
{
|
|
// At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with.
|
|
//
|
|
// However, we only want to extraploate if the server is choking. We don't want to extrapolate if
|
|
// the object legimately stopped moving and the server stopped sending updates for it.
|
|
//
|
|
// The way we know that the server is choking is if we haven't heard ANYTHING from it for a while.
|
|
// The server's update interval should be at least as often as our interpolation amount (otherwise,
|
|
// we wouldn't have the ability to interpolate).
|
|
//
|
|
// So right here, if we see that we haven't gotten any server updates since the last interpolation
|
|
// history update to this entity (and since we're in here, we know that we're out of interpolation data),
|
|
// then we can assume that the server is choking and decide to extrapolate.
|
|
//
|
|
// The End
|
|
|
|
// Use the velocity here (extrapolate up to 1/4 of a second).
|
|
_Extrapolate( pOut, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat() );
|
|
}
|
|
else
|
|
{
|
|
_Interpolate( pOut, info.frac, &history[info.older], &history[info.newer] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_Interpolate( pOut, info.frac, &history[info.older], &history[info.newer] );
|
|
}
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::Interpolate( float currentTime, float interpolation_amount )
|
|
{
|
|
int noMoreChanges = 0;
|
|
|
|
CInterpolationInfo info;
|
|
if (!GetInterpolationInfo( &info, currentTime, interpolation_amount, &noMoreChanges ))
|
|
return noMoreChanges;
|
|
|
|
|
|
CVarHistory &history = m_VarHistory;
|
|
|
|
#ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT
|
|
Type *backupValues = (Type*)_alloca( m_nMaxCount * sizeof(Type) );
|
|
memcpy( backupValues, m_pValue, sizeof( Type ) * m_nMaxCount );
|
|
#endif
|
|
|
|
if ( info.m_bHermite )
|
|
{
|
|
// base cast, we have 3 valid sample point
|
|
_Interpolate_Hermite( m_pValue, info.frac, &history[info.oldest], &history[info.older], &history[info.newer] );
|
|
}
|
|
else if ( info.newer == info.older )
|
|
{
|
|
// This means the server clock got way behind the client clock. Extrapolate the value here based on its
|
|
// previous velocity (out to a certain amount).
|
|
int realOlder = info.newer+1;
|
|
if ( CInterpolationContext::IsExtrapolationAllowed() &&
|
|
IsValidIndex( realOlder ) &&
|
|
history[realOlder].flChangeTime != 0.0 &&
|
|
interpolation_amount > 0.000001f &&
|
|
CInterpolationContext::GetLastTimeStamp() <= m_LastNetworkedTime )
|
|
{
|
|
// At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with.
|
|
//
|
|
// However, we only want to extraploate if the server is choking. We don't want to extrapolate if
|
|
// the object legimately stopped moving and the server stopped sending updates for it.
|
|
//
|
|
// The way we know that the server is choking is if we haven't heard ANYTHING from it for a while.
|
|
// The server's update interval should be at least as often as our interpolation amount (otherwise,
|
|
// we wouldn't have the ability to interpolate).
|
|
//
|
|
// So right here, if we see that we haven't gotten any server updates since the last interpolation
|
|
// history update to this entity (and since we're in here, we know that we're out of interpolation data),
|
|
// then we can assume that the server is choking and decide to extrapolate.
|
|
//
|
|
// The End
|
|
|
|
// Use the velocity here (extrapolate up to 1/4 of a second).
|
|
_Extrapolate( m_pValue, &history[realOlder], &history[info.newer], currentTime - interpolation_amount, cl_extrapolate_amount.GetFloat() );
|
|
}
|
|
else
|
|
{
|
|
_Interpolate( m_pValue, info.frac, &history[info.older], &history[info.newer] );
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_Interpolate( m_pValue, info.frac, &history[info.older], &history[info.newer] );
|
|
}
|
|
|
|
#ifdef INTERPOLATEDVAR_PARANOID_MEASUREMENT
|
|
if ( memcmp( backupValues, m_pValue, sizeof( Type ) * m_nMaxCount ) != 0 )
|
|
{
|
|
extern int g_nInterpolatedVarsChanged;
|
|
extern bool g_bRestoreInterpolatedVarValues;
|
|
|
|
++g_nInterpolatedVarsChanged;
|
|
|
|
// This undoes the work that we do in here so if someone is in the debugger, they
|
|
// can find out which variable changed.
|
|
if ( g_bRestoreInterpolatedVarValues )
|
|
{
|
|
memcpy( m_pValue, backupValues, sizeof( Type ) * m_nMaxCount );
|
|
return noMoreChanges;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Clear out all entries before the oldest since we should never access them again.
|
|
// Usually, Interpolate() calls never go backwards in time, but C_BaseAnimating::BecomeRagdollOnClient for one
|
|
// goes slightly back in time
|
|
RemoveEntriesPreviousTo( currentTime - interpolation_amount - EXTRA_INTERPOLATION_HISTORY_STORED );
|
|
return noMoreChanges;
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetDerivative( Type *pOut, float currentTime )
|
|
{
|
|
CInterpolationInfo info;
|
|
if (!GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL ))
|
|
return;
|
|
|
|
if ( info.m_bHermite )
|
|
{
|
|
_Derivative_Hermite( pOut, info.frac, &m_VarHistory[info.oldest], &m_VarHistory[info.older], &m_VarHistory[info.newer] );
|
|
}
|
|
else
|
|
{
|
|
_Derivative_Linear( pOut, &m_VarHistory[info.older], &m_VarHistory[info.newer] );
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
void CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetDerivative_SmoothVelocity( Type *pOut, float currentTime, bool bAllowHermiteFix )
|
|
{
|
|
CInterpolationInfo info;
|
|
if (!GetInterpolationInfo( &info, currentTime, m_InterpolationAmount, NULL ))
|
|
return;
|
|
|
|
CVarHistory &history = m_VarHistory;
|
|
bool bExtrapolate = false;
|
|
int realOlder = 0;
|
|
|
|
if ( info.m_bHermite )
|
|
{
|
|
_Derivative_Hermite_SmoothVelocity( pOut, info.frac, &history[info.oldest], &history[info.older], &history[info.newer], bAllowHermiteFix );
|
|
return;
|
|
}
|
|
else if ( info.newer == info.older && CInterpolationContext::IsExtrapolationAllowed() )
|
|
{
|
|
// This means the server clock got way behind the client clock. Extrapolate the value here based on its
|
|
// previous velocity (out to a certain amount).
|
|
realOlder = info.newer+1;
|
|
if ( IsValidIndex( realOlder ) && history[realOlder].flChangeTime != 0.0 )
|
|
{
|
|
// At this point, we know we're out of data and we have the ability to get a velocity to extrapolate with.
|
|
//
|
|
// However, we only want to extraploate if the server is choking. We don't want to extrapolate if
|
|
// the object legimately stopped moving and the server stopped sending updates for it.
|
|
//
|
|
// The way we know that the server is choking is if we haven't heard ANYTHING from it for a while.
|
|
// The server's update interval should be at least as often as our interpolation amount (otherwise,
|
|
// we wouldn't have the ability to interpolate).
|
|
//
|
|
// So right here, if we see that we haven't gotten any server updates for a whole interpolation
|
|
// interval, then we know the server is choking.
|
|
//
|
|
// The End
|
|
if ( m_InterpolationAmount > 0.000001f &&
|
|
CInterpolationContext::GetLastTimeStamp() <= (currentTime - m_InterpolationAmount) )
|
|
{
|
|
bExtrapolate = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if ( bExtrapolate )
|
|
{
|
|
// Get the velocity from the last segment.
|
|
_Derivative_Linear( pOut, &history[realOlder], &history[info.newer] );
|
|
|
|
// Now ramp it to zero after cl_extrapolate_amount..
|
|
float flDestTime = currentTime - m_InterpolationAmount;
|
|
float diff = flDestTime - history[info.newer].flChangeTime;
|
|
diff = clamp( diff, 0, cl_extrapolate_amount.GetFloat() * 2 );
|
|
if ( diff > cl_extrapolate_amount.GetFloat() )
|
|
{
|
|
float scale = 1 - (diff - cl_extrapolate_amount.GetFloat()) / cl_extrapolate_amount.GetFloat();
|
|
for ( int i=0; i < m_nMaxCount; i++ )
|
|
{
|
|
pOut[i] *= scale;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
_Derivative_Linear( pOut, &history[info.older], &history[info.newer] );
|
|
}
|
|
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::Interpolate( float currentTime )
|
|
{
|
|
return Interpolate( currentTime, m_InterpolationAmount );
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::Copy( IInterpolatedVar *pInSrc )
|
|
{
|
|
CInterpolatedVarArrayBase<Type, IS_ARRAY> *pSrc = dynamic_cast< CInterpolatedVarArrayBase<Type, IS_ARRAY>* >( pInSrc );
|
|
|
|
if ( !pSrc || pSrc->m_nMaxCount != m_nMaxCount )
|
|
{
|
|
Assert( false );
|
|
return;
|
|
}
|
|
|
|
Assert( (m_fType & ~EXCLUDE_AUTO_INTERPOLATE) == (pSrc->m_fType & ~EXCLUDE_AUTO_INTERPOLATE) );
|
|
Assert( m_pDebugName == pSrc->GetDebugName() );
|
|
|
|
for ( int i=0; i < m_nMaxCount; i++ )
|
|
{
|
|
m_LastNetworkedValue[i] = pSrc->m_LastNetworkedValue[i];
|
|
m_bLooping[i] = pSrc->m_bLooping[i];
|
|
}
|
|
|
|
m_LastNetworkedTime = pSrc->m_LastNetworkedTime;
|
|
|
|
// Copy the entries.
|
|
m_VarHistory.RemoveAll();
|
|
|
|
for ( int i = 0; i < pSrc->m_VarHistory.Count(); i++ )
|
|
{
|
|
int newslot = m_VarHistory.AddToTail();
|
|
|
|
CInterpolatedVarEntry *dest = &m_VarHistory[newslot];
|
|
CInterpolatedVarEntry *src = &pSrc->m_VarHistory[i];
|
|
dest->NewEntry( src->GetValue(), m_nMaxCount, src->flChangeTime );
|
|
}
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline const Type& CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetPrev( int iArrayIndex ) const
|
|
{
|
|
Assert( m_pValue );
|
|
Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount );
|
|
|
|
if ( m_VarHistory.Count() > 1 )
|
|
{
|
|
return m_VarHistory[1].GetValue()[iArrayIndex];
|
|
}
|
|
return m_pValue[ iArrayIndex ];
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline const Type& CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetCurrent( int iArrayIndex ) const
|
|
{
|
|
Assert( m_pValue );
|
|
Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount );
|
|
|
|
if ( m_VarHistory.Count() > 0 )
|
|
{
|
|
return m_VarHistory[0].GetValue()[iArrayIndex];
|
|
}
|
|
return m_pValue[ iArrayIndex ];
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline float CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetInterval() const
|
|
{
|
|
if ( m_VarHistory.Count() > 1 )
|
|
{
|
|
return m_VarHistory[0].flChangeTime - m_VarHistory[1].flChangeTime;
|
|
}
|
|
|
|
return 0.0f;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::IsValidIndex( int i )
|
|
{
|
|
return m_VarHistory.IsValidIndex( i );
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline Type *CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetHistoryValue( int index, float& flChangeTime, int iArrayIndex )
|
|
{
|
|
Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount );
|
|
if ( m_VarHistory.IsIdxValid(index) )
|
|
{
|
|
CInterpolatedVarEntry *entry = &m_VarHistory[ index ];
|
|
flChangeTime = entry->flChangeTime;
|
|
return &entry->GetValue()[ iArrayIndex ];
|
|
}
|
|
else
|
|
{
|
|
flChangeTime = 0.0f;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetHistoryValuesForItem( int item, Type& value )
|
|
{
|
|
Assert( item >= 0 && item < m_nMaxCount );
|
|
|
|
for ( int i = 0; i < m_VarHistory.Count(); i++ )
|
|
{
|
|
CInterpolatedVarEntry *entry = &m_VarHistory[ i ];
|
|
entry->GetValue()[ item ] = value;
|
|
}
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetLooping( bool looping, int iArrayIndex )
|
|
{
|
|
Assert( iArrayIndex >= 0 && iArrayIndex < m_nMaxCount );
|
|
m_bLooping[ iArrayIndex ] = looping;
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::SetMaxCount( float flCurrentTime, int newmax )
|
|
{
|
|
bool changed = ( newmax != m_nMaxCount ) ? true : false;
|
|
|
|
// BUGBUG: Support 0 length properly?
|
|
newmax = MAX(1,newmax);
|
|
|
|
m_nMaxCount = newmax;
|
|
// Wipe everything any time this changes!!!
|
|
if ( changed )
|
|
{
|
|
delete [] m_bLooping;
|
|
delete [] m_LastNetworkedValue;
|
|
m_bLooping = new byte[m_nMaxCount];
|
|
m_LastNetworkedValue = new Type[m_nMaxCount];
|
|
memset( m_bLooping, 0, sizeof(byte) * m_nMaxCount);
|
|
memset( m_LastNetworkedValue, 0, sizeof(Type) * m_nMaxCount);
|
|
|
|
Reset( flCurrentTime );
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline int CInterpolatedVarArrayBase<Type, IS_ARRAY>::GetMaxCount() const
|
|
{
|
|
return m_nMaxCount;
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Interpolate( Type *out, float frac, CInterpolatedVarEntry *start, CInterpolatedVarEntry *end )
|
|
{
|
|
Assert( start );
|
|
Assert( end );
|
|
|
|
if ( start == end )
|
|
{
|
|
// quick exit
|
|
for ( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
out[i] = end->GetValue()[i];
|
|
Lerp_Clamp( out[i] );
|
|
}
|
|
return;
|
|
}
|
|
|
|
Assert( frac >= 0.0f && frac <= 1.0f );
|
|
|
|
// Note that QAngle has a specialization that will do quaternion interpolation here...
|
|
for ( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
if ( m_bLooping[ i ] )
|
|
{
|
|
out[i] = LoopingLerp( frac, start->GetValue()[i], end->GetValue()[i] );
|
|
}
|
|
else
|
|
{
|
|
out[i] = Lerp( frac, start->GetValue()[i], end->GetValue()[i] );
|
|
}
|
|
Lerp_Clamp( out[i] );
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Extrapolate(
|
|
Type *pOut,
|
|
CInterpolatedVarEntry *pOld,
|
|
CInterpolatedVarEntry *pNew,
|
|
float flDestinationTime,
|
|
float flMaxExtrapolationAmount
|
|
)
|
|
{
|
|
if ( fabs( pOld->flChangeTime - pNew->flChangeTime ) < 0.001f || flDestinationTime <= pNew->flChangeTime )
|
|
{
|
|
for ( int i=0; i < m_nMaxCount; i++ )
|
|
pOut[i] = pNew->GetValue()[i];
|
|
}
|
|
else
|
|
{
|
|
float flExtrapolationAmount = MIN( flDestinationTime - pNew->flChangeTime, flMaxExtrapolationAmount );
|
|
|
|
float divisor = 1.0f / (pNew->flChangeTime - pOld->flChangeTime);
|
|
for ( int i=0; i < m_nMaxCount; i++ )
|
|
{
|
|
pOut[i] = ExtrapolateInterpolatedVarType( pOld->GetValue()[i], pNew->GetValue()[i], divisor, flExtrapolationAmount );
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::TimeFixup2_Hermite(
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry &fixup,
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& prev,
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& start,
|
|
float dt1,
|
|
bool bAllowHermiteFix
|
|
)
|
|
{
|
|
float dt2 = start->flChangeTime - prev->flChangeTime;
|
|
|
|
// If times are not of the same interval renormalize the earlier sample to allow for uniform hermite spline interpolation
|
|
if ( fabs( dt1 - dt2 ) > 0.0001f &&
|
|
dt2 > 0.0001f )
|
|
{
|
|
// Renormalize
|
|
float frac = dt1 / dt2;
|
|
|
|
// Fixed interval into past
|
|
fixup.flChangeTime = start->flChangeTime - dt1;
|
|
|
|
for ( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
if ( m_bLooping[i] )
|
|
{
|
|
fixup.GetValue()[i] = (g_bHermiteFix && bAllowHermiteFix) ? prev->GetValue()[i] : LoopingLerp( 1-frac, prev->GetValue()[i], start->GetValue()[i] );
|
|
}
|
|
else
|
|
{
|
|
fixup.GetValue()[i] = (g_bHermiteFix && bAllowHermiteFix) ? prev->GetValue()[i] : Lerp( 1-frac, prev->GetValue()[i], start->GetValue()[i] );
|
|
}
|
|
}
|
|
|
|
// Point previous sample at fixed version
|
|
prev = &fixup;
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::TimeFixup_Hermite(
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry &fixup,
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& prev,
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& start,
|
|
typename CInterpolatedVarArrayBase<Type, IS_ARRAY>::CInterpolatedVarEntry*& end,
|
|
bool bAllowHermiteFix )
|
|
{
|
|
TimeFixup2_Hermite( fixup, prev, start, end->flChangeTime - start->flChangeTime, bAllowHermiteFix );
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Interpolate_Hermite(
|
|
Type *out,
|
|
float frac,
|
|
CInterpolatedVarEntry *prev,
|
|
CInterpolatedVarEntry *start,
|
|
CInterpolatedVarEntry *end,
|
|
bool looping )
|
|
{
|
|
Assert( start );
|
|
Assert( end );
|
|
|
|
// Disable range checks because we can produce weird values here and it's not an error.
|
|
// After interpolation, we will clamp the values.
|
|
CDisableRangeChecks disableRangeChecks;
|
|
|
|
CInterpolatedVarEntry fixup;
|
|
fixup.Init(m_nMaxCount);
|
|
TimeFixup_Hermite( fixup, prev, start, end, true );
|
|
|
|
for( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
// Note that QAngle has a specialization that will do quaternion interpolation here...
|
|
if ( m_bLooping[ i ] )
|
|
{
|
|
out[ i ] = LoopingLerp_Hermite( out[ i ], frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] );
|
|
}
|
|
else
|
|
{
|
|
out[ i ] = Lerp_Hermite( out[ i ], frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] );
|
|
}
|
|
|
|
// Clamp the output from interpolation. There are edge cases where something like m_flCycle
|
|
// can get set to a really high or low value when we set it to zero after a really small
|
|
// time interval (the hermite blender will think it's got a really high velocity and
|
|
// skyrocket it off into la-la land).
|
|
Lerp_Clamp( out[i] );
|
|
}
|
|
}
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Hermite(
|
|
Type *out,
|
|
float frac,
|
|
CInterpolatedVarEntry *prev,
|
|
CInterpolatedVarEntry *start,
|
|
CInterpolatedVarEntry *end )
|
|
{
|
|
Assert( start );
|
|
Assert( end );
|
|
|
|
// Disable range checks because we can produce weird values here and it's not an error.
|
|
// After interpolation, we will clamp the values.
|
|
CDisableRangeChecks disableRangeChecks;
|
|
|
|
CInterpolatedVarEntry fixup;
|
|
fixup.value = (Type*)_alloca( sizeof(Type) * m_nMaxCount );
|
|
TimeFixup_Hermite( fixup, prev, start, end, true );
|
|
|
|
float divisor = 1.0f / (end->flChangeTime - start->flChangeTime);
|
|
|
|
for( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
Assert( !m_bLooping[ i ] );
|
|
out[i] = Derivative_Hermite( frac, prev->GetValue()[i], start->GetValue()[i], end->GetValue()[i] );
|
|
out[i] *= divisor;
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Hermite_SmoothVelocity(
|
|
Type *out,
|
|
float frac,
|
|
CInterpolatedVarEntry *b,
|
|
CInterpolatedVarEntry *c,
|
|
CInterpolatedVarEntry *d,
|
|
bool bAllowHermiteFix )
|
|
{
|
|
CInterpolatedVarEntry fixup;
|
|
fixup.Init(m_nMaxCount);
|
|
TimeFixup_Hermite( fixup, b, c, d, bAllowHermiteFix );
|
|
for ( int i=0; i < m_nMaxCount; i++ )
|
|
{
|
|
Type prevVel = (c->GetValue()[i] - b->GetValue()[i]) / (c->flChangeTime - b->flChangeTime);
|
|
Type curVel = (d->GetValue()[i] - c->GetValue()[i]) / (d->flChangeTime - c->flChangeTime);
|
|
out[i] = Lerp( frac, prevVel, curVel );
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline void CInterpolatedVarArrayBase<Type, IS_ARRAY>::_Derivative_Linear(
|
|
Type *out,
|
|
CInterpolatedVarEntry *start,
|
|
CInterpolatedVarEntry *end )
|
|
{
|
|
if ( start == end || fabs( start->flChangeTime - end->flChangeTime ) < 0.0001f )
|
|
{
|
|
for( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
out[ i ] = start->GetValue()[i] * 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
float divisor = 1.0f / (end->flChangeTime - start->flChangeTime);
|
|
for( int i = 0; i < m_nMaxCount; i++ )
|
|
{
|
|
out[ i ] = (end->GetValue()[i] - start->GetValue()[i]) * divisor;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
template< typename Type, bool IS_ARRAY >
|
|
inline bool CInterpolatedVarArrayBase<Type, IS_ARRAY>::ValidOrder()
|
|
{
|
|
float newestchangetime = 0.0f;
|
|
bool first = true;
|
|
for ( int i = 0; i < m_VarHistory.Count(); i++ )
|
|
{
|
|
CInterpolatedVarEntry *entry = &m_VarHistory[ i ];
|
|
if ( first )
|
|
{
|
|
first = false;
|
|
newestchangetime = entry->flChangeTime;
|
|
continue;
|
|
}
|
|
|
|
// They should get older as wel walk backwards
|
|
if ( entry->flChangeTime > newestchangetime )
|
|
{
|
|
Assert( 0 );
|
|
return false;
|
|
}
|
|
|
|
newestchangetime = entry->flChangeTime;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
template< typename Type, int COUNT >
|
|
class CInterpolatedVarArray : public CInterpolatedVarArrayBase<Type, true >
|
|
{
|
|
public:
|
|
CInterpolatedVarArray( const char *pDebugName = "no debug name" )
|
|
: CInterpolatedVarArrayBase< Type, true>( pDebugName )
|
|
{
|
|
CInterpolatedVarArrayBase< Type, true >::SetMaxCount( 0.0f, COUNT );
|
|
}
|
|
};
|
|
|
|
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
// CInterpolatedVar.
|
|
// -------------------------------------------------------------------------------------------------------------- //
|
|
|
|
template< typename Type >
|
|
class CInterpolatedVar : public CInterpolatedVarArrayBase< Type, false >
|
|
{
|
|
public:
|
|
CInterpolatedVar( const char *pDebugName = NULL )
|
|
: CInterpolatedVarArrayBase< Type, false >(pDebugName)
|
|
{
|
|
CInterpolatedVarArrayBase< Type, false >::SetMaxCount( 0.0f, 1 );
|
|
}
|
|
};
|
|
|
|
#include "tier0/memdbgoff.h"
|
|
|
|
#endif // INTERPOLATEDVAR_H
|